1
0
mirror of https://github.com/ncblakely/GiantsTools synced 2024-11-27 08:03:09 +01:00
GiantsTools/Shaders/fx/LandBump.fx
2020-11-30 17:40:33 -08:00

364 lines
9.7 KiB
HLSL

//--------------------------------------------------------------------------------------
// LandBump.fx
// Land bumpmapping and lighting shader.
//--------------------------------------------------------------------------------------
#include "../fxh/Constants.fxh"
#include "../fxh/Lighting.fxh"
#include "../fxh/Transform.fxh"
#include "../fxh/Fog.fxh"
shared WorldTransforms g_WorldTransforms;
shared ViewTransforms g_ViewTransforms;
shared texture g_Texture0;
shared texture g_Texture1;
shared texture g_Texture2;
shared float4x4 g_TexGenMatrix0;
shared float4x4 g_TexGenMatrix1;
shared float4x4 g_TexGenMatrix2;
shared DirectionalLightInfo g_DirectionalLights;
shared PointLightInfo g_PointLights;
shared FogParams g_Fog;
float g_DetailFadeStart = 150;
float g_DetailFadeEnd = 500;
//////////////////////////////////////////////////////
//--------------------------------------------------------------------------------------
// Texture samplers
//--------------------------------------------------------------------------------------
sampler g_LandTextureSampler =
sampler_state
{
Texture = <g_Texture0>;
MipFilter = LINEAR;
MinFilter = LINEAR;
MagFilter = LINEAR;
};
sampler g_LandBumpTextureSampler =
sampler_state
{
Texture = <g_Texture1>;
MipFilter = LINEAR;
MinFilter = LINEAR;
MagFilter = LINEAR;
};
sampler g_LandDetailTextureSampler =
sampler_state
{
Texture = <g_Texture2>;
MipFilter = LINEAR;
MinFilter = LINEAR;
MagFilter = LINEAR;
};
//--------------------------------------------------------------------------------------
// Vertex shader output structure
//--------------------------------------------------------------------------------------
struct LandBumpDetailVSOutput
{
float4 Position : POSITION;
float4 LandBumpDiffuse : COLOR1;
float4 LandDiffuse : COLOR0;
float2 LandBumpTextureUV : TEXCOORD0;
float2 LandTextureUV : TEXCOORD1;
float2 LandDetailTextureUV : TEXCOORD2;
float3 WorldPos : TEXCOORD3;
float3 Normal : TEXCOORD4;
float Fog : FOG;
};
inline float4 bx2(float4 x)
{
return float4(2.0f * x.xyzw - 1.0f);
}
float4 CalculateDetailTexture(float3 worldPos, float4 originalColor, float2 detailTextureUV)
{
if (detailTextureUV.x != 0 || detailTextureUV.y != 0)
{
float distance = length(worldPos - g_ViewTransforms.CameraPosition);
if (distance < g_DetailFadeEnd)
{
float4 detailTextureColor = tex2D(g_LandDetailTextureSampler, detailTextureUV) * 1.8f;
if (distance > g_DetailFadeStart)
{
float distNormalized = distance / (g_DetailFadeEnd - g_DetailFadeStart);
detailTextureColor = lerp(detailTextureColor, float4(1.f, 1.f, 1.f, 1.f), distNormalized);
}
originalColor *= detailTextureColor;
}
}
return originalColor;
}
LandBumpDetailVSOutput LandBumpDetailVS(
float4 position : POSITION,
float3 normal : NORMAL,
float4 landBumpDiffuse : COLOR0,
float4 landDiffuse : COLOR1)
{
LandBumpDetailVSOutput output;
// Transform the position from object space to homogeneous projection space
output.Position = mul(position, g_WorldTransforms.WorldViewProjection);
output.LandDiffuse = landDiffuse * .5f;
output.LandDiffuse.a = 1.0f;
output.LandBumpDiffuse.rgb = landBumpDiffuse;
output.LandBumpDiffuse.a = 1.0f;
output.WorldPos = mul(position, g_WorldTransforms.World);
// Set dynamically generated tex coords
output.LandBumpTextureUV = mul(position, g_TexGenMatrix0);
output.LandTextureUV = mul(position, g_TexGenMatrix1);
output.LandDetailTextureUV = mul(position, g_TexGenMatrix2);
float3 P = mul(position, g_WorldTransforms.WorldView);
output.Fog = CalculateFogFactor(g_Fog.FogMax, g_Fog.FogMin, length(P));
// Transform the normal from object space to world space
output.Normal = normalize(mul(normal, (float3x3)g_WorldTransforms.World)); // normal (world space)
return output;
}
float4 CalculateDot3BumpMap(float4 diffuseColor, float2 uv)
{
float4 landBumpTextureColor = bx2(tex2D(g_LandBumpTextureSampler, uv));
diffuseColor = bx2(diffuseColor);
float4 bumpMapColor;
bumpMapColor.xyz = saturate(dot(landBumpTextureColor, diffuseColor.rgb));
bumpMapColor.w = 1.0f;
return bumpMapColor;
}
struct TNBFrame
{
float3 Tangent;
float3 Normal;
float3 Binormal;
};
/*
TNBFrame CalculateTNBFrame(float3 worldPos, float3 N, float2 uv)
{
float3 dp1 = ddx(worldPos);
float3 dp2 = ddy(worldPos);
float2 duv1 = ddx(uv);
float2 duv2 = ddy(uv);
float3 dp2perp = cross(dp2, N);
float3 dp1perp = cross(N, dp1);
float3 T = dp2perp * duv1.x + dp1perp * duv2.x;
float3 B = dp2perp * duv1.y + dp1perp * duv2.y;
float invmax = rsqrt(max(dot(T, T), dot(B, B)));
TNBFrame frame;
frame.Tangent = T * invmax;
frame.Normal = N;
frame.Binormal = B * invmax;
return frame;
}
*/
TNBFrame CalculateTNBFrame(float3 worldPos, float3 N, float2 uv)
{
float3 dp1 = ddx(worldPos);
float3 dp2 = ddy(worldPos);
float2 duv1 = ddx(uv);
float2 duv2 = ddy(uv);
float3 t = normalize(duv2.y * dp1 - duv1.y * dp2);
float3 b = normalize(duv2.x * dp1 - duv1.x * dp2);
float3 n = normalize(N);
float3 x = cross(n, t);
t = cross(x, n);
t = normalize(t);
x = cross(b, n);
b = cross(n, x);
b = normalize(b);
TNBFrame frame;
frame.Tangent = t;
frame.Normal = n;
frame.Binormal = b;
return frame;
}
float4 CalculateNormalMap(float3 worldPos, float3 normal, float2 uv, float4 diffuse)
{
TNBFrame tnbFrame = CalculateTNBFrame(worldPos, normal, uv);
// Sample the pixel in the bump map.
float4 bumpMap = tex2D(g_LandBumpTextureSampler, uv) + diffuse;
// Expand the range of the normal value from (0, +1) to (-1, +1).
bumpMap = (bumpMap * 2.0f) - 1.0f;
// Calculate the normal from the data in the bump map.
float3 bumpNormal = (bumpMap.x * tnbFrame.Tangent) + (bumpMap.y * tnbFrame.Binormal) + (bumpMap.z * tnbFrame.Normal);
// Normalize the resulting bump normal.
bumpNormal = normalize(bumpNormal);
// Invert the light direction for calculations.
float3 lightDir = -g_DirectionalLights.Direction[g_DirectionalLights.SunIndex];
// Calculate the amount of light on this pixel based on the bump map normal value.
float lightIntensity = saturate(dot(bumpNormal, lightDir));
// Determine the final diffuse color based on the diffuse color and the amount of light intensity.
float4 color = saturate(lightIntensity);
return color;
}
float4 LandBumpDetailPS(LandBumpDetailVSOutput input) : COLOR0
{
float4 landTextureColor = tex2D(g_LandTextureSampler, input.LandTextureUV);
#if 1
float4 bumpMapColor = CalculateDot3BumpMap(input.LandBumpDiffuse, input.LandBumpTextureUV);
float4 finalColor = 2.0 * (bumpMapColor * (landTextureColor) + input.LandDiffuse);
#else
float4 bumpMapColor = CalculateNormalMap(input.WorldPos, input.Normal, input.LandTextureUV, input.LandBumpDiffuse);
float4 bumpMapColor = CalculateDirectionalDiffuse(input.Normal, -g_DirectionalLights.Direction[g_DirectionalLights.SunIndex], float4(1, 1, 1, 1));
float4 finalColor = (bumpMapColor * landTextureColor) + input.LandDiffuse;
#endif
finalColor = CalculateDetailTexture(input.WorldPos, finalColor, input.LandDetailTextureUV);
for (int i = 0; i < g_PointLights.Count; i++)
{
float3 worldPos = g_PointLights.Position[i] - input.WorldPos;
float3 lightDirection = normalize(input.WorldPos - (g_PointLights.Position[i]));
finalColor += CalculatePointDiffuse(
worldPos,
input.Normal,
-lightDirection,
g_PointLights.Range[i],
g_PointLights.Diffuse[i]);
}
if (g_Fog.Enabled)
{
finalColor = ApplyPixelFog(finalColor, input.Fog, g_Fog.Color);
}
finalColor.a = 1.0f;
return finalColor;
}
technique LandBumpDetail
{
pass P0
{
VertexShader = compile vs_3_0 LandBumpDetailVS();
PixelShader = compile ps_3_0 LandBumpDetailPS();
}
}
//--------------------------------------------------------------------------------------
// Vertex shader output structure
//--------------------------------------------------------------------------------------
struct VS_OUTPUT
{
float4 Position : POSITION;
float4 Diffuse : COLOR0;
float2 TextureUV : TEXCOORD0;
float3 Normal : TEXCOORD1;
float3 WorldPos : TEXCOORD2;
};
matrix Identity =
{
{ 1, 0, 0, 0 },
{ 0, 1, 0, 0 },
{ 0, 0, 1, 0 },
{ 0, 0, 0, 1 }
};
VS_OUTPUT LandscapeVS(
float4 vPos : POSITION,
float3 vNormal : NORMAL,
float4 vDiffuse : COLOR0)
{
VS_OUTPUT Output;
// Transform the position from object space to homogeneous projection space
Output.Position = mul(vPos, g_WorldTransforms.WorldViewProjection);
// Transform the normal from object space to world space
Output.Normal = normalize(mul(vNormal, (float3x3)g_WorldTransforms.World)); // normal (world space)
Output.Diffuse.rgb = vDiffuse;
Output.Diffuse.a = 1.0f;
Output.WorldPos = mul(vPos, g_WorldTransforms.World);
//float3 P = mul(vPos, g_WorldView); //position in view space
// Set dynamically generated tex coords
//P* (iTexGenType == TEXGEN_TYPE_CAMERASPACEPOSITION), 0)
/*
float4x4 scaleMatrix = Identity;
int index = G_TexUaxis[g_PrimBufferIndex];
scaleMatrix[0][0] = g_TexUScale;
scaleMatrix[1][G_TexVaxis[g_PrimBufferIndex]] = g_TexVScale;
*/
//Output.TextureUV = mul(vPos, (scaleMatrix * g_World));
Output.TextureUV = mul(vPos, g_TexGenMatrix0);
return Output;
}
float4 LandscapePS(VS_OUTPUT input) : COLOR0
{
float4 finalColor = 0;
for (int i = 0; i < g_PointLights.Count; i++)
{
float3 worldPos = g_PointLights.Position[i] - input.WorldPos;
float3 lightDirection = normalize(input.WorldPos - (g_PointLights.Position[i]));
finalColor += CalculatePointDiffuse(
worldPos,
input.Normal,
-lightDirection,
g_PointLights.Range[i],
g_PointLights.Diffuse[i]);
}
float3 texel = tex2D(g_LandTextureSampler, input.TextureUV);
return float4(saturate((texel.xyz + input.Diffuse) + (finalColor)), 1.0f);
}
technique Landscape
{
pass P0
{
VertexShader = compile vs_2_0 LandscapeVS();
PixelShader = compile ps_2_0 LandscapePS();
}
}