1
0
mirror of https://github.com/ncblakely/GiantsTools synced 2024-11-22 22:25:37 +01:00
GiantsTools/Sdk/External/DirectXMath/Extensions/DirectXMathAVX.h
2021-01-23 15:40:09 -08:00

276 lines
12 KiB
C++

//-------------------------------------------------------------------------------------
// DirectXMathAVX.h -- AVX (version 1) extensions for SIMD C++ Math library
//
// Copyright (c) Microsoft Corporation. All rights reserved.
// Licensed under the MIT License.
//
// http://go.microsoft.com/fwlink/?LinkID=615560
//-------------------------------------------------------------------------------------
#pragma once
#if defined(_M_ARM) || defined(_M_ARM64) || defined(_M_HYBRID_X86_ARM64) || __arm__ || __aarch64__
#error AVX not supported on ARM platform
#endif
#include <DirectXMath.h>
namespace DirectX
{
namespace AVX
{
inline bool XMVerifyAVXSupport()
{
// Should return true for AMD Bulldozer, Intel "Sandy Bridge", and Intel "Ivy Bridge" or later processors
// with OS support for AVX (Windows 7 Service Pack 1, Windows Server 2008 R2 Service Pack 1, Windows 8, Windows Server 2012)
// See http://msdn.microsoft.com/en-us/library/hskdteyh.aspx
int CPUInfo[4] = {-1};
#if defined(__clang__) || defined(__GNUC__)
__cpuid(0, CPUInfo[0], CPUInfo[1], CPUInfo[2], CPUInfo[3]);
#else
__cpuid( CPUInfo, 0 );
#endif
if ( CPUInfo[0] < 1 )
return false;
#if defined(__clang__) || defined(__GNUC__)
__cpuid(1, CPUInfo[0], CPUInfo[1], CPUInfo[2], CPUInfo[3]);
#else
__cpuid(CPUInfo, 1 );
#endif
// We check for AVX, OSXSAVE, SSSE4.1, and SSE3
return ( (CPUInfo[2] & 0x18080001) == 0x18080001 );
}
//-------------------------------------------------------------------------------------
// Vector
//-------------------------------------------------------------------------------------
inline XMVECTOR XM_CALLCONV XMVectorReplicatePtr( _In_ const float *pValue )
{
return _mm_broadcast_ss( pValue );
}
inline XMVECTOR XM_CALLCONV XMVectorSplatX( FXMVECTOR V )
{
return _mm_permute_ps( V, _MM_SHUFFLE(0, 0, 0, 0) );
}
inline XMVECTOR XM_CALLCONV XMVectorSplatY( FXMVECTOR V )
{
return _mm_permute_ps( V, _MM_SHUFFLE(1, 1, 1, 1) );
}
inline XMVECTOR XM_CALLCONV XMVectorSplatZ( FXMVECTOR V )
{
return _mm_permute_ps( V, _MM_SHUFFLE(2, 2, 2, 2) );
}
inline XMVECTOR XM_CALLCONV XMVectorSplatW( FXMVECTOR V )
{
return _mm_permute_ps( V, _MM_SHUFFLE(3, 3, 3, 3) );
}
inline XMVECTOR XM_CALLCONV XMVectorSwizzle( FXMVECTOR V, uint32_t E0, uint32_t E1, uint32_t E2, uint32_t E3 )
{
assert( (E0 < 4) && (E1 < 4) && (E2 < 4) && (E3 < 4) );
_Analysis_assume_( (E0 < 4) && (E1 < 4) && (E2 < 4) && (E3 < 4) );
unsigned int elem[4] = { E0, E1, E2, E3 };
__m128i vControl = _mm_loadu_si128( reinterpret_cast<const __m128i *>(&elem[0]) );
return _mm_permutevar_ps( V, vControl );
}
inline XMVECTOR XM_CALLCONV XMVectorPermute( FXMVECTOR V1, FXMVECTOR V2, uint32_t PermuteX, uint32_t PermuteY, uint32_t PermuteZ, uint32_t PermuteW )
{
assert( PermuteX <= 7 && PermuteY <= 7 && PermuteZ <= 7 && PermuteW <= 7 );
_Analysis_assume_( PermuteX <= 7 && PermuteY <= 7 && PermuteZ <= 7 && PermuteW <= 7 );
static const XMVECTORU32 three = { { { 3, 3, 3, 3 } } };
XM_ALIGNED_DATA(16) unsigned int elem[4] = { PermuteX, PermuteY, PermuteZ, PermuteW };
__m128i vControl = _mm_load_si128( reinterpret_cast<const __m128i *>(&elem[0]) );
__m128i vSelect = _mm_cmpgt_epi32( vControl, three );
vControl = _mm_castps_si128( _mm_and_ps( _mm_castsi128_ps( vControl ), three ) );
__m128 shuffled1 = _mm_permutevar_ps( V1, vControl );
__m128 shuffled2 = _mm_permutevar_ps( V2, vControl );
__m128 masked1 = _mm_andnot_ps( _mm_castsi128_ps( vSelect ), shuffled1 );
__m128 masked2 = _mm_and_ps( _mm_castsi128_ps( vSelect ), shuffled2 );
return _mm_or_ps( masked1, masked2 );
}
inline XMVECTOR XM_CALLCONV XMVectorShiftLeft(FXMVECTOR V1, FXMVECTOR V2, uint32_t Elements)
{
assert( Elements < 4 );
_Analysis_assume_( Elements < 4 );
return AVX::XMVectorPermute(V1, V2, Elements, ((Elements) + 1), ((Elements) + 2), ((Elements) + 3));
}
inline XMVECTOR XM_CALLCONV XMVectorRotateLeft(FXMVECTOR V, uint32_t Elements)
{
assert( Elements < 4 );
_Analysis_assume_( Elements < 4 );
return AVX::XMVectorSwizzle( V, Elements & 3, (Elements + 1) & 3, (Elements + 2) & 3, (Elements + 3) & 3 );
}
inline XMVECTOR XM_CALLCONV XMVectorRotateRight(FXMVECTOR V, uint32_t Elements)
{
assert( Elements < 4 );
_Analysis_assume_( Elements < 4 );
return AVX::XMVectorSwizzle( V, (4 - (Elements)) & 3, (5 - (Elements)) & 3, (6 - (Elements)) & 3, (7 - (Elements)) & 3 );
}
//-------------------------------------------------------------------------------------
// Permute Templates
//-------------------------------------------------------------------------------------
namespace Internal
{
// Slow path fallback for permutes that do not map to a single SSE opcode.
template<uint32_t Shuffle, bool WhichX, bool WhichY, bool WhichZ, bool WhichW> struct PermuteHelper
{
static XMVECTOR XM_CALLCONV Permute(FXMVECTOR v1, FXMVECTOR v2)
{
static const XMVECTORU32 selectMask =
{
WhichX ? 0xFFFFFFFF : 0,
WhichY ? 0xFFFFFFFF : 0,
WhichZ ? 0xFFFFFFFF : 0,
WhichW ? 0xFFFFFFFF : 0,
};
XMVECTOR shuffled1 = _mm_permute_ps(v1, Shuffle);
XMVECTOR shuffled2 = _mm_permute_ps(v2, Shuffle);
XMVECTOR masked1 = _mm_andnot_ps(selectMask, shuffled1);
XMVECTOR masked2 = _mm_and_ps(selectMask, shuffled2);
return _mm_or_ps(masked1, masked2);
}
};
// Fast path for permutes that only read from the first vector.
template<uint32_t Shuffle> struct PermuteHelper<Shuffle, false, false, false, false>
{
static XMVECTOR XM_CALLCONV Permute(FXMVECTOR v1, FXMVECTOR v2) { (v2); return _mm_permute_ps(v1, Shuffle); }
};
// Fast path for permutes that only read from the second vector.
template<uint32_t Shuffle> struct PermuteHelper<Shuffle, true, true, true, true>
{
static XMVECTOR XM_CALLCONV Permute(FXMVECTOR v1, FXMVECTOR v2){ (v1); return _mm_permute_ps(v2, Shuffle); }
};
// Fast path for permutes that read XY from the first vector, ZW from the second.
template<uint32_t Shuffle> struct PermuteHelper<Shuffle, false, false, true, true>
{
static XMVECTOR XM_CALLCONV Permute(FXMVECTOR v1, FXMVECTOR v2) { return _mm_shuffle_ps(v1, v2, Shuffle); }
};
// Fast path for permutes that read XY from the second vector, ZW from the first.
template<uint32_t Shuffle> struct PermuteHelper<Shuffle, true, true, false, false>
{
static XMVECTOR XM_CALLCONV Permute(FXMVECTOR v1, FXMVECTOR v2) { return _mm_shuffle_ps(v2, v1, Shuffle); }
};
};
// General permute template
template<uint32_t PermuteX, uint32_t PermuteY, uint32_t PermuteZ, uint32_t PermuteW>
inline XMVECTOR XM_CALLCONV XMVectorPermute(FXMVECTOR V1, FXMVECTOR V2)
{
static_assert(PermuteX <= 7, "PermuteX template parameter out of range");
static_assert(PermuteY <= 7, "PermuteY template parameter out of range");
static_assert(PermuteZ <= 7, "PermuteZ template parameter out of range");
static_assert(PermuteW <= 7, "PermuteW template parameter out of range");
const uint32_t Shuffle = _MM_SHUFFLE(PermuteW & 3, PermuteZ & 3, PermuteY & 3, PermuteX & 3);
const bool WhichX = PermuteX > 3;
const bool WhichY = PermuteY > 3;
const bool WhichZ = PermuteZ > 3;
const bool WhichW = PermuteW > 3;
return AVX::Internal::PermuteHelper<Shuffle, WhichX, WhichY, WhichZ, WhichW>::Permute(V1, V2);
}
// Special-case permute templates
template<> inline XMVECTOR XM_CALLCONV XMVectorPermute<0,1,2,3>(FXMVECTOR V1, FXMVECTOR) { return V1; }
template<> inline XMVECTOR XM_CALLCONV XMVectorPermute<4,5,6,7>(FXMVECTOR, FXMVECTOR V2) { return V2; }
template<> inline XMVECTOR XM_CALLCONV XMVectorPermute<4,1,2,3>(FXMVECTOR V1, FXMVECTOR V2) { return _mm_blend_ps(V1,V2,0x1); }
template<> inline XMVECTOR XM_CALLCONV XMVectorPermute<0,5,2,3>(FXMVECTOR V1, FXMVECTOR V2) { return _mm_blend_ps(V1,V2,0x2); }
template<> inline XMVECTOR XM_CALLCONV XMVectorPermute<4,5,2,3>(FXMVECTOR V1, FXMVECTOR V2) { return _mm_blend_ps(V1,V2,0x3); }
template<> inline XMVECTOR XM_CALLCONV XMVectorPermute<0,1,6,3>(FXMVECTOR V1, FXMVECTOR V2) { return _mm_blend_ps(V1,V2,0x4); }
template<> inline XMVECTOR XM_CALLCONV XMVectorPermute<4,1,6,3>(FXMVECTOR V1, FXMVECTOR V2) { return _mm_blend_ps(V1,V2,0x5); }
template<> inline XMVECTOR XM_CALLCONV XMVectorPermute<0,5,6,3>(FXMVECTOR V1, FXMVECTOR V2) { return _mm_blend_ps(V1,V2,0x6); }
template<> inline XMVECTOR XM_CALLCONV XMVectorPermute<4,5,6,3>(FXMVECTOR V1, FXMVECTOR V2) { return _mm_blend_ps(V1,V2,0x7); }
template<> inline XMVECTOR XM_CALLCONV XMVectorPermute<0,1,2,7>(FXMVECTOR V1, FXMVECTOR V2) { return _mm_blend_ps(V1,V2,0x8); }
template<> inline XMVECTOR XM_CALLCONV XMVectorPermute<4,1,2,7>(FXMVECTOR V1, FXMVECTOR V2) { return _mm_blend_ps(V1,V2,0x9); }
template<> inline XMVECTOR XM_CALLCONV XMVectorPermute<0,5,2,7>(FXMVECTOR V1, FXMVECTOR V2) { return _mm_blend_ps(V1,V2,0xA); }
template<> inline XMVECTOR XM_CALLCONV XMVectorPermute<4,5,2,7>(FXMVECTOR V1, FXMVECTOR V2) { return _mm_blend_ps(V1,V2,0xB); }
template<> inline XMVECTOR XM_CALLCONV XMVectorPermute<0,1,6,7>(FXMVECTOR V1, FXMVECTOR V2) { return _mm_blend_ps(V1,V2,0xC); }
template<> inline XMVECTOR XM_CALLCONV XMVectorPermute<4,1,6,7>(FXMVECTOR V1, FXMVECTOR V2) { return _mm_blend_ps(V1,V2,0xD); }
template<> inline XMVECTOR XM_CALLCONV XMVectorPermute<0,5,6,7>(FXMVECTOR V1, FXMVECTOR V2) { return _mm_blend_ps(V1,V2,0xE); }
//-------------------------------------------------------------------------------------
// Swizzle Templates
//-------------------------------------------------------------------------------------
// General swizzle template
template<uint32_t SwizzleX, uint32_t SwizzleY, uint32_t SwizzleZ, uint32_t SwizzleW>
inline XMVECTOR XM_CALLCONV XMVectorSwizzle(FXMVECTOR V)
{
static_assert(SwizzleX <= 3, "SwizzleX template parameter out of range");
static_assert(SwizzleY <= 3, "SwizzleY template parameter out of range");
static_assert(SwizzleZ <= 3, "SwizzleZ template parameter out of range");
static_assert(SwizzleW <= 3, "SwizzleW template parameter out of range");
return _mm_permute_ps( V, _MM_SHUFFLE( SwizzleW, SwizzleZ, SwizzleY, SwizzleX ) );
}
// Specialized swizzles
template<> inline XMVECTOR XM_CALLCONV XMVectorSwizzle<0,1,2,3>(FXMVECTOR V) { return V; }
template<> inline XMVECTOR XM_CALLCONV XMVectorSwizzle<0,0,2,2>(FXMVECTOR V) { return _mm_moveldup_ps(V); }
template<> inline XMVECTOR XM_CALLCONV XMVectorSwizzle<1,1,3,3>(FXMVECTOR V) { return _mm_movehdup_ps(V); }
//-------------------------------------------------------------------------------------
// Other Templates
//-------------------------------------------------------------------------------------
template<uint32_t Elements>
inline XMVECTOR XM_CALLCONV XMVectorShiftLeft(FXMVECTOR V1, FXMVECTOR V2)
{
static_assert( Elements < 4, "Elements template parameter out of range" );
return AVX::XMVectorPermute<Elements, (Elements + 1), (Elements + 2), (Elements + 3)>(V1, V2);
}
template<uint32_t Elements>
inline XMVECTOR XM_CALLCONV XMVectorRotateLeft(FXMVECTOR V)
{
static_assert( Elements < 4, "Elements template parameter out of range" );
return AVX::XMVectorSwizzle<Elements & 3, (Elements + 1) & 3, (Elements + 2) & 3, (Elements + 3) & 3>(V);
}
template<uint32_t Elements>
inline XMVECTOR XM_CALLCONV XMVectorRotateRight(FXMVECTOR V)
{
static_assert( Elements < 4, "Elements template parameter out of range" );
return AVX::XMVectorSwizzle<(4 - Elements) & 3, (5 - Elements) & 3, (6 - Elements) & 3, (7 - Elements) & 3>(V);
}
} // namespace AVX
} // namespace DirectX;