1
0
mirror of https://github.com/ncblakely/GiantsTools synced 2024-12-04 18:43:10 +01:00
GiantsTools/NavMeshGenerator/NavMeshGenerator.cpp
2021-01-04 19:19:21 -08:00

623 lines
20 KiB
C++

#include "NavMeshGenerator.h"
#include "DetourNavMesh.h"
#include "DetourNavMeshBuilder.h"
#include "Recast.h"
#include "RecastContext.h"
using namespace nlohmann;
using namespace std::filesystem;
inline unsigned int nextPow2(unsigned int v)
{
v--;
v |= v >> 1;
v |= v >> 2;
v |= v >> 4;
v |= v >> 8;
v |= v >> 16;
v++;
return v;
}
inline unsigned int ilog2(unsigned int v)
{
unsigned int r;
unsigned int shift;
r = (v > 0xffff) << 4; v >>= r;
shift = (v > 0xff) << 3; v >>= shift; r |= shift;
shift = (v > 0xf) << 2; v >>= shift; r |= shift;
shift = (v > 0x3) << 1; v >>= shift; r |= shift;
r |= (v >> 1);
return r;
}
NavMeshGenerator::NavMeshGenerator(std::shared_ptr<InputGeom> geom, std::shared_ptr<RecastContext> context)
: m_geom(geom),
m_navMeshQuery(dtAllocNavMeshQuery()),
m_navMesh(dtAllocNavMesh()),
m_ctx(context)
{
}
NavMeshGenerator::~NavMeshGenerator()
{
Cleanup();
}
void NavMeshGenerator::Cleanup()
{
delete[] m_triareas;
m_triareas = 0;
rcFreeHeightField(m_solid);
m_solid = 0;
rcFreeCompactHeightfield(m_chf);
m_chf = 0;
rcFreeContourSet(m_cset);
m_cset = 0;
rcFreePolyMesh(m_pmesh);
m_pmesh = 0;
rcFreePolyMeshDetail(m_dmesh);
m_dmesh = 0;
}
bool NavMeshGenerator::BuildNavMesh()
{
CalculateTileSize();
dtNavMeshParams params{};
rcVcopy(params.orig, m_geom->getNavMeshBoundsMin());
params.tileWidth = m_tileSize * m_cellSize;
params.tileHeight = m_tileSize * m_cellSize;
params.maxTiles = m_maxTiles;
params.maxPolys = m_maxPolysPerTile;
dtStatus status = m_navMesh->init(&params);
if (dtStatusFailed(status))
{
return false;
}
status = m_navMeshQuery->init(m_navMesh.get(), 2048);
if (dtStatusFailed(status))
{
//m_ctx->log(RC_LOG_ERROR, "buildTiledNavigation: Could not init Detour navmesh query");
return false;
}
BuildAllTiles();
return true;
}
void NavMeshGenerator::CalculateTileSize()
{
const float* bmin = m_geom->getNavMeshBoundsMin();
const float* bmax = m_geom->getNavMeshBoundsMax();
int gw = 0, gh = 0;
rcCalcGridSize(bmin, bmax, m_cellSize, &gw, &gh);
const int ts = (int)m_tileSize;
const int tw = (gw + ts - 1) / ts;
const int th = (gh + ts - 1) / ts;
const float tcs = m_tileSize * m_cellSize;
// Max tiles and max polys affect how the tile IDs are caculated.
// There are 22 bits available for identifying a tile and a polygon.
int tileBits = rcMin((int)ilog2(nextPow2(tw * th)), 14);
if (tileBits > 14) tileBits = 14;
int polyBits = 22 - tileBits;
m_maxTiles = 1 << tileBits;
m_maxPolysPerTile = 1 << polyBits;
}
void NavMeshGenerator::BuildAllTiles()
{
const float* bmin = m_geom->getNavMeshBoundsMin();
const float* bmax = m_geom->getNavMeshBoundsMax();
int gw = 0, gh = 0;
rcCalcGridSize(bmin, bmax, m_cellSize, &gw, &gh);
const int ts = (int)m_tileSize;
const int tw = (gw + ts - 1) / ts;
const int th = (gh + ts - 1) / ts;
const float tcs = m_tileSize * m_cellSize;
m_ctx->startTimer(RC_TIMER_TEMP);
for (int y = 0; y < th; ++y)
{
for (int x = 0; x < tw; ++x)
{
m_lastBuiltTileBmin[0] = bmin[0] + x * tcs;
m_lastBuiltTileBmin[1] = bmin[1];
m_lastBuiltTileBmin[2] = bmin[2] + y * tcs;
m_lastBuiltTileBmax[0] = bmin[0] + (x + 1) * tcs;
m_lastBuiltTileBmax[1] = bmax[1];
m_lastBuiltTileBmax[2] = bmin[2] + (y + 1) * tcs;
int dataSize = 0;
unsigned char* data = BuildTileMesh(x, y, m_lastBuiltTileBmin, m_lastBuiltTileBmax, dataSize);
if (data)
{
// Remove any previous data (navmesh owns and deletes the data).
m_navMesh->removeTile(m_navMesh->getTileRefAt(x, y, 0), 0, 0);
// Let the navmesh own the data.
dtStatus status = m_navMesh->addTile(data, dataSize, DT_TILE_FREE_DATA, 0, 0);
if (dtStatusFailed(status))
dtFree(data);
}
}
}
// Start the build process.
m_ctx->stopTimer(RC_TIMER_TEMP);
//m_totalBuildTimeMs = m_ctx->getAccumulatedTime(RC_TIMER_TEMP) / 1000.0f;
}
unsigned char* NavMeshGenerator::BuildTileMesh(const int tx, const int ty, const float* bmin, const float* bmax, int& dataSize)
{
if (!m_geom || !m_geom->getMesh() || !m_geom->getChunkyMesh())
{
m_ctx->log(RC_LOG_ERROR, "buildNavigation: Input mesh is not specified.");
return 0;
}
m_tileMemUsage = 0;
m_tileBuildTime = 0;
Cleanup();
const float* verts = m_geom->getMesh()->getVerts();
const int nverts = m_geom->getMesh()->getVertCount();
const int ntris = m_geom->getMesh()->getTriCount();
const rcChunkyTriMesh* chunkyMesh = m_geom->getChunkyMesh();
// Init build configuration from GUI
memset(&m_cfg, 0, sizeof(m_cfg));
m_cfg.cs = m_cellSize;
m_cfg.ch = m_cellHeight;
m_cfg.walkableSlopeAngle = m_agentMaxSlope;
m_cfg.walkableHeight = (int)ceilf(m_agentHeight / m_cfg.ch);
m_cfg.walkableClimb = (int)floorf(m_agentMaxClimb / m_cfg.ch);
m_cfg.walkableRadius = (int)ceilf(m_agentRadius / m_cfg.cs);
m_cfg.maxEdgeLen = (int)(m_edgeMaxLen / m_cellSize);
m_cfg.maxSimplificationError = m_edgeMaxError;
m_cfg.minRegionArea = (int)rcSqr(m_regionMinSize); // Note: area = size*size
m_cfg.mergeRegionArea = (int)rcSqr(m_regionMergeSize); // Note: area = size*size
m_cfg.maxVertsPerPoly = (int)m_vertsPerPoly;
m_cfg.tileSize = (int)m_tileSize;
m_cfg.borderSize = m_cfg.walkableRadius + 3; // Reserve enough padding.
m_cfg.width = m_cfg.tileSize + m_cfg.borderSize * 2;
m_cfg.height = m_cfg.tileSize + m_cfg.borderSize * 2;
m_cfg.detailSampleDist = m_detailSampleDist < 0.9f ? 0 : m_cellSize * m_detailSampleDist;
m_cfg.detailSampleMaxError = m_cellHeight * m_detailSampleMaxError;
// Expand the heighfield bounding box by border size to find the extents of geometry we need to build this tile.
//
// This is done in order to make sure that the navmesh tiles connect correctly at the borders,
// and the obstacles close to the border work correctly with the dilation process.
// No polygons (or contours) will be created on the border area.
//
// IMPORTANT!
//
// :''''''''':
// : +-----+ :
// : | | :
// : | |<--- tile to build
// : | | :
// : +-----+ :<-- geometry needed
// :.........:
//
// You should use this bounding box to query your input geometry.
//
// For example if you build a navmesh for terrain, and want the navmesh tiles to match the terrain tile size
// you will need to pass in data from neighbour terrain tiles too! In a simple case, just pass in all the 8 neighbours,
// or use the bounding box below to only pass in a sliver of each of the 8 neighbours.
rcVcopy(m_cfg.bmin, bmin);
rcVcopy(m_cfg.bmax, bmax);
m_cfg.bmin[0] -= m_cfg.borderSize * m_cfg.cs;
m_cfg.bmin[2] -= m_cfg.borderSize * m_cfg.cs;
m_cfg.bmax[0] += m_cfg.borderSize * m_cfg.cs;
m_cfg.bmax[2] += m_cfg.borderSize * m_cfg.cs;
// Reset build times gathering.
m_ctx->resetTimers();
// Start the build process.
m_ctx->startTimer(RC_TIMER_TOTAL);
m_ctx->log(RC_LOG_PROGRESS, "Building navigation:");
m_ctx->log(RC_LOG_PROGRESS, " - %d x %d cells", m_cfg.width, m_cfg.height);
m_ctx->log(RC_LOG_PROGRESS, " - %.1fK verts, %.1fK tris", nverts / 1000.0f, ntris / 1000.0f);
// Allocate voxel heightfield where we rasterize our input data to.
m_solid = rcAllocHeightfield();
if (!m_solid)
{
m_ctx->log(RC_LOG_ERROR, "buildNavigation: Out of memory 'solid'.");
return 0;
}
if (!rcCreateHeightfield(m_ctx.get(), *m_solid, m_cfg.width, m_cfg.height, m_cfg.bmin, m_cfg.bmax, m_cfg.cs, m_cfg.ch))
{
m_ctx->log(RC_LOG_ERROR, "buildNavigation: Could not create solid heightfield.");
return 0;
}
// Allocate array that can hold triangle flags.
// If you have multiple meshes you need to process, allocate
// and array which can hold the max number of triangles you need to process.
m_triareas = new unsigned char[chunkyMesh->maxTrisPerChunk];
if (!m_triareas)
{
m_ctx->log(RC_LOG_ERROR, "buildNavigation: Out of memory 'm_triareas' (%d).", chunkyMesh->maxTrisPerChunk);
return 0;
}
float tbmin[2], tbmax[2];
tbmin[0] = m_cfg.bmin[0];
tbmin[1] = m_cfg.bmin[2];
tbmax[0] = m_cfg.bmax[0];
tbmax[1] = m_cfg.bmax[2];
int cid[512];// TODO: Make grow when returning too many items.
const int ncid = rcGetChunksOverlappingRect(chunkyMesh, tbmin, tbmax, cid, 512);
if (!ncid)
return 0;
m_tileTriCount = 0;
for (int i = 0; i < ncid; ++i)
{
const rcChunkyTriMeshNode& node = chunkyMesh->nodes[cid[i]];
const int* ctris = &chunkyMesh->tris[node.i * 3];
const int nctris = node.n;
m_tileTriCount += nctris;
memset(m_triareas, 0, nctris * sizeof(unsigned char));
rcMarkWalkableTriangles(m_ctx.get(), m_cfg.walkableSlopeAngle,
verts, nverts, ctris, nctris, m_triareas);
if (!rcRasterizeTriangles(m_ctx.get(), verts, nverts, ctris, m_triareas, nctris, *m_solid, m_cfg.walkableClimb))
return 0;
}
if (!m_keepInterResults)
{
delete[] m_triareas;
m_triareas = 0;
}
// Once all geometry is rasterized, we do initial pass of filtering to
// remove unwanted overhangs caused by the conservative rasterization
// as well as filter spans where the character cannot possibly stand.
if (m_filterLowHangingObstacles)
rcFilterLowHangingWalkableObstacles(m_ctx.get(), m_cfg.walkableClimb, *m_solid);
if (m_filterLedgeSpans)
rcFilterLedgeSpans(m_ctx.get(), m_cfg.walkableHeight, m_cfg.walkableClimb, *m_solid);
if (m_filterWalkableLowHeightSpans)
rcFilterWalkableLowHeightSpans(m_ctx.get(), m_cfg.walkableHeight, *m_solid);
// Compact the heightfield so that it is faster to handle from now on.
// This will result more cache coherent data as well as the neighbours
// between walkable cells will be calculated.
m_chf = rcAllocCompactHeightfield();
if (!m_chf)
{
m_ctx->log(RC_LOG_ERROR, "buildNavigation: Out of memory 'chf'.");
return 0;
}
if (!rcBuildCompactHeightfield(m_ctx.get(), m_cfg.walkableHeight, m_cfg.walkableClimb, *m_solid, *m_chf))
{
m_ctx->log(RC_LOG_ERROR, "buildNavigation: Could not build compact data.");
return 0;
}
if (!m_keepInterResults)
{
rcFreeHeightField(m_solid);
m_solid = 0;
}
// Erode the walkable area by agent radius.
if (!rcErodeWalkableArea(m_ctx.get(), m_cfg.walkableRadius, *m_chf))
{
m_ctx->log(RC_LOG_ERROR, "buildNavigation: Could not erode.");
return 0;
}
// (Optional) Mark areas.
const ConvexVolume* vols = m_geom->getConvexVolumes();
for (int i = 0; i < m_geom->getConvexVolumeCount(); ++i)
rcMarkConvexPolyArea(m_ctx.get(), vols[i].verts, vols[i].nverts, vols[i].hmin, vols[i].hmax, (unsigned char)vols[i].area, *m_chf);
// Partition the heightfield so that we can use simple algorithm later to triangulate the walkable areas.
// There are 3 martitioning methods, each with some pros and cons:
// 1) Watershed partitioning
// - the classic Recast partitioning
// - creates the nicest tessellation
// - usually slowest
// - partitions the heightfield into nice regions without holes or overlaps
// - the are some corner cases where this method creates produces holes and overlaps
// - holes may appear when a small obstacles is close to large open area (triangulation can handle this)
// - overlaps may occur if you have narrow spiral corridors (i.e stairs), this make triangulation to fail
// * generally the best choice if you precompute the nacmesh, use this if you have large open areas
// 2) Monotone partioning
// - fastest
// - partitions the heightfield into regions without holes and overlaps (guaranteed)
// - creates long thin polygons, which sometimes causes paths with detours
// * use this if you want fast navmesh generation
// 3) Layer partitoining
// - quite fast
// - partitions the heighfield into non-overlapping regions
// - relies on the triangulation code to cope with holes (thus slower than monotone partitioning)
// - produces better triangles than monotone partitioning
// - does not have the corner cases of watershed partitioning
// - can be slow and create a bit ugly tessellation (still better than monotone)
// if you have large open areas with small obstacles (not a problem if you use tiles)
// * good choice to use for tiled navmesh with medium and small sized tiles
if (m_partitionType == SAMPLE_PARTITION_WATERSHED)
{
// Prepare for region partitioning, by calculating distance field along the walkable surface.
if (!rcBuildDistanceField(m_ctx.get(), *m_chf))
{
m_ctx->log(RC_LOG_ERROR, "buildNavigation: Could not build distance field.");
return 0;
}
// Partition the walkable surface into simple regions without holes.
if (!rcBuildRegions(m_ctx.get(), *m_chf, m_cfg.borderSize, m_cfg.minRegionArea, m_cfg.mergeRegionArea))
{
m_ctx->log(RC_LOG_ERROR, "buildNavigation: Could not build watershed regions.");
return 0;
}
}
else if (m_partitionType == SAMPLE_PARTITION_MONOTONE)
{
// Partition the walkable surface into simple regions without holes.
// Monotone partitioning does not need distancefield.
if (!rcBuildRegionsMonotone(m_ctx.get(), *m_chf, m_cfg.borderSize, m_cfg.minRegionArea, m_cfg.mergeRegionArea))
{
m_ctx->log(RC_LOG_ERROR, "buildNavigation: Could not build monotone regions.");
return 0;
}
}
else // SAMPLE_PARTITION_LAYERS
{
// Partition the walkable surface into simple regions without holes.
if (!rcBuildLayerRegions(m_ctx.get(), *m_chf, m_cfg.borderSize, m_cfg.minRegionArea))
{
m_ctx->log(RC_LOG_ERROR, "buildNavigation: Could not build layer regions.");
return 0;
}
}
// Create contours.
m_cset = rcAllocContourSet();
if (!m_cset)
{
m_ctx->log(RC_LOG_ERROR, "buildNavigation: Out of memory 'cset'.");
return 0;
}
if (!rcBuildContours(m_ctx.get(), *m_chf, m_cfg.maxSimplificationError, m_cfg.maxEdgeLen, *m_cset))
{
m_ctx->log(RC_LOG_ERROR, "buildNavigation: Could not create contours.");
return 0;
}
if (m_cset->nconts == 0)
{
return 0;
}
// Build polygon navmesh from the contours.
m_pmesh = rcAllocPolyMesh();
if (!m_pmesh)
{
m_ctx->log(RC_LOG_ERROR, "buildNavigation: Out of memory 'pmesh'.");
return 0;
}
if (!rcBuildPolyMesh(m_ctx.get(), *m_cset, m_cfg.maxVertsPerPoly, *m_pmesh))
{
m_ctx->log(RC_LOG_ERROR, "buildNavigation: Could not triangulate contours.");
return 0;
}
// Build detail mesh.
m_dmesh = rcAllocPolyMeshDetail();
if (!m_dmesh)
{
m_ctx->log(RC_LOG_ERROR, "buildNavigation: Out of memory 'dmesh'.");
return 0;
}
if (!rcBuildPolyMeshDetail(m_ctx.get(), *m_pmesh, *m_chf,
m_cfg.detailSampleDist, m_cfg.detailSampleMaxError,
*m_dmesh))
{
m_ctx->log(RC_LOG_ERROR, "buildNavigation: Could build polymesh detail.");
return 0;
}
if (!m_keepInterResults)
{
rcFreeCompactHeightfield(m_chf);
m_chf = 0;
rcFreeContourSet(m_cset);
m_cset = 0;
}
unsigned char* navData = 0;
int navDataSize = 0;
if (m_cfg.maxVertsPerPoly <= DT_VERTS_PER_POLYGON)
{
if (m_pmesh->nverts >= 0xffff)
{
// The vertex indices are ushorts, and cannot point to more than 0xffff vertices.
m_ctx->log(RC_LOG_ERROR, "Too many vertices per tile %d (max: %d).", m_pmesh->nverts, 0xffff);
return 0;
}
// Update poly flags from areas.
for (int i = 0; i < m_pmesh->npolys; ++i)
{
if (m_pmesh->areas[i] == RC_WALKABLE_AREA)
m_pmesh->areas[i] = SAMPLE_POLYAREA_GROUND;
if (m_pmesh->areas[i] == SAMPLE_POLYAREA_GROUND ||
m_pmesh->areas[i] == SAMPLE_POLYAREA_GRASS ||
m_pmesh->areas[i] == SAMPLE_POLYAREA_ROAD)
{
m_pmesh->flags[i] = SAMPLE_POLYFLAGS_WALK;
}
else if (m_pmesh->areas[i] == SAMPLE_POLYAREA_WATER)
{
m_pmesh->flags[i] = SAMPLE_POLYFLAGS_SWIM;
}
else if (m_pmesh->areas[i] == SAMPLE_POLYAREA_DOOR)
{
m_pmesh->flags[i] = SAMPLE_POLYFLAGS_WALK | SAMPLE_POLYFLAGS_DOOR;
}
}
dtNavMeshCreateParams params{};
params.verts = m_pmesh->verts;
params.vertCount = m_pmesh->nverts;
params.polys = m_pmesh->polys;
params.polyAreas = m_pmesh->areas;
params.polyFlags = m_pmesh->flags;
params.polyCount = m_pmesh->npolys;
params.nvp = m_pmesh->nvp;
params.detailMeshes = m_dmesh->meshes;
params.detailVerts = m_dmesh->verts;
params.detailVertsCount = m_dmesh->nverts;
params.detailTris = m_dmesh->tris;
params.detailTriCount = m_dmesh->ntris;
params.offMeshConVerts = m_geom->getOffMeshConnectionVerts();
params.offMeshConRad = m_geom->getOffMeshConnectionRads();
params.offMeshConDir = m_geom->getOffMeshConnectionDirs();
params.offMeshConAreas = m_geom->getOffMeshConnectionAreas();
params.offMeshConFlags = m_geom->getOffMeshConnectionFlags();
params.offMeshConUserID = m_geom->getOffMeshConnectionId();
params.offMeshConCount = m_geom->getOffMeshConnectionCount();
params.walkableHeight = m_agentHeight;
params.walkableRadius = m_agentRadius;
params.walkableClimb = m_agentMaxClimb;
params.tileX = tx;
params.tileY = ty;
params.tileLayer = 0;
rcVcopy(params.bmin, m_pmesh->bmin);
rcVcopy(params.bmax, m_pmesh->bmax);
params.cs = m_cfg.cs;
params.ch = m_cfg.ch;
params.buildBvTree = true;
if (!dtCreateNavMeshData(&params, &navData, &navDataSize))
{
m_ctx->log(RC_LOG_ERROR, "Could not build Detour navmesh.");
return 0;
}
}
m_tileMemUsage = navDataSize / 1024.0f;
m_ctx->stopTimer(RC_TIMER_TOTAL);
// Show performance stats.
duLogBuildTimes(*m_ctx, m_ctx->getAccumulatedTime(RC_TIMER_TOTAL));
m_ctx->log(RC_LOG_PROGRESS, ">> Polymesh: %d vertices %d polygons", m_pmesh->nverts, m_pmesh->npolys);
m_tileBuildTime = m_ctx->getAccumulatedTime(RC_TIMER_TOTAL) / 1000.0f;
dataSize = navDataSize;
return navData;
}
bool NavMeshGenerator::Serialize(const std::filesystem::path& path, bool saveStatistics)
{
if (!m_navMesh)
return false;
FILE* fp = fopen(path.string().c_str(), "wb");
if (!fp)
return false;
// Store header.
NavMeshSetHeader header;
header.magic = NAVMESHSET_MAGIC;
header.version = NAVMESHSET_VERSION;
header.numTiles = 0;
for (int i = 0; i < m_navMesh->getMaxTiles(); ++i)
{
const dtNavMesh* navMesh = m_navMesh.get();
const dtMeshTile* tile = navMesh->getTile(i);
if (!tile || !tile->header || !tile->dataSize) continue;
header.numTiles++;
}
memcpy(&header.params, m_navMesh->getParams(), sizeof(dtNavMeshParams));
fwrite(&header, sizeof(NavMeshSetHeader), 1, fp);
// Store tiles.
for (int i = 0; i < m_navMesh->getMaxTiles(); ++i)
{
const dtNavMesh* navMesh = m_navMesh.get();
const dtMeshTile* tile = navMesh->getTile(i);
if (!tile || !tile->header || !tile->dataSize) continue;
NavMeshTileHeader tileHeader;
tileHeader.tileRef = m_navMesh->getTileRef(tile);
tileHeader.dataSize = tile->dataSize;
fwrite(&tileHeader, sizeof(tileHeader), 1, fp);
fwrite(tile->data, tile->dataSize, 1, fp);
}
fclose(fp);
if (saveStatistics)
{
std::filesystem::path statsPath = path;
statsPath = statsPath.replace_extension(".navstats");
WriteStatistics(statsPath);
}
return true;
}
bool NavMeshGenerator::WriteStatistics(const std::filesystem::path& path)
{
std::ofstream outputFile(path);
if (!outputFile.is_open())
return false;
njson json;
json["m_cellSize"] = m_cellSize;
json["m_cellHeight"] = m_cellHeight;
json["m_agentHeight"] = m_agentHeight;
json["m_agentRadius"] = m_agentRadius;
json["m_agentMaxClimb"] = m_agentMaxClimb;
json["m_agentMaxSlope"] = m_agentMaxSlope;
json["m_regionMinSize"] = m_regionMinSize;
json["m_regionMergeSize"] = m_regionMergeSize;
json["m_edgeMaxLen"] = m_edgeMaxLen;
json["m_edgeMaxError"] = m_edgeMaxError;
json["m_vertsPerPoly"] = m_vertsPerPoly;
json["m_detailSampleDist"] = m_detailSampleDist;
json["m_detailSampleMaxError"] = m_detailSampleMaxError;
json["m_partitionType"] = m_partitionType;
json["m_filterLowHangingObstacles"] = m_filterLowHangingObstacles;
json["m_filterLedgeSpans"] = m_filterLedgeSpans;
json["m_filterWalkableLowHeightSpans"] = m_filterWalkableLowHeightSpans;
json["m_maxTiles"] = m_maxTiles;
json["m_maxPolysPerTile"] = m_maxPolysPerTile;
json["m_tileSize"] = m_tileSize;
json["m_tileCol"] = m_tileCol;
json["m_tileMemUsage"] = m_tileMemUsage;
json["m_tileBuildTime"] = m_tileBuildTime;
json["m_tileTriCount"] = m_tileTriCount;
outputFile << std::setw(4) << json;
return true;
}