1
0
mirror of https://github.com/ncblakely/GiantsTools synced 2024-11-24 23:25:37 +01:00
GiantsTools/Sdk/External/DirectXMath/Extensions/DirectXMathF16C.h
2021-01-23 15:40:09 -08:00

472 lines
17 KiB
C++

//-------------------------------------------------------------------------------------
// DirectXMathF16C.h -- F16C/CVT16 extensions for SIMD C++ Math library
//
// Copyright (c) Microsoft Corporation. All rights reserved.
// Licensed under the MIT License.
//
// http://go.microsoft.com/fwlink/?LinkID=615560
//-------------------------------------------------------------------------------------
#pragma once
#if defined(_M_ARM) || defined(_M_ARM64) || defined(_M_HYBRID_X86_ARM64) || __arm__ || __aarch64__
#error F16C not supported on ARM platform
#endif
#include <DirectXMath.h>
#include <DirectXPackedVector.h>
namespace DirectX
{
namespace F16C
{
inline bool XMVerifyF16CSupport()
{
// Should return true for AMD "Piledriver" and Intel "Ivy Bridge" processors
// with OS support for AVX (Windows 7 Service Pack 1, Windows Server 2008 R2 Service Pack 1, Windows 8, Windows Server 2012)
// See http://msdn.microsoft.com/en-us/library/hskdteyh.aspx
int CPUInfo[4] = { -1 };
#if defined(__clang__) || defined(__GNUC__)
__cpuid(0, CPUInfo[0], CPUInfo[1], CPUInfo[2], CPUInfo[3]);
#else
__cpuid(CPUInfo, 0);
#endif
if ( CPUInfo[0] < 1 )
return false;
#if defined(__clang__) || defined(__GNUC__)
__cpuid(1, CPUInfo[0], CPUInfo[1], CPUInfo[2], CPUInfo[3]);
#else
__cpuid(CPUInfo, 1);
#endif
// We check for F16C, AVX, OSXSAVE, and SSE4.1
return ( (CPUInfo[2] & 0x38080000 ) == 0x38080000 );
}
//-------------------------------------------------------------------------------------
// Data conversion
//-------------------------------------------------------------------------------------
inline float XMConvertHalfToFloat( PackedVector::HALF Value )
{
__m128i V1 = _mm_cvtsi32_si128( static_cast<int>(Value) );
__m128 V2 = _mm_cvtph_ps( V1 );
return _mm_cvtss_f32( V2 );
}
inline PackedVector::HALF XMConvertFloatToHalf( float Value )
{
__m128 V1 = _mm_set_ss( Value );
__m128i V2 = _mm_cvtps_ph( V1, 0 );
return static_cast<PackedVector::HALF>( _mm_cvtsi128_si32(V2) );
}
inline float* XMConvertHalfToFloatStream
(
_Out_writes_bytes_(sizeof(float) + OutputStride * (HalfCount - 1)) float* pOutputStream,
_In_ size_t OutputStride,
_In_reads_bytes_(2 + InputStride * (HalfCount - 1)) const PackedVector::HALF* pInputStream,
_In_ size_t InputStride,
_In_ size_t HalfCount
)
{
using namespace PackedVector;
assert(pOutputStream);
assert(pInputStream);
assert(InputStride >= sizeof(HALF));
assert(OutputStride >= sizeof(float));
auto pHalf = reinterpret_cast<const uint8_t*>(pInputStream);
auto pFloat = reinterpret_cast<uint8_t*>(pOutputStream);
size_t i = 0;
size_t four = HalfCount >> 2;
if (four > 0)
{
if (InputStride == sizeof(HALF))
{
if (OutputStride == sizeof(float))
{
if ((reinterpret_cast<uintptr_t>(pFloat) & 0xF) == 0)
{
// Packed input, aligned & packed output
for (size_t j = 0; j < four; ++j)
{
__m128i HV = _mm_loadl_epi64(reinterpret_cast<const __m128i*>(pHalf));
pHalf += InputStride * 4;
__m128 FV = _mm_cvtph_ps(HV);
_mm_stream_ps(reinterpret_cast<float*>(pFloat), FV);
pFloat += OutputStride * 4;
i += 4;
}
}
else
{
// Packed input, packed output
for (size_t j = 0; j < four; ++j)
{
__m128i HV = _mm_loadl_epi64(reinterpret_cast<const __m128i*>(pHalf));
pHalf += InputStride * 4;
__m128 FV = _mm_cvtph_ps(HV);
_mm_storeu_ps(reinterpret_cast<float*>(pFloat), FV);
pFloat += OutputStride * 4;
i += 4;
}
}
}
else
{
// Packed input, scattered output
for (size_t j = 0; j < four; ++j)
{
__m128i HV = _mm_loadl_epi64(reinterpret_cast<const __m128i*>(pHalf));
pHalf += InputStride * 4;
__m128 FV = _mm_cvtph_ps(HV);
_mm_store_ss(reinterpret_cast<float*>(pFloat), FV);
pFloat += OutputStride;
*reinterpret_cast<int*>(pFloat) = _mm_extract_ps(FV, 1);
pFloat += OutputStride;
*reinterpret_cast<int*>(pFloat) = _mm_extract_ps(FV, 2);
pFloat += OutputStride;
*reinterpret_cast<int*>(pFloat) = _mm_extract_ps(FV, 3);
pFloat += OutputStride;
i += 4;
}
}
}
else if (OutputStride == sizeof(float))
{
if ((reinterpret_cast<uintptr_t>(pFloat) & 0xF) == 0)
{
// Scattered input, aligned & packed output
for (size_t j = 0; j < four; ++j)
{
uint16_t H1 = *reinterpret_cast<const HALF*>(pHalf);
pHalf += InputStride;
uint16_t H2 = *reinterpret_cast<const HALF*>(pHalf);
pHalf += InputStride;
uint16_t H3 = *reinterpret_cast<const HALF*>(pHalf);
pHalf += InputStride;
uint16_t H4 = *reinterpret_cast<const HALF*>(pHalf);
pHalf += InputStride;
__m128i HV = _mm_setzero_si128();
HV = _mm_insert_epi16(HV, H1, 0);
HV = _mm_insert_epi16(HV, H2, 1);
HV = _mm_insert_epi16(HV, H3, 2);
HV = _mm_insert_epi16(HV, H4, 3);
__m128 FV = _mm_cvtph_ps(HV);
_mm_stream_ps(reinterpret_cast<float*>(pFloat), FV);
pFloat += OutputStride * 4;
i += 4;
}
}
else
{
// Scattered input, packed output
for (size_t j = 0; j < four; ++j)
{
uint16_t H1 = *reinterpret_cast<const HALF*>(pHalf);
pHalf += InputStride;
uint16_t H2 = *reinterpret_cast<const HALF*>(pHalf);
pHalf += InputStride;
uint16_t H3 = *reinterpret_cast<const HALF*>(pHalf);
pHalf += InputStride;
uint16_t H4 = *reinterpret_cast<const HALF*>(pHalf);
pHalf += InputStride;
__m128i HV = _mm_setzero_si128();
HV = _mm_insert_epi16(HV, H1, 0);
HV = _mm_insert_epi16(HV, H2, 1);
HV = _mm_insert_epi16(HV, H3, 2);
HV = _mm_insert_epi16(HV, H4, 3);
__m128 FV = _mm_cvtph_ps(HV);
_mm_storeu_ps(reinterpret_cast<float*>(pFloat), FV);
pFloat += OutputStride * 4;
i += 4;
}
}
}
else
{
// Scattered input, scattered output
for (size_t j = 0; j < four; ++j)
{
uint16_t H1 = *reinterpret_cast<const HALF*>(pHalf);
pHalf += InputStride;
uint16_t H2 = *reinterpret_cast<const HALF*>(pHalf);
pHalf += InputStride;
uint16_t H3 = *reinterpret_cast<const HALF*>(pHalf);
pHalf += InputStride;
uint16_t H4 = *reinterpret_cast<const HALF*>(pHalf);
pHalf += InputStride;
__m128i HV = _mm_setzero_si128();
HV = _mm_insert_epi16(HV, H1, 0);
HV = _mm_insert_epi16(HV, H2, 1);
HV = _mm_insert_epi16(HV, H3, 2);
HV = _mm_insert_epi16(HV, H4, 3);
__m128 FV = _mm_cvtph_ps(HV);
_mm_store_ss(reinterpret_cast<float*>(pFloat), FV);
pFloat += OutputStride;
*reinterpret_cast<int*>(pFloat) = _mm_extract_ps(FV, 1);
pFloat += OutputStride;
*reinterpret_cast<int*>(pFloat) = _mm_extract_ps(FV, 2);
pFloat += OutputStride;
*reinterpret_cast<int*>(pFloat) = _mm_extract_ps(FV, 3);
pFloat += OutputStride;
i += 4;
}
}
}
for (; i < HalfCount; ++i)
{
*reinterpret_cast<float*>(pFloat) = XMConvertHalfToFloat(reinterpret_cast<const HALF*>(pHalf)[0]);
pHalf += InputStride;
pFloat += OutputStride;
}
return pOutputStream;
}
inline PackedVector::HALF* XMConvertFloatToHalfStream
(
_Out_writes_bytes_(2 + OutputStride * (FloatCount - 1)) PackedVector::HALF* pOutputStream,
_In_ size_t OutputStride,
_In_reads_bytes_(sizeof(float) + InputStride * (FloatCount - 1)) const float* pInputStream,
_In_ size_t InputStride,
_In_ size_t FloatCount
)
{
using namespace PackedVector;
assert(pOutputStream);
assert(pInputStream);
assert(InputStride >= sizeof(float));
assert(OutputStride >= sizeof(HALF));
auto pFloat = reinterpret_cast<const uint8_t*>(pInputStream);
auto pHalf = reinterpret_cast<uint8_t*>(pOutputStream);
size_t i = 0;
size_t four = FloatCount >> 2;
if (four > 0)
{
if (InputStride == sizeof(float))
{
if (OutputStride == sizeof(HALF))
{
if ((reinterpret_cast<uintptr_t>(pFloat) & 0xF) == 0)
{
// Aligned and packed input, packed output
for (size_t j = 0; j < four; ++j)
{
__m128 FV = _mm_load_ps(reinterpret_cast<const float*>(pFloat));
pFloat += InputStride * 4;
__m128i HV = _mm_cvtps_ph(FV, 0);
_mm_storel_epi64(reinterpret_cast<__m128i*>(pHalf), HV);
pHalf += OutputStride * 4;
i += 4;
}
}
else
{
// Packed input, packed output
for (size_t j = 0; j < four; ++j)
{
__m128 FV = _mm_loadu_ps(reinterpret_cast<const float*>(pFloat));
pFloat += InputStride * 4;
__m128i HV = _mm_cvtps_ph(FV, 0);
_mm_storel_epi64(reinterpret_cast<__m128i*>(pHalf), HV);
pHalf += OutputStride * 4;
i += 4;
}
}
}
else
{
if ((reinterpret_cast<uintptr_t>(pFloat) & 0xF) == 0)
{
// Aligned & packed input, scattered output
for (size_t j = 0; j < four; ++j)
{
__m128 FV = _mm_load_ps(reinterpret_cast<const float*>(pFloat));
pFloat += InputStride * 4;
__m128i HV = _mm_cvtps_ph(FV, 0);
*reinterpret_cast<HALF*>(pHalf) = static_cast<HALF>(_mm_extract_epi16(HV, 0));
pHalf += OutputStride;
*reinterpret_cast<HALF*>(pHalf) = static_cast<HALF>(_mm_extract_epi16(HV, 1));
pHalf += OutputStride;
*reinterpret_cast<HALF*>(pHalf) = static_cast<HALF>(_mm_extract_epi16(HV, 2));
pHalf += OutputStride;
*reinterpret_cast<HALF*>(pHalf) = static_cast<HALF>(_mm_extract_epi16(HV, 3));
pHalf += OutputStride;
i += 4;
}
}
else
{
// Packed input, scattered output
for (size_t j = 0; j < four; ++j)
{
__m128 FV = _mm_loadu_ps(reinterpret_cast<const float*>(pFloat));
pFloat += InputStride * 4;
__m128i HV = _mm_cvtps_ph(FV, 0);
*reinterpret_cast<HALF*>(pHalf) = static_cast<HALF>(_mm_extract_epi16(HV, 0));
pHalf += OutputStride;
*reinterpret_cast<HALF*>(pHalf) = static_cast<HALF>(_mm_extract_epi16(HV, 1));
pHalf += OutputStride;
*reinterpret_cast<HALF*>(pHalf) = static_cast<HALF>(_mm_extract_epi16(HV, 2));
pHalf += OutputStride;
*reinterpret_cast<HALF*>(pHalf) = static_cast<HALF>(_mm_extract_epi16(HV, 3));
pHalf += OutputStride;
i += 4;
}
}
}
}
else if (OutputStride == sizeof(HALF))
{
// Scattered input, packed output
for (size_t j = 0; j < four; ++j)
{
__m128 FV1 = _mm_load_ss(reinterpret_cast<const float*>(pFloat));
pFloat += InputStride;
__m128 FV2 = _mm_broadcast_ss(reinterpret_cast<const float*>(pFloat));
pFloat += InputStride;
__m128 FV3 = _mm_broadcast_ss(reinterpret_cast<const float*>(pFloat));
pFloat += InputStride;
__m128 FV4 = _mm_broadcast_ss(reinterpret_cast<const float*>(pFloat));
pFloat += InputStride;
__m128 FV = _mm_blend_ps(FV1, FV2, 0x2);
__m128 FT = _mm_blend_ps(FV3, FV4, 0x8);
FV = _mm_blend_ps(FV, FT, 0xC);
__m128i HV = _mm_cvtps_ph(FV, 0);
_mm_storel_epi64(reinterpret_cast<__m128i*>(pHalf), HV);
pHalf += OutputStride * 4;
i += 4;
}
}
else
{
// Scattered input, scattered output
for (size_t j = 0; j < four; ++j)
{
__m128 FV1 = _mm_load_ss(reinterpret_cast<const float*>(pFloat));
pFloat += InputStride;
__m128 FV2 = _mm_broadcast_ss(reinterpret_cast<const float*>(pFloat));
pFloat += InputStride;
__m128 FV3 = _mm_broadcast_ss(reinterpret_cast<const float*>(pFloat));
pFloat += InputStride;
__m128 FV4 = _mm_broadcast_ss(reinterpret_cast<const float*>(pFloat));
pFloat += InputStride;
__m128 FV = _mm_blend_ps(FV1, FV2, 0x2);
__m128 FT = _mm_blend_ps(FV3, FV4, 0x8);
FV = _mm_blend_ps(FV, FT, 0xC);
__m128i HV = _mm_cvtps_ph(FV, 0);
*reinterpret_cast<HALF*>(pHalf) = static_cast<HALF>(_mm_extract_epi16(HV, 0));
pHalf += OutputStride;
*reinterpret_cast<HALF*>(pHalf) = static_cast<HALF>(_mm_extract_epi16(HV, 1));
pHalf += OutputStride;
*reinterpret_cast<HALF*>(pHalf) = static_cast<HALF>(_mm_extract_epi16(HV, 2));
pHalf += OutputStride;
*reinterpret_cast<HALF*>(pHalf) = static_cast<HALF>(_mm_extract_epi16(HV, 3));
pHalf += OutputStride;
i += 4;
}
}
}
for (; i < FloatCount; ++i)
{
*reinterpret_cast<HALF*>(pHalf) = XMConvertFloatToHalf(reinterpret_cast<const float*>(pFloat)[0]);
pFloat += InputStride;
pHalf += OutputStride;
}
return pOutputStream;
}
//-------------------------------------------------------------------------------------
// Half2
//-------------------------------------------------------------------------------------
inline XMVECTOR XM_CALLCONV XMLoadHalf2( _In_ const PackedVector::XMHALF2* pSource )
{
assert(pSource);
__m128 V = _mm_load_ss( reinterpret_cast<const float*>(pSource) );
return _mm_cvtph_ps( _mm_castps_si128( V ) );
}
inline void XM_CALLCONV XMStoreHalf2( _Out_ PackedVector::XMHALF2* pDestination, _In_ FXMVECTOR V )
{
assert(pDestination);
__m128i V1 = _mm_cvtps_ph( V, 0 );
_mm_store_ss( reinterpret_cast<float*>(pDestination), _mm_castsi128_ps(V1) );
}
//-------------------------------------------------------------------------------------
// Half4
//-------------------------------------------------------------------------------------
inline XMVECTOR XM_CALLCONV XMLoadHalf4( _In_ const PackedVector::XMHALF4* pSource )
{
assert(pSource);
__m128i V = _mm_loadl_epi64( reinterpret_cast<const __m128i*>(pSource) );
return _mm_cvtph_ps( V );
}
inline void XM_CALLCONV XMStoreHalf4( _Out_ PackedVector::XMHALF4* pDestination, _In_ FXMVECTOR V )
{
assert(pDestination);
__m128i V1 = _mm_cvtps_ph( V, 0 );
_mm_storel_epi64( reinterpret_cast<__m128i*>(pDestination), V1 );
}
} // namespace F16C
} // namespace DirectX