GiantsTools/Sdk/External/DirectXMath/Inc/DirectXMathVector.inl

14820 lines
520 KiB
C++

//-------------------------------------------------------------------------------------
// DirectXMathVector.inl -- SIMD C++ Math library
//
// Copyright (c) Microsoft Corporation. All rights reserved.
// Licensed under the MIT License.
//
// http://go.microsoft.com/fwlink/?LinkID=615560
//-------------------------------------------------------------------------------------
#pragma once
#if defined(_XM_NO_INTRINSICS_)
#define XMISNAN(x) isnan(x)
#define XMISINF(x) isinf(x)
#endif
#if defined(_XM_SSE_INTRINSICS_)
#define XM3UNPACK3INTO4(l1, l2, l3) \
XMVECTOR V3 = _mm_shuffle_ps(l2, l3, _MM_SHUFFLE(0, 0, 3, 2));\
XMVECTOR V2 = _mm_shuffle_ps(l2, l1, _MM_SHUFFLE(3, 3, 1, 0));\
V2 = XM_PERMUTE_PS(V2, _MM_SHUFFLE(1, 1, 0, 2));\
XMVECTOR V4 = _mm_castsi128_ps(_mm_srli_si128(_mm_castps_si128(L3), 32 / 8))
#define XM3PACK4INTO3(v2x) \
v2x = _mm_shuffle_ps(V2, V3, _MM_SHUFFLE(1, 0, 2, 1));\
V2 = _mm_shuffle_ps(V2, V1, _MM_SHUFFLE(2, 2, 0, 0));\
V1 = _mm_shuffle_ps(V1, V2, _MM_SHUFFLE(0, 2, 1, 0));\
V3 = _mm_shuffle_ps(V3, V4, _MM_SHUFFLE(0, 0, 2, 2));\
V3 = _mm_shuffle_ps(V3, V4, _MM_SHUFFLE(2, 1, 2, 0))
#endif
/****************************************************************************
*
* General Vector
*
****************************************************************************/
//------------------------------------------------------------------------------
// Assignment operations
//------------------------------------------------------------------------------
//------------------------------------------------------------------------------
// Return a vector with all elements equaling zero
inline XMVECTOR XM_CALLCONV XMVectorZero() noexcept
{
#if defined(_XM_NO_INTRINSICS_)
XMVECTORF32 vResult = { { { 0.0f, 0.0f, 0.0f, 0.0f } } };
return vResult.v;
#elif defined(_XM_ARM_NEON_INTRINSICS_)
return vdupq_n_f32(0);
#elif defined(_XM_SSE_INTRINSICS_)
return _mm_setzero_ps();
#endif
}
//------------------------------------------------------------------------------
// Initialize a vector with four floating point values
inline XMVECTOR XM_CALLCONV XMVectorSet
(
float x,
float y,
float z,
float w
) noexcept
{
#if defined(_XM_NO_INTRINSICS_)
XMVECTORF32 vResult = { { { x, y, z, w } } };
return vResult.v;
#elif defined(_XM_ARM_NEON_INTRINSICS_)
float32x2_t V0 = vcreate_f32(
static_cast<uint64_t>(*reinterpret_cast<const uint32_t*>(&x))
| (static_cast<uint64_t>(*reinterpret_cast<const uint32_t*>(&y)) << 32));
float32x2_t V1 = vcreate_f32(
static_cast<uint64_t>(*reinterpret_cast<const uint32_t*>(&z))
| (static_cast<uint64_t>(*reinterpret_cast<const uint32_t*>(&w)) << 32));
return vcombine_f32(V0, V1);
#elif defined(_XM_SSE_INTRINSICS_)
return _mm_set_ps(w, z, y, x);
#endif
}
//------------------------------------------------------------------------------
// Initialize a vector with four integer values
inline XMVECTOR XM_CALLCONV XMVectorSetInt
(
uint32_t x,
uint32_t y,
uint32_t z,
uint32_t w
) noexcept
{
#if defined(_XM_NO_INTRINSICS_)
XMVECTORU32 vResult = { { { x, y, z, w } } };
return vResult.v;
#elif defined(_XM_ARM_NEON_INTRINSICS_)
uint32x2_t V0 = vcreate_u32(static_cast<uint64_t>(x) | (static_cast<uint64_t>(y) << 32));
uint32x2_t V1 = vcreate_u32(static_cast<uint64_t>(z) | (static_cast<uint64_t>(w) << 32));
return vreinterpretq_f32_u32(vcombine_u32(V0, V1));
#elif defined(_XM_SSE_INTRINSICS_)
__m128i V = _mm_set_epi32(static_cast<int>(w), static_cast<int>(z), static_cast<int>(y), static_cast<int>(x));
return _mm_castsi128_ps(V);
#endif
}
//------------------------------------------------------------------------------
// Initialize a vector with a replicated floating point value
inline XMVECTOR XM_CALLCONV XMVectorReplicate(float Value) noexcept
{
#if defined(_XM_NO_INTRINSICS_)
XMVECTORF32 vResult;
vResult.f[0] =
vResult.f[1] =
vResult.f[2] =
vResult.f[3] = Value;
return vResult.v;
#elif defined(_XM_ARM_NEON_INTRINSICS_)
return vdupq_n_f32(Value);
#elif defined(_XM_SSE_INTRINSICS_)
return _mm_set_ps1(Value);
#endif
}
//------------------------------------------------------------------------------
// Initialize a vector with a replicated floating point value passed by pointer
_Use_decl_annotations_
inline XMVECTOR XM_CALLCONV XMVectorReplicatePtr(const float* pValue) noexcept
{
#if defined(_XM_NO_INTRINSICS_)
float Value = pValue[0];
XMVECTORF32 vResult;
vResult.f[0] =
vResult.f[1] =
vResult.f[2] =
vResult.f[3] = Value;
return vResult.v;
#elif defined(_XM_ARM_NEON_INTRINSICS_)
return vld1q_dup_f32(pValue);
#elif defined(_XM_AVX_INTRINSICS_)
return _mm_broadcast_ss(pValue);
#elif defined(_XM_SSE_INTRINSICS_)
return _mm_load_ps1(pValue);
#endif
}
//------------------------------------------------------------------------------
// Initialize a vector with a replicated integer value
inline XMVECTOR XM_CALLCONV XMVectorReplicateInt(uint32_t Value) noexcept
{
#if defined(_XM_NO_INTRINSICS_)
XMVECTORU32 vResult;
vResult.u[0] =
vResult.u[1] =
vResult.u[2] =
vResult.u[3] = Value;
return vResult.v;
#elif defined(_XM_ARM_NEON_INTRINSICS_)
return vreinterpretq_f32_u32(vdupq_n_u32(Value));
#elif defined(_XM_SSE_INTRINSICS_)
__m128i vTemp = _mm_set1_epi32(static_cast<int>(Value));
return _mm_castsi128_ps(vTemp);
#endif
}
//------------------------------------------------------------------------------
// Initialize a vector with a replicated integer value passed by pointer
_Use_decl_annotations_
inline XMVECTOR XM_CALLCONV XMVectorReplicateIntPtr(const uint32_t* pValue) noexcept
{
#if defined(_XM_NO_INTRINSICS_)
uint32_t Value = pValue[0];
XMVECTORU32 vResult;
vResult.u[0] =
vResult.u[1] =
vResult.u[2] =
vResult.u[3] = Value;
return vResult.v;
#elif defined(_XM_ARM_NEON_INTRINSICS_)
return vreinterpretq_f32_u32(vld1q_dup_u32(pValue));
#elif defined(_XM_SSE_INTRINSICS_)
return _mm_load_ps1(reinterpret_cast<const float*>(pValue));
#endif
}
//------------------------------------------------------------------------------
// Initialize a vector with all bits set (true mask)
inline XMVECTOR XM_CALLCONV XMVectorTrueInt() noexcept
{
#if defined(_XM_NO_INTRINSICS_)
XMVECTORU32 vResult = { { { 0xFFFFFFFFU, 0xFFFFFFFFU, 0xFFFFFFFFU, 0xFFFFFFFFU } } };
return vResult.v;
#elif defined(_XM_ARM_NEON_INTRINSICS_)
return vreinterpretq_f32_s32(vdupq_n_s32(-1));
#elif defined(_XM_SSE_INTRINSICS_)
__m128i V = _mm_set1_epi32(-1);
return _mm_castsi128_ps(V);
#endif
}
//------------------------------------------------------------------------------
// Initialize a vector with all bits clear (false mask)
inline XMVECTOR XM_CALLCONV XMVectorFalseInt() noexcept
{
#if defined(_XM_NO_INTRINSICS_)
XMVECTORF32 vResult = { { { 0.0f, 0.0f, 0.0f, 0.0f } } };
return vResult;
#elif defined(_XM_ARM_NEON_INTRINSICS_)
return vreinterpretq_f32_u32(vdupq_n_u32(0));
#elif defined(_XM_SSE_INTRINSICS_)
return _mm_setzero_ps();
#endif
}
//------------------------------------------------------------------------------
// Replicate the x component of the vector
inline XMVECTOR XM_CALLCONV XMVectorSplatX(FXMVECTOR V) noexcept
{
#if defined(_XM_NO_INTRINSICS_)
XMVECTORF32 vResult;
vResult.f[0] =
vResult.f[1] =
vResult.f[2] =
vResult.f[3] = V.vector4_f32[0];
return vResult.v;
#elif defined(_XM_ARM_NEON_INTRINSICS_)
return vdupq_lane_f32(vget_low_f32(V), 0);
#elif defined(_XM_AVX2_INTRINSICS_) && defined(_XM_FAVOR_INTEL_)
return _mm_broadcastss_ps(V);
#elif defined(_XM_SSE_INTRINSICS_)
return XM_PERMUTE_PS(V, _MM_SHUFFLE(0, 0, 0, 0));
#endif
}
//------------------------------------------------------------------------------
// Replicate the y component of the vector
inline XMVECTOR XM_CALLCONV XMVectorSplatY(FXMVECTOR V) noexcept
{
#if defined(_XM_NO_INTRINSICS_)
XMVECTORF32 vResult;
vResult.f[0] =
vResult.f[1] =
vResult.f[2] =
vResult.f[3] = V.vector4_f32[1];
return vResult.v;
#elif defined(_XM_ARM_NEON_INTRINSICS_)
return vdupq_lane_f32(vget_low_f32(V), 1);
#elif defined(_XM_SSE_INTRINSICS_)
return XM_PERMUTE_PS(V, _MM_SHUFFLE(1, 1, 1, 1));
#endif
}
//------------------------------------------------------------------------------
// Replicate the z component of the vector
inline XMVECTOR XM_CALLCONV XMVectorSplatZ(FXMVECTOR V) noexcept
{
#if defined(_XM_NO_INTRINSICS_)
XMVECTORF32 vResult;
vResult.f[0] =
vResult.f[1] =
vResult.f[2] =
vResult.f[3] = V.vector4_f32[2];
return vResult.v;
#elif defined(_XM_ARM_NEON_INTRINSICS_)
return vdupq_lane_f32(vget_high_f32(V), 0);
#elif defined(_XM_SSE_INTRINSICS_)
return XM_PERMUTE_PS(V, _MM_SHUFFLE(2, 2, 2, 2));
#endif
}
//------------------------------------------------------------------------------
// Replicate the w component of the vector
inline XMVECTOR XM_CALLCONV XMVectorSplatW(FXMVECTOR V) noexcept
{
#if defined(_XM_NO_INTRINSICS_)
XMVECTORF32 vResult;
vResult.f[0] =
vResult.f[1] =
vResult.f[2] =
vResult.f[3] = V.vector4_f32[3];
return vResult.v;
#elif defined(_XM_ARM_NEON_INTRINSICS_)
return vdupq_lane_f32(vget_high_f32(V), 1);
#elif defined(_XM_SSE_INTRINSICS_)
return XM_PERMUTE_PS(V, _MM_SHUFFLE(3, 3, 3, 3));
#endif
}
//------------------------------------------------------------------------------
// Return a vector of 1.0f,1.0f,1.0f,1.0f
inline XMVECTOR XM_CALLCONV XMVectorSplatOne() noexcept
{
#if defined(_XM_NO_INTRINSICS_)
XMVECTORF32 vResult;
vResult.f[0] =
vResult.f[1] =
vResult.f[2] =
vResult.f[3] = 1.0f;
return vResult.v;
#elif defined(_XM_ARM_NEON_INTRINSICS_)
return vdupq_n_f32(1.0f);
#elif defined(_XM_SSE_INTRINSICS_)
return g_XMOne;
#endif
}
//------------------------------------------------------------------------------
// Return a vector of INF,INF,INF,INF
inline XMVECTOR XM_CALLCONV XMVectorSplatInfinity() noexcept
{
#if defined(_XM_NO_INTRINSICS_)
XMVECTORU32 vResult;
vResult.u[0] =
vResult.u[1] =
vResult.u[2] =
vResult.u[3] = 0x7F800000;
return vResult.v;
#elif defined(_XM_ARM_NEON_INTRINSICS_)
return vreinterpretq_f32_u32(vdupq_n_u32(0x7F800000));
#elif defined(_XM_SSE_INTRINSICS_)
return g_XMInfinity;
#endif
}
//------------------------------------------------------------------------------
// Return a vector of Q_NAN,Q_NAN,Q_NAN,Q_NAN
inline XMVECTOR XM_CALLCONV XMVectorSplatQNaN() noexcept
{
#if defined(_XM_NO_INTRINSICS_)
XMVECTORU32 vResult;
vResult.u[0] =
vResult.u[1] =
vResult.u[2] =
vResult.u[3] = 0x7FC00000;
return vResult.v;
#elif defined(_XM_ARM_NEON_INTRINSICS_)
return vreinterpretq_f32_u32(vdupq_n_u32(0x7FC00000));
#elif defined(_XM_SSE_INTRINSICS_)
return g_XMQNaN;
#endif
}
//------------------------------------------------------------------------------
// Return a vector of 1.192092896e-7f,1.192092896e-7f,1.192092896e-7f,1.192092896e-7f
inline XMVECTOR XM_CALLCONV XMVectorSplatEpsilon() noexcept
{
#if defined(_XM_NO_INTRINSICS_)
XMVECTORU32 vResult;
vResult.u[0] =
vResult.u[1] =
vResult.u[2] =
vResult.u[3] = 0x34000000;
return vResult.v;
#elif defined(_XM_ARM_NEON_INTRINSICS_)
return vreinterpretq_f32_u32(vdupq_n_u32(0x34000000));
#elif defined(_XM_SSE_INTRINSICS_)
return g_XMEpsilon;
#endif
}
//------------------------------------------------------------------------------
// Return a vector of -0.0f (0x80000000),-0.0f,-0.0f,-0.0f
inline XMVECTOR XM_CALLCONV XMVectorSplatSignMask() noexcept
{
#if defined(_XM_NO_INTRINSICS_)
XMVECTORU32 vResult;
vResult.u[0] =
vResult.u[1] =
vResult.u[2] =
vResult.u[3] = 0x80000000U;
return vResult.v;
#elif defined(_XM_ARM_NEON_INTRINSICS_)
return vreinterpretq_f32_u32(vdupq_n_u32(0x80000000U));
#elif defined(_XM_SSE_INTRINSICS_)
__m128i V = _mm_set1_epi32(static_cast<int>(0x80000000));
return _mm_castsi128_ps(V);
#endif
}
//------------------------------------------------------------------------------
// Return a floating point value via an index. This is not a recommended
// function to use due to performance loss.
inline float XM_CALLCONV XMVectorGetByIndex(FXMVECTOR V, size_t i) noexcept
{
assert(i < 4);
_Analysis_assume_(i < 4);
#if defined(_XM_NO_INTRINSICS_)
return V.vector4_f32[i];
#else
XMVECTORF32 U;
U.v = V;
return U.f[i];
#endif
}
//------------------------------------------------------------------------------
// Return the X component in an FPU register.
inline float XM_CALLCONV XMVectorGetX(FXMVECTOR V) noexcept
{
#if defined(_XM_NO_INTRINSICS_)
return V.vector4_f32[0];
#elif defined(_XM_ARM_NEON_INTRINSICS_)
return vgetq_lane_f32(V, 0);
#elif defined(_XM_SSE_INTRINSICS_)
return _mm_cvtss_f32(V);
#endif
}
// Return the Y component in an FPU register.
inline float XM_CALLCONV XMVectorGetY(FXMVECTOR V) noexcept
{
#if defined(_XM_NO_INTRINSICS_)
return V.vector4_f32[1];
#elif defined(_XM_ARM_NEON_INTRINSICS_)
return vgetq_lane_f32(V, 1);
#elif defined(_XM_SSE_INTRINSICS_)
XMVECTOR vTemp = XM_PERMUTE_PS(V, _MM_SHUFFLE(1, 1, 1, 1));
return _mm_cvtss_f32(vTemp);
#endif
}
// Return the Z component in an FPU register.
inline float XM_CALLCONV XMVectorGetZ(FXMVECTOR V) noexcept
{
#if defined(_XM_NO_INTRINSICS_)
return V.vector4_f32[2];
#elif defined(_XM_ARM_NEON_INTRINSICS_)
return vgetq_lane_f32(V, 2);
#elif defined(_XM_SSE_INTRINSICS_)
XMVECTOR vTemp = XM_PERMUTE_PS(V, _MM_SHUFFLE(2, 2, 2, 2));
return _mm_cvtss_f32(vTemp);
#endif
}
// Return the W component in an FPU register.
inline float XM_CALLCONV XMVectorGetW(FXMVECTOR V) noexcept
{
#if defined(_XM_NO_INTRINSICS_)
return V.vector4_f32[3];
#elif defined(_XM_ARM_NEON_INTRINSICS_)
return vgetq_lane_f32(V, 3);
#elif defined(_XM_SSE_INTRINSICS_)
XMVECTOR vTemp = XM_PERMUTE_PS(V, _MM_SHUFFLE(3, 3, 3, 3));
return _mm_cvtss_f32(vTemp);
#endif
}
//------------------------------------------------------------------------------
// Store a component indexed by i into a 32 bit float location in memory.
_Use_decl_annotations_
inline void XM_CALLCONV XMVectorGetByIndexPtr(float* f, FXMVECTOR V, size_t i) noexcept
{
assert(f != nullptr);
assert(i < 4);
_Analysis_assume_(i < 4);
#if defined(_XM_NO_INTRINSICS_)
*f = V.vector4_f32[i];
#else
XMVECTORF32 U;
U.v = V;
*f = U.f[i];
#endif
}
//------------------------------------------------------------------------------
// Store the X component into a 32 bit float location in memory.
_Use_decl_annotations_
inline void XM_CALLCONV XMVectorGetXPtr(float* x, FXMVECTOR V) noexcept
{
assert(x != nullptr);
#if defined(_XM_NO_INTRINSICS_)
*x = V.vector4_f32[0];
#elif defined(_XM_ARM_NEON_INTRINSICS_)
vst1q_lane_f32(x, V, 0);
#elif defined(_XM_SSE_INTRINSICS_)
_mm_store_ss(x, V);
#endif
}
// Store the Y component into a 32 bit float location in memory.
_Use_decl_annotations_
inline void XM_CALLCONV XMVectorGetYPtr(float* y, FXMVECTOR V) noexcept
{
assert(y != nullptr);
#if defined(_XM_NO_INTRINSICS_)
*y = V.vector4_f32[1];
#elif defined(_XM_ARM_NEON_INTRINSICS_)
vst1q_lane_f32(y, V, 1);
#elif defined(_XM_SSE4_INTRINSICS_)
* (reinterpret_cast<int*>(y)) = _mm_extract_ps(V, 1);
#elif defined(_XM_SSE_INTRINSICS_)
XMVECTOR vResult = XM_PERMUTE_PS(V, _MM_SHUFFLE(1, 1, 1, 1));
_mm_store_ss(y, vResult);
#endif
}
// Store the Z component into a 32 bit float location in memory.
_Use_decl_annotations_
inline void XM_CALLCONV XMVectorGetZPtr(float* z, FXMVECTOR V) noexcept
{
assert(z != nullptr);
#if defined(_XM_NO_INTRINSICS_)
*z = V.vector4_f32[2];
#elif defined(_XM_ARM_NEON_INTRINSICS_)
vst1q_lane_f32(z, V, 2);
#elif defined(_XM_SSE4_INTRINSICS_)
* (reinterpret_cast<int*>(z)) = _mm_extract_ps(V, 2);
#elif defined(_XM_SSE_INTRINSICS_)
XMVECTOR vResult = XM_PERMUTE_PS(V, _MM_SHUFFLE(2, 2, 2, 2));
_mm_store_ss(z, vResult);
#endif
}
// Store the W component into a 32 bit float location in memory.
_Use_decl_annotations_
inline void XM_CALLCONV XMVectorGetWPtr(float* w, FXMVECTOR V) noexcept
{
assert(w != nullptr);
#if defined(_XM_NO_INTRINSICS_)
*w = V.vector4_f32[3];
#elif defined(_XM_ARM_NEON_INTRINSICS_)
vst1q_lane_f32(w, V, 3);
#elif defined(_XM_SSE4_INTRINSICS_)
* (reinterpret_cast<int*>(w)) = _mm_extract_ps(V, 3);
#elif defined(_XM_SSE_INTRINSICS_)
XMVECTOR vResult = XM_PERMUTE_PS(V, _MM_SHUFFLE(3, 3, 3, 3));
_mm_store_ss(w, vResult);
#endif
}
//------------------------------------------------------------------------------
// Return an integer value via an index. This is not a recommended
// function to use due to performance loss.
inline uint32_t XM_CALLCONV XMVectorGetIntByIndex(FXMVECTOR V, size_t i) noexcept
{
assert(i < 4);
_Analysis_assume_(i < 4);
#if defined(_XM_NO_INTRINSICS_)
return V.vector4_u32[i];
#else
XMVECTORU32 U;
U.v = V;
return U.u[i];
#endif
}
//------------------------------------------------------------------------------
// Return the X component in an integer register.
inline uint32_t XM_CALLCONV XMVectorGetIntX(FXMVECTOR V) noexcept
{
#if defined(_XM_NO_INTRINSICS_)
return V.vector4_u32[0];
#elif defined(_XM_ARM_NEON_INTRINSICS_)
return vgetq_lane_u32(vreinterpretq_u32_f32(V), 0);
#elif defined(_XM_SSE_INTRINSICS_)
return static_cast<uint32_t>(_mm_cvtsi128_si32(_mm_castps_si128(V)));
#endif
}
// Return the Y component in an integer register.
inline uint32_t XM_CALLCONV XMVectorGetIntY(FXMVECTOR V) noexcept
{
#if defined(_XM_NO_INTRINSICS_)
return V.vector4_u32[1];
#elif defined(_XM_ARM_NEON_INTRINSICS_)
return vgetq_lane_u32(vreinterpretq_u32_f32(V), 1);
#elif defined(_XM_SSE4_INTRINSICS_)
__m128i V1 = _mm_castps_si128(V);
return static_cast<uint32_t>(_mm_extract_epi32(V1, 1));
#elif defined(_XM_SSE_INTRINSICS_)
__m128i vResulti = _mm_shuffle_epi32(_mm_castps_si128(V), _MM_SHUFFLE(1, 1, 1, 1));
return static_cast<uint32_t>(_mm_cvtsi128_si32(vResulti));
#endif
}
// Return the Z component in an integer register.
inline uint32_t XM_CALLCONV XMVectorGetIntZ(FXMVECTOR V) noexcept
{
#if defined(_XM_NO_INTRINSICS_)
return V.vector4_u32[2];
#elif defined(_XM_ARM_NEON_INTRINSICS_)
return vgetq_lane_u32(vreinterpretq_u32_f32(V), 2);
#elif defined(_XM_SSE4_INTRINSICS_)
__m128i V1 = _mm_castps_si128(V);
return static_cast<uint32_t>(_mm_extract_epi32(V1, 2));
#elif defined(_XM_SSE_INTRINSICS_)
__m128i vResulti = _mm_shuffle_epi32(_mm_castps_si128(V), _MM_SHUFFLE(2, 2, 2, 2));
return static_cast<uint32_t>(_mm_cvtsi128_si32(vResulti));
#endif
}
// Return the W component in an integer register.
inline uint32_t XM_CALLCONV XMVectorGetIntW(FXMVECTOR V) noexcept
{
#if defined(_XM_NO_INTRINSICS_)
return V.vector4_u32[3];
#elif defined(_XM_ARM_NEON_INTRINSICS_)
return vgetq_lane_u32(vreinterpretq_u32_f32(V), 3);
#elif defined(_XM_SSE4_INTRINSICS_)
__m128i V1 = _mm_castps_si128(V);
return static_cast<uint32_t>(_mm_extract_epi32(V1, 3));
#elif defined(_XM_SSE_INTRINSICS_)
__m128i vResulti = _mm_shuffle_epi32(_mm_castps_si128(V), _MM_SHUFFLE(3, 3, 3, 3));
return static_cast<uint32_t>(_mm_cvtsi128_si32(vResulti));
#endif
}
//------------------------------------------------------------------------------
// Store a component indexed by i into a 32 bit integer location in memory.
_Use_decl_annotations_
inline void XM_CALLCONV XMVectorGetIntByIndexPtr(uint32_t* x, FXMVECTOR V, size_t i) noexcept
{
assert(x != nullptr);
assert(i < 4);
_Analysis_assume_(i < 4);
#if defined(_XM_NO_INTRINSICS_)
*x = V.vector4_u32[i];
#else
XMVECTORU32 U;
U.v = V;
*x = U.u[i];
#endif
}
//------------------------------------------------------------------------------
// Store the X component into a 32 bit integer location in memory.
_Use_decl_annotations_
inline void XM_CALLCONV XMVectorGetIntXPtr(uint32_t* x, FXMVECTOR V) noexcept
{
assert(x != nullptr);
#if defined(_XM_NO_INTRINSICS_)
*x = V.vector4_u32[0];
#elif defined(_XM_ARM_NEON_INTRINSICS_)
vst1q_lane_u32(x, *reinterpret_cast<const uint32x4_t*>(&V), 0);
#elif defined(_XM_SSE_INTRINSICS_)
_mm_store_ss(reinterpret_cast<float*>(x), V);
#endif
}
// Store the Y component into a 32 bit integer location in memory.
_Use_decl_annotations_
inline void XM_CALLCONV XMVectorGetIntYPtr(uint32_t* y, FXMVECTOR V) noexcept
{
assert(y != nullptr);
#if defined(_XM_NO_INTRINSICS_)
*y = V.vector4_u32[1];
#elif defined(_XM_ARM_NEON_INTRINSICS_)
vst1q_lane_u32(y, *reinterpret_cast<const uint32x4_t*>(&V), 1);
#elif defined(_XM_SSE4_INTRINSICS_)
__m128i V1 = _mm_castps_si128(V);
*y = static_cast<uint32_t>(_mm_extract_epi32(V1, 1));
#elif defined(_XM_SSE_INTRINSICS_)
XMVECTOR vResult = XM_PERMUTE_PS(V, _MM_SHUFFLE(1, 1, 1, 1));
_mm_store_ss(reinterpret_cast<float*>(y), vResult);
#endif
}
// Store the Z component into a 32 bit integer locaCantion in memory.
_Use_decl_annotations_
inline void XM_CALLCONV XMVectorGetIntZPtr(uint32_t* z, FXMVECTOR V) noexcept
{
assert(z != nullptr);
#if defined(_XM_NO_INTRINSICS_)
*z = V.vector4_u32[2];
#elif defined(_XM_ARM_NEON_INTRINSICS_)
vst1q_lane_u32(z, *reinterpret_cast<const uint32x4_t*>(&V), 2);
#elif defined(_XM_SSE4_INTRINSICS_)
__m128i V1 = _mm_castps_si128(V);
*z = static_cast<uint32_t>(_mm_extract_epi32(V1, 2));
#elif defined(_XM_SSE_INTRINSICS_)
XMVECTOR vResult = XM_PERMUTE_PS(V, _MM_SHUFFLE(2, 2, 2, 2));
_mm_store_ss(reinterpret_cast<float*>(z), vResult);
#endif
}
// Store the W component into a 32 bit integer location in memory.
_Use_decl_annotations_
inline void XM_CALLCONV XMVectorGetIntWPtr(uint32_t* w, FXMVECTOR V) noexcept
{
assert(w != nullptr);
#if defined(_XM_NO_INTRINSICS_)
*w = V.vector4_u32[3];
#elif defined(_XM_ARM_NEON_INTRINSICS_)
vst1q_lane_u32(w, *reinterpret_cast<const uint32x4_t*>(&V), 3);
#elif defined(_XM_SSE4_INTRINSICS_)
__m128i V1 = _mm_castps_si128(V);
*w = static_cast<uint32_t>(_mm_extract_epi32(V1, 3));
#elif defined(_XM_SSE_INTRINSICS_)
XMVECTOR vResult = XM_PERMUTE_PS(V, _MM_SHUFFLE(3, 3, 3, 3));
_mm_store_ss(reinterpret_cast<float*>(w), vResult);
#endif
}
//------------------------------------------------------------------------------
// Set a single indexed floating point component
inline XMVECTOR XM_CALLCONV XMVectorSetByIndex(FXMVECTOR V, float f, size_t i) noexcept
{
assert(i < 4);
_Analysis_assume_(i < 4);
XMVECTORF32 U;
U.v = V;
U.f[i] = f;
return U.v;
}
//------------------------------------------------------------------------------
// Sets the X component of a vector to a passed floating point value
inline XMVECTOR XM_CALLCONV XMVectorSetX(FXMVECTOR V, float x) noexcept
{
#if defined(_XM_NO_INTRINSICS_)
XMVECTORF32 U = { { {
x,
V.vector4_f32[1],
V.vector4_f32[2],
V.vector4_f32[3]
} } };
return U.v;
#elif defined(_XM_ARM_NEON_INTRINSICS_)
return vsetq_lane_f32(x, V, 0);
#elif defined(_XM_SSE_INTRINSICS_)
XMVECTOR vResult = _mm_set_ss(x);
vResult = _mm_move_ss(V, vResult);
return vResult;
#endif
}
// Sets the Y component of a vector to a passed floating point value
inline XMVECTOR XM_CALLCONV XMVectorSetY(FXMVECTOR V, float y) noexcept
{
#if defined(_XM_NO_INTRINSICS_)
XMVECTORF32 U = { { {
V.vector4_f32[0],
y,
V.vector4_f32[2],
V.vector4_f32[3]
} } };
return U.v;
#elif defined(_XM_ARM_NEON_INTRINSICS_)
return vsetq_lane_f32(y, V, 1);
#elif defined(_XM_SSE4_INTRINSICS_)
XMVECTOR vResult = _mm_set_ss(y);
vResult = _mm_insert_ps(V, vResult, 0x10);
return vResult;
#elif defined(_XM_SSE_INTRINSICS_)
// Swap y and x
XMVECTOR vResult = XM_PERMUTE_PS(V, _MM_SHUFFLE(3, 2, 0, 1));
// Convert input to vector
XMVECTOR vTemp = _mm_set_ss(y);
// Replace the x component
vResult = _mm_move_ss(vResult, vTemp);
// Swap y and x again
vResult = XM_PERMUTE_PS(vResult, _MM_SHUFFLE(3, 2, 0, 1));
return vResult;
#endif
}
// Sets the Z component of a vector to a passed floating point value
inline XMVECTOR XM_CALLCONV XMVectorSetZ(FXMVECTOR V, float z) noexcept
{
#if defined(_XM_NO_INTRINSICS_)
XMVECTORF32 U = { { {
V.vector4_f32[0],
V.vector4_f32[1],
z,
V.vector4_f32[3]
} } };
return U.v;
#elif defined(_XM_ARM_NEON_INTRINSICS_)
return vsetq_lane_f32(z, V, 2);
#elif defined(_XM_SSE4_INTRINSICS_)
XMVECTOR vResult = _mm_set_ss(z);
vResult = _mm_insert_ps(V, vResult, 0x20);
return vResult;
#elif defined(_XM_SSE_INTRINSICS_)
// Swap z and x
XMVECTOR vResult = XM_PERMUTE_PS(V, _MM_SHUFFLE(3, 0, 1, 2));
// Convert input to vector
XMVECTOR vTemp = _mm_set_ss(z);
// Replace the x component
vResult = _mm_move_ss(vResult, vTemp);
// Swap z and x again
vResult = XM_PERMUTE_PS(vResult, _MM_SHUFFLE(3, 0, 1, 2));
return vResult;
#endif
}
// Sets the W component of a vector to a passed floating point value
inline XMVECTOR XM_CALLCONV XMVectorSetW(FXMVECTOR V, float w) noexcept
{
#if defined(_XM_NO_INTRINSICS_)
XMVECTORF32 U = { { {
V.vector4_f32[0],
V.vector4_f32[1],
V.vector4_f32[2],
w
} } };
return U.v;
#elif defined(_XM_ARM_NEON_INTRINSICS_)
return vsetq_lane_f32(w, V, 3);
#elif defined(_XM_SSE4_INTRINSICS_)
XMVECTOR vResult = _mm_set_ss(w);
vResult = _mm_insert_ps(V, vResult, 0x30);
return vResult;
#elif defined(_XM_SSE_INTRINSICS_)
// Swap w and x
XMVECTOR vResult = XM_PERMUTE_PS(V, _MM_SHUFFLE(0, 2, 1, 3));
// Convert input to vector
XMVECTOR vTemp = _mm_set_ss(w);
// Replace the x component
vResult = _mm_move_ss(vResult, vTemp);
// Swap w and x again
vResult = XM_PERMUTE_PS(vResult, _MM_SHUFFLE(0, 2, 1, 3));
return vResult;
#endif
}
//------------------------------------------------------------------------------
// Sets a component of a vector to a floating point value passed by pointer
_Use_decl_annotations_
inline XMVECTOR XM_CALLCONV XMVectorSetByIndexPtr(FXMVECTOR V, const float* f, size_t i) noexcept
{
assert(f != nullptr);
assert(i < 4);
_Analysis_assume_(i < 4);
XMVECTORF32 U;
U.v = V;
U.f[i] = *f;
return U.v;
}
//------------------------------------------------------------------------------
// Sets the X component of a vector to a floating point value passed by pointer
_Use_decl_annotations_
inline XMVECTOR XM_CALLCONV XMVectorSetXPtr(FXMVECTOR V, const float* x) noexcept
{
assert(x != nullptr);
#if defined(_XM_NO_INTRINSICS_)
XMVECTORF32 U = { { {
*x,
V.vector4_f32[1],
V.vector4_f32[2],
V.vector4_f32[3]
} } };
return U.v;
#elif defined(_XM_ARM_NEON_INTRINSICS_)
return vld1q_lane_f32(x, V, 0);
#elif defined(_XM_SSE_INTRINSICS_)
XMVECTOR vResult = _mm_load_ss(x);
vResult = _mm_move_ss(V, vResult);
return vResult;
#endif
}
// Sets the Y component of a vector to a floating point value passed by pointer
_Use_decl_annotations_
inline XMVECTOR XM_CALLCONV XMVectorSetYPtr(FXMVECTOR V, const float* y) noexcept
{
assert(y != nullptr);
#if defined(_XM_NO_INTRINSICS_)
XMVECTORF32 U = { { {
V.vector4_f32[0],
*y,
V.vector4_f32[2],
V.vector4_f32[3]
} } };
return U.v;
#elif defined(_XM_ARM_NEON_INTRINSICS_)
return vld1q_lane_f32(y, V, 1);
#elif defined(_XM_SSE_INTRINSICS_)
// Swap y and x
XMVECTOR vResult = XM_PERMUTE_PS(V, _MM_SHUFFLE(3, 2, 0, 1));
// Convert input to vector
XMVECTOR vTemp = _mm_load_ss(y);
// Replace the x component
vResult = _mm_move_ss(vResult, vTemp);
// Swap y and x again
vResult = XM_PERMUTE_PS(vResult, _MM_SHUFFLE(3, 2, 0, 1));
return vResult;
#endif
}
// Sets the Z component of a vector to a floating point value passed by pointer
_Use_decl_annotations_
inline XMVECTOR XM_CALLCONV XMVectorSetZPtr(FXMVECTOR V, const float* z) noexcept
{
assert(z != nullptr);
#if defined(_XM_NO_INTRINSICS_)
XMVECTORF32 U = { { {
V.vector4_f32[0],
V.vector4_f32[1],
*z,
V.vector4_f32[3]
} } };
return U.v;
#elif defined(_XM_ARM_NEON_INTRINSICS_)
return vld1q_lane_f32(z, V, 2);
#elif defined(_XM_SSE_INTRINSICS_)
// Swap z and x
XMVECTOR vResult = XM_PERMUTE_PS(V, _MM_SHUFFLE(3, 0, 1, 2));
// Convert input to vector
XMVECTOR vTemp = _mm_load_ss(z);
// Replace the x component
vResult = _mm_move_ss(vResult, vTemp);
// Swap z and x again
vResult = XM_PERMUTE_PS(vResult, _MM_SHUFFLE(3, 0, 1, 2));
return vResult;
#endif
}
// Sets the W component of a vector to a floating point value passed by pointer
_Use_decl_annotations_
inline XMVECTOR XM_CALLCONV XMVectorSetWPtr(FXMVECTOR V, const float* w) noexcept
{
assert(w != nullptr);
#if defined(_XM_NO_INTRINSICS_)
XMVECTORF32 U = { { {
V.vector4_f32[0],
V.vector4_f32[1],
V.vector4_f32[2],
*w
} } };
return U.v;
#elif defined(_XM_ARM_NEON_INTRINSICS_)
return vld1q_lane_f32(w, V, 3);
#elif defined(_XM_SSE_INTRINSICS_)
// Swap w and x
XMVECTOR vResult = XM_PERMUTE_PS(V, _MM_SHUFFLE(0, 2, 1, 3));
// Convert input to vector
XMVECTOR vTemp = _mm_load_ss(w);
// Replace the x component
vResult = _mm_move_ss(vResult, vTemp);
// Swap w and x again
vResult = XM_PERMUTE_PS(vResult, _MM_SHUFFLE(0, 2, 1, 3));
return vResult;
#endif
}
//------------------------------------------------------------------------------
// Sets a component of a vector to an integer passed by value
inline XMVECTOR XM_CALLCONV XMVectorSetIntByIndex(FXMVECTOR V, uint32_t x, size_t i) noexcept
{
assert(i < 4);
_Analysis_assume_(i < 4);
XMVECTORU32 tmp;
tmp.v = V;
tmp.u[i] = x;
return tmp;
}
//------------------------------------------------------------------------------
// Sets the X component of a vector to an integer passed by value
inline XMVECTOR XM_CALLCONV XMVectorSetIntX(FXMVECTOR V, uint32_t x) noexcept
{
#if defined(_XM_NO_INTRINSICS_)
XMVECTORU32 U = { { {
x,
V.vector4_u32[1],
V.vector4_u32[2],
V.vector4_u32[3]
} } };
return U.v;
#elif defined(_XM_ARM_NEON_INTRINSICS_)
return vreinterpretq_f32_u32(vsetq_lane_u32(x, vreinterpretq_u32_f32(V), 0));
#elif defined(_XM_SSE_INTRINSICS_)
__m128i vTemp = _mm_cvtsi32_si128(static_cast<int>(x));
XMVECTOR vResult = _mm_move_ss(V, _mm_castsi128_ps(vTemp));
return vResult;
#endif
}
// Sets the Y component of a vector to an integer passed by value
inline XMVECTOR XM_CALLCONV XMVectorSetIntY(FXMVECTOR V, uint32_t y) noexcept
{
#if defined(_XM_NO_INTRINSICS_)
XMVECTORU32 U = { { {
V.vector4_u32[0],
y,
V.vector4_u32[2],
V.vector4_u32[3]
} } };
return U.v;
#elif defined(_XM_ARM_NEON_INTRINSICS_)
return vreinterpretq_f32_u32(vsetq_lane_u32(y, vreinterpretq_u32_f32(V), 1));
#elif defined(_XM_SSE4_INTRINSICS_)
__m128i vResult = _mm_castps_si128(V);
vResult = _mm_insert_epi32(vResult, static_cast<int>(y), 1);
return _mm_castsi128_ps(vResult);
#elif defined(_XM_SSE_INTRINSICS_)
// Swap y and x
XMVECTOR vResult = XM_PERMUTE_PS(V, _MM_SHUFFLE(3, 2, 0, 1));
// Convert input to vector
__m128i vTemp = _mm_cvtsi32_si128(static_cast<int>(y));
// Replace the x component
vResult = _mm_move_ss(vResult, _mm_castsi128_ps(vTemp));
// Swap y and x again
vResult = XM_PERMUTE_PS(vResult, _MM_SHUFFLE(3, 2, 0, 1));
return vResult;
#endif
}
// Sets the Z component of a vector to an integer passed by value
inline XMVECTOR XM_CALLCONV XMVectorSetIntZ(FXMVECTOR V, uint32_t z) noexcept
{
#if defined(_XM_NO_INTRINSICS_)
XMVECTORU32 U = { { {
V.vector4_u32[0],
V.vector4_u32[1],
z,
V.vector4_u32[3]
} } };
return U.v;
#elif defined(_XM_ARM_NEON_INTRINSICS_)
return vreinterpretq_f32_u32(vsetq_lane_u32(z, vreinterpretq_u32_f32(V), 2));
#elif defined(_XM_SSE4_INTRINSICS_)
__m128i vResult = _mm_castps_si128(V);
vResult = _mm_insert_epi32(vResult, static_cast<int>(z), 2);
return _mm_castsi128_ps(vResult);
#elif defined(_XM_SSE_INTRINSICS_)
// Swap z and x
XMVECTOR vResult = XM_PERMUTE_PS(V, _MM_SHUFFLE(3, 0, 1, 2));
// Convert input to vector
__m128i vTemp = _mm_cvtsi32_si128(static_cast<int>(z));
// Replace the x component
vResult = _mm_move_ss(vResult, _mm_castsi128_ps(vTemp));
// Swap z and x again
vResult = XM_PERMUTE_PS(vResult, _MM_SHUFFLE(3, 0, 1, 2));
return vResult;
#endif
}
// Sets the W component of a vector to an integer passed by value
inline XMVECTOR XM_CALLCONV XMVectorSetIntW(FXMVECTOR V, uint32_t w) noexcept
{
#if defined(_XM_NO_INTRINSICS_)
XMVECTORU32 U = { { {
V.vector4_u32[0],
V.vector4_u32[1],
V.vector4_u32[2],
w
} } };
return U.v;
#elif defined(_XM_ARM_NEON_INTRINSICS_)
return vreinterpretq_f32_u32(vsetq_lane_u32(w, vreinterpretq_u32_f32(V), 3));
#elif defined(_XM_SSE4_INTRINSICS_)
__m128i vResult = _mm_castps_si128(V);
vResult = _mm_insert_epi32(vResult, static_cast<int>(w), 3);
return _mm_castsi128_ps(vResult);
#elif defined(_XM_SSE_INTRINSICS_)
// Swap w and x
XMVECTOR vResult = XM_PERMUTE_PS(V, _MM_SHUFFLE(0, 2, 1, 3));
// Convert input to vector
__m128i vTemp = _mm_cvtsi32_si128(static_cast<int>(w));
// Replace the x component
vResult = _mm_move_ss(vResult, _mm_castsi128_ps(vTemp));
// Swap w and x again
vResult = XM_PERMUTE_PS(vResult, _MM_SHUFFLE(0, 2, 1, 3));
return vResult;
#endif
}
//------------------------------------------------------------------------------
// Sets a component of a vector to an integer value passed by pointer
_Use_decl_annotations_
inline XMVECTOR XM_CALLCONV XMVectorSetIntByIndexPtr(FXMVECTOR V, const uint32_t* x, size_t i) noexcept
{
assert(x != nullptr);
assert(i < 4);
_Analysis_assume_(i < 4);
XMVECTORU32 tmp;
tmp.v = V;
tmp.u[i] = *x;
return tmp;
}
//------------------------------------------------------------------------------
// Sets the X component of a vector to an integer value passed by pointer
_Use_decl_annotations_
inline XMVECTOR XM_CALLCONV XMVectorSetIntXPtr(FXMVECTOR V, const uint32_t* x) noexcept
{
assert(x != nullptr);
#if defined(_XM_NO_INTRINSICS_)
XMVECTORU32 U = { { {
*x,
V.vector4_u32[1],
V.vector4_u32[2],
V.vector4_u32[3]
} } };
return U.v;
#elif defined(_XM_ARM_NEON_INTRINSICS_)
return vreinterpretq_f32_u32(vld1q_lane_u32(x, *reinterpret_cast<const uint32x4_t*>(&V), 0));
#elif defined(_XM_SSE_INTRINSICS_)
XMVECTOR vTemp = _mm_load_ss(reinterpret_cast<const float*>(x));
XMVECTOR vResult = _mm_move_ss(V, vTemp);
return vResult;
#endif
}
// Sets the Y component of a vector to an integer value passed by pointer
_Use_decl_annotations_
inline XMVECTOR XM_CALLCONV XMVectorSetIntYPtr(FXMVECTOR V, const uint32_t* y) noexcept
{
assert(y != nullptr);
#if defined(_XM_NO_INTRINSICS_)
XMVECTORU32 U = { { {
V.vector4_u32[0],
*y,
V.vector4_u32[2],
V.vector4_u32[3]
} } };
return U.v;
#elif defined(_XM_ARM_NEON_INTRINSICS_)
return vreinterpretq_f32_u32(vld1q_lane_u32(y, *reinterpret_cast<const uint32x4_t*>(&V), 1));
#elif defined(_XM_SSE_INTRINSICS_)
// Swap y and x
XMVECTOR vResult = XM_PERMUTE_PS(V, _MM_SHUFFLE(3, 2, 0, 1));
// Convert input to vector
XMVECTOR vTemp = _mm_load_ss(reinterpret_cast<const float*>(y));
// Replace the x component
vResult = _mm_move_ss(vResult, vTemp);
// Swap y and x again
vResult = XM_PERMUTE_PS(vResult, _MM_SHUFFLE(3, 2, 0, 1));
return vResult;
#endif
}
// Sets the Z component of a vector to an integer value passed by pointer
_Use_decl_annotations_
inline XMVECTOR XM_CALLCONV XMVectorSetIntZPtr(FXMVECTOR V, const uint32_t* z) noexcept
{
assert(z != nullptr);
#if defined(_XM_NO_INTRINSICS_)
XMVECTORU32 U = { { {
V.vector4_u32[0],
V.vector4_u32[1],
*z,
V.vector4_u32[3]
} } };
return U.v;
#elif defined(_XM_ARM_NEON_INTRINSICS_)
return vreinterpretq_f32_u32(vld1q_lane_u32(z, *reinterpret_cast<const uint32x4_t*>(&V), 2));
#elif defined(_XM_SSE_INTRINSICS_)
// Swap z and x
XMVECTOR vResult = XM_PERMUTE_PS(V, _MM_SHUFFLE(3, 0, 1, 2));
// Convert input to vector
XMVECTOR vTemp = _mm_load_ss(reinterpret_cast<const float*>(z));
// Replace the x component
vResult = _mm_move_ss(vResult, vTemp);
// Swap z and x again
vResult = XM_PERMUTE_PS(vResult, _MM_SHUFFLE(3, 0, 1, 2));
return vResult;
#endif
}
// Sets the W component of a vector to an integer value passed by pointer
_Use_decl_annotations_
inline XMVECTOR XM_CALLCONV XMVectorSetIntWPtr(FXMVECTOR V, const uint32_t* w) noexcept
{
assert(w != nullptr);
#if defined(_XM_NO_INTRINSICS_)
XMVECTORU32 U = { { {
V.vector4_u32[0],
V.vector4_u32[1],
V.vector4_u32[2],
*w
} } };
return U.v;
#elif defined(_XM_ARM_NEON_INTRINSICS_)
return vreinterpretq_f32_u32(vld1q_lane_u32(w, *reinterpret_cast<const uint32x4_t*>(&V), 3));
#elif defined(_XM_SSE_INTRINSICS_)
// Swap w and x
XMVECTOR vResult = XM_PERMUTE_PS(V, _MM_SHUFFLE(0, 2, 1, 3));
// Convert input to vector
XMVECTOR vTemp = _mm_load_ss(reinterpret_cast<const float*>(w));
// Replace the x component
vResult = _mm_move_ss(vResult, vTemp);
// Swap w and x again
vResult = XM_PERMUTE_PS(vResult, _MM_SHUFFLE(0, 2, 1, 3));
return vResult;
#endif
}
//------------------------------------------------------------------------------
inline XMVECTOR XM_CALLCONV XMVectorSwizzle
(
FXMVECTOR V,
uint32_t E0,
uint32_t E1,
uint32_t E2,
uint32_t E3
) noexcept
{
assert((E0 < 4) && (E1 < 4) && (E2 < 4) && (E3 < 4));
_Analysis_assume_((E0 < 4) && (E1 < 4) && (E2 < 4) && (E3 < 4));
#if defined(_XM_NO_INTRINSICS_)
XMVECTORF32 Result = { { {
V.vector4_f32[E0],
V.vector4_f32[E1],
V.vector4_f32[E2],
V.vector4_f32[E3]
} } };
return Result.v;
#elif defined(_XM_ARM_NEON_INTRINSICS_)
static const uint32_t ControlElement[4] =
{
0x03020100, // XM_SWIZZLE_X
0x07060504, // XM_SWIZZLE_Y
0x0B0A0908, // XM_SWIZZLE_Z
0x0F0E0D0C, // XM_SWIZZLE_W
};
uint8x8x2_t tbl;
tbl.val[0] = vreinterpret_u8_f32(vget_low_f32(V));
tbl.val[1] = vreinterpret_u8_f32(vget_high_f32(V));
uint32x2_t idx = vcreate_u32(static_cast<uint64_t>(ControlElement[E0]) | (static_cast<uint64_t>(ControlElement[E1]) << 32));
const uint8x8_t rL = vtbl2_u8(tbl, vreinterpret_u8_u32(idx));
idx = vcreate_u32(static_cast<uint64_t>(ControlElement[E2]) | (static_cast<uint64_t>(ControlElement[E3]) << 32));
const uint8x8_t rH = vtbl2_u8(tbl, vreinterpret_u8_u32(idx));
return vcombine_f32(vreinterpret_f32_u8(rL), vreinterpret_f32_u8(rH));
#elif defined(_XM_AVX_INTRINSICS_)
unsigned int elem[4] = { E0, E1, E2, E3 };
__m128i vControl = _mm_loadu_si128(reinterpret_cast<const __m128i*>(&elem[0]));
return _mm_permutevar_ps(V, vControl);
#else
auto aPtr = reinterpret_cast<const uint32_t*>(&V);
XMVECTOR Result;
auto pWork = reinterpret_cast<uint32_t*>(&Result);
pWork[0] = aPtr[E0];
pWork[1] = aPtr[E1];
pWork[2] = aPtr[E2];
pWork[3] = aPtr[E3];
return Result;
#endif
}
//------------------------------------------------------------------------------
inline XMVECTOR XM_CALLCONV XMVectorPermute
(
FXMVECTOR V1,
FXMVECTOR V2,
uint32_t PermuteX,
uint32_t PermuteY,
uint32_t PermuteZ,
uint32_t PermuteW
) noexcept
{
assert(PermuteX <= 7 && PermuteY <= 7 && PermuteZ <= 7 && PermuteW <= 7);
_Analysis_assume_(PermuteX <= 7 && PermuteY <= 7 && PermuteZ <= 7 && PermuteW <= 7);
#if defined(_XM_ARM_NEON_INTRINSICS_) && !defined(_XM_NO_INTRINSICS_)
static const uint32_t ControlElement[8] =
{
0x03020100, // XM_PERMUTE_0X
0x07060504, // XM_PERMUTE_0Y
0x0B0A0908, // XM_PERMUTE_0Z
0x0F0E0D0C, // XM_PERMUTE_0W
0x13121110, // XM_PERMUTE_1X
0x17161514, // XM_PERMUTE_1Y
0x1B1A1918, // XM_PERMUTE_1Z
0x1F1E1D1C, // XM_PERMUTE_1W
};
uint8x8x4_t tbl;
tbl.val[0] = vreinterpret_u8_f32(vget_low_f32(V1));
tbl.val[1] = vreinterpret_u8_f32(vget_high_f32(V1));
tbl.val[2] = vreinterpret_u8_f32(vget_low_f32(V2));
tbl.val[3] = vreinterpret_u8_f32(vget_high_f32(V2));
uint32x2_t idx = vcreate_u32(static_cast<uint64_t>(ControlElement[PermuteX]) | (static_cast<uint64_t>(ControlElement[PermuteY]) << 32));
const uint8x8_t rL = vtbl4_u8(tbl, vreinterpret_u8_u32(idx));
idx = vcreate_u32(static_cast<uint64_t>(ControlElement[PermuteZ]) | (static_cast<uint64_t>(ControlElement[PermuteW]) << 32));
const uint8x8_t rH = vtbl4_u8(tbl, vreinterpret_u8_u32(idx));
return vcombine_f32(vreinterpret_f32_u8(rL), vreinterpret_f32_u8(rH));
#elif defined(_XM_AVX_INTRINSICS_) && !defined(_XM_NO_INTRINSICS_)
static const XMVECTORU32 three = { { { 3, 3, 3, 3 } } };
XM_ALIGNED_DATA(16) unsigned int elem[4] = { PermuteX, PermuteY, PermuteZ, PermuteW };
__m128i vControl = _mm_load_si128(reinterpret_cast<const __m128i*>(&elem[0]));
__m128i vSelect = _mm_cmpgt_epi32(vControl, three);
vControl = _mm_castps_si128(_mm_and_ps(_mm_castsi128_ps(vControl), three));
__m128 shuffled1 = _mm_permutevar_ps(V1, vControl);
__m128 shuffled2 = _mm_permutevar_ps(V2, vControl);
__m128 masked1 = _mm_andnot_ps(_mm_castsi128_ps(vSelect), shuffled1);
__m128 masked2 = _mm_and_ps(_mm_castsi128_ps(vSelect), shuffled2);
return _mm_or_ps(masked1, masked2);
#else
const uint32_t* aPtr[2];
aPtr[0] = reinterpret_cast<const uint32_t*>(&V1);
aPtr[1] = reinterpret_cast<const uint32_t*>(&V2);
XMVECTOR Result;
auto pWork = reinterpret_cast<uint32_t*>(&Result);
const uint32_t i0 = PermuteX & 3;
const uint32_t vi0 = PermuteX >> 2;
pWork[0] = aPtr[vi0][i0];
const uint32_t i1 = PermuteY & 3;
const uint32_t vi1 = PermuteY >> 2;
pWork[1] = aPtr[vi1][i1];
const uint32_t i2 = PermuteZ & 3;
const uint32_t vi2 = PermuteZ >> 2;
pWork[2] = aPtr[vi2][i2];
const uint32_t i3 = PermuteW & 3;
const uint32_t vi3 = PermuteW >> 2;
pWork[3] = aPtr[vi3][i3];
return Result;
#endif
}
//------------------------------------------------------------------------------
// Define a control vector to be used in XMVectorSelect
// operations. The four integers specified in XMVectorSelectControl
// serve as indices to select between components in two vectors.
// The first index controls selection for the first component of
// the vectors involved in a select operation, the second index
// controls selection for the second component etc. A value of
// zero for an index causes the corresponding component from the first
// vector to be selected whereas a one causes the component from the
// second vector to be selected instead.
inline XMVECTOR XM_CALLCONV XMVectorSelectControl
(
uint32_t VectorIndex0,
uint32_t VectorIndex1,
uint32_t VectorIndex2,
uint32_t VectorIndex3
) noexcept
{
#if defined(_XM_SSE_INTRINSICS_) && !defined(_XM_NO_INTRINSICS_)
// x=Index0,y=Index1,z=Index2,w=Index3
__m128i vTemp = _mm_set_epi32(static_cast<int>(VectorIndex3), static_cast<int>(VectorIndex2), static_cast<int>(VectorIndex1), static_cast<int>(VectorIndex0));
// Any non-zero entries become 0xFFFFFFFF else 0
vTemp = _mm_cmpgt_epi32(vTemp, g_XMZero);
return _mm_castsi128_ps(vTemp);
#elif defined(_XM_ARM_NEON_INTRINSICS_) && !defined(_XM_NO_INTRINSICS_)
int32x2_t V0 = vcreate_s32(static_cast<uint64_t>(VectorIndex0) | (static_cast<uint64_t>(VectorIndex1) << 32));
int32x2_t V1 = vcreate_s32(static_cast<uint64_t>(VectorIndex2) | (static_cast<uint64_t>(VectorIndex3) << 32));
int32x4_t vTemp = vcombine_s32(V0, V1);
// Any non-zero entries become 0xFFFFFFFF else 0
return vreinterpretq_f32_u32(vcgtq_s32(vTemp, g_XMZero));
#else
XMVECTOR ControlVector;
const uint32_t ControlElement[] =
{
XM_SELECT_0,
XM_SELECT_1
};
assert(VectorIndex0 < 2);
assert(VectorIndex1 < 2);
assert(VectorIndex2 < 2);
assert(VectorIndex3 < 2);
_Analysis_assume_(VectorIndex0 < 2);
_Analysis_assume_(VectorIndex1 < 2);
_Analysis_assume_(VectorIndex2 < 2);
_Analysis_assume_(VectorIndex3 < 2);
ControlVector.vector4_u32[0] = ControlElement[VectorIndex0];
ControlVector.vector4_u32[1] = ControlElement[VectorIndex1];
ControlVector.vector4_u32[2] = ControlElement[VectorIndex2];
ControlVector.vector4_u32[3] = ControlElement[VectorIndex3];
return ControlVector;
#endif
}
//------------------------------------------------------------------------------
inline XMVECTOR XM_CALLCONV XMVectorSelect
(
FXMVECTOR V1,
FXMVECTOR V2,
FXMVECTOR Control
) noexcept
{
#if defined(_XM_NO_INTRINSICS_)
XMVECTORU32 Result = { { {
(V1.vector4_u32[0] & ~Control.vector4_u32[0]) | (V2.vector4_u32[0] & Control.vector4_u32[0]),
(V1.vector4_u32[1] & ~Control.vector4_u32[1]) | (V2.vector4_u32[1] & Control.vector4_u32[1]),
(V1.vector4_u32[2] & ~Control.vector4_u32[2]) | (V2.vector4_u32[2] & Control.vector4_u32[2]),
(V1.vector4_u32[3] & ~Control.vector4_u32[3]) | (V2.vector4_u32[3] & Control.vector4_u32[3]),
} } };
return Result.v;
#elif defined(_XM_ARM_NEON_INTRINSICS_)
return vbslq_f32(vreinterpretq_u32_f32(Control), V2, V1);
#elif defined(_XM_SSE_INTRINSICS_)
XMVECTOR vTemp1 = _mm_andnot_ps(Control, V1);
XMVECTOR vTemp2 = _mm_and_ps(V2, Control);
return _mm_or_ps(vTemp1, vTemp2);
#endif
}
//------------------------------------------------------------------------------
inline XMVECTOR XM_CALLCONV XMVectorMergeXY
(
FXMVECTOR V1,
FXMVECTOR V2
) noexcept
{
#if defined(_XM_NO_INTRINSICS_)
XMVECTORU32 Result = { { {
V1.vector4_u32[0],
V2.vector4_u32[0],
V1.vector4_u32[1],
V2.vector4_u32[1],
} } };
return Result.v;
#elif defined(_XM_ARM_NEON_INTRINSICS_)
return vzipq_f32(V1, V2).val[0];
#elif defined(_XM_SSE_INTRINSICS_)
return _mm_unpacklo_ps(V1, V2);
#endif
}
//------------------------------------------------------------------------------
inline XMVECTOR XM_CALLCONV XMVectorMergeZW
(
FXMVECTOR V1,
FXMVECTOR V2
) noexcept
{
#if defined(_XM_NO_INTRINSICS_)
XMVECTORU32 Result = { { {
V1.vector4_u32[2],
V2.vector4_u32[2],
V1.vector4_u32[3],
V2.vector4_u32[3]
} } };
return Result.v;
#elif defined(_XM_ARM_NEON_INTRINSICS_)
return vzipq_f32(V1, V2).val[1];
#elif defined(_XM_SSE_INTRINSICS_)
return _mm_unpackhi_ps(V1, V2);
#endif
}
//------------------------------------------------------------------------------
inline XMVECTOR XM_CALLCONV XMVectorShiftLeft(FXMVECTOR V1, FXMVECTOR V2, uint32_t Elements) noexcept
{
assert(Elements < 4);
_Analysis_assume_(Elements < 4);
return XMVectorPermute(V1, V2, Elements, ((Elements)+1), ((Elements)+2), ((Elements)+3));
}
//------------------------------------------------------------------------------
inline XMVECTOR XM_CALLCONV XMVectorRotateLeft(FXMVECTOR V, uint32_t Elements) noexcept
{
assert(Elements < 4);
_Analysis_assume_(Elements < 4);
return XMVectorSwizzle(V, Elements & 3, (Elements + 1) & 3, (Elements + 2) & 3, (Elements + 3) & 3);
}
//------------------------------------------------------------------------------
inline XMVECTOR XM_CALLCONV XMVectorRotateRight(FXMVECTOR V, uint32_t Elements) noexcept
{
assert(Elements < 4);
_Analysis_assume_(Elements < 4);
return XMVectorSwizzle(V, (4 - (Elements)) & 3, (5 - (Elements)) & 3, (6 - (Elements)) & 3, (7 - (Elements)) & 3);
}
//------------------------------------------------------------------------------
inline XMVECTOR XM_CALLCONV XMVectorInsert(
FXMVECTOR VD, FXMVECTOR VS,
uint32_t VSLeftRotateElements,
uint32_t Select0, uint32_t Select1, uint32_t Select2, uint32_t Select3) noexcept
{
XMVECTOR Control = XMVectorSelectControl(Select0 & 1, Select1 & 1, Select2 & 1, Select3 & 1);
return XMVectorSelect(VD, XMVectorRotateLeft(VS, VSLeftRotateElements), Control);
}
//------------------------------------------------------------------------------
// Comparison operations
//------------------------------------------------------------------------------
//------------------------------------------------------------------------------
inline XMVECTOR XM_CALLCONV XMVectorEqual
(
FXMVECTOR V1,
FXMVECTOR V2
) noexcept
{
#if defined(_XM_NO_INTRINSICS_)
XMVECTORU32 Control = { { {
(V1.vector4_f32[0] == V2.vector4_f32[0]) ? 0xFFFFFFFF : 0,
(V1.vector4_f32[1] == V2.vector4_f32[1]) ? 0xFFFFFFFF : 0,
(V1.vector4_f32[2] == V2.vector4_f32[2]) ? 0xFFFFFFFF : 0,
(V1.vector4_f32[3] == V2.vector4_f32[3]) ? 0xFFFFFFFF : 0,
} } };
return Control.v;
#elif defined(_XM_ARM_NEON_INTRINSICS_)
return vreinterpretq_f32_u32(vceqq_f32(V1, V2));
#elif defined(_XM_SSE_INTRINSICS_)
return _mm_cmpeq_ps(V1, V2);
#endif
}
//------------------------------------------------------------------------------
_Use_decl_annotations_
inline XMVECTOR XM_CALLCONV XMVectorEqualR
(
uint32_t* pCR,
FXMVECTOR V1,
FXMVECTOR V2
) noexcept
{
assert(pCR != nullptr);
#if defined(_XM_NO_INTRINSICS_)
uint32_t ux = (V1.vector4_f32[0] == V2.vector4_f32[0]) ? 0xFFFFFFFFU : 0;
uint32_t uy = (V1.vector4_f32[1] == V2.vector4_f32[1]) ? 0xFFFFFFFFU : 0;
uint32_t uz = (V1.vector4_f32[2] == V2.vector4_f32[2]) ? 0xFFFFFFFFU : 0;
uint32_t uw = (V1.vector4_f32[3] == V2.vector4_f32[3]) ? 0xFFFFFFFFU : 0;
uint32_t CR = 0;
if (ux & uy & uz & uw)
{
// All elements are greater
CR = XM_CRMASK_CR6TRUE;
}
else if (!(ux | uy | uz | uw))
{
// All elements are not greater
CR = XM_CRMASK_CR6FALSE;
}
*pCR = CR;
XMVECTORU32 Control = { { { ux, uy, uz, uw } } };
return Control;
#elif defined(_XM_ARM_NEON_INTRINSICS_)
uint32x4_t vResult = vceqq_f32(V1, V2);
uint8x8x2_t vTemp = vzip_u8(vreinterpret_u8_u32(vget_low_u32(vResult)), vreinterpret_u8_u32(vget_high_u32(vResult)));
uint16x4x2_t vTemp2 = vzip_u16(vreinterpret_u16_u8(vTemp.val[0]), vreinterpret_u16_u8(vTemp.val[1]));
uint32_t r = vget_lane_u32(vreinterpret_u32_u16(vTemp2.val[1]), 1);
uint32_t CR = 0;
if (r == 0xFFFFFFFFU)
{
// All elements are equal
CR = XM_CRMASK_CR6TRUE;
}
else if (!r)
{
// All elements are not equal
CR = XM_CRMASK_CR6FALSE;
}
*pCR = CR;
return vreinterpretq_f32_u32(vResult);
#elif defined(_XM_SSE_INTRINSICS_)
XMVECTOR vTemp = _mm_cmpeq_ps(V1, V2);
uint32_t CR = 0;
int iTest = _mm_movemask_ps(vTemp);
if (iTest == 0xf)
{
CR = XM_CRMASK_CR6TRUE;
}
else if (!iTest)
{
// All elements are not greater
CR = XM_CRMASK_CR6FALSE;
}
*pCR = CR;
return vTemp;
#endif
}
//------------------------------------------------------------------------------
// Treat the components of the vectors as unsigned integers and
// compare individual bits between the two. This is useful for
// comparing control vectors and result vectors returned from
// other comparison operations.
inline XMVECTOR XM_CALLCONV XMVectorEqualInt
(
FXMVECTOR V1,
FXMVECTOR V2
) noexcept
{
#if defined(_XM_NO_INTRINSICS_)
XMVECTORU32 Control = { { {
(V1.vector4_u32[0] == V2.vector4_u32[0]) ? 0xFFFFFFFF : 0,
(V1.vector4_u32[1] == V2.vector4_u32[1]) ? 0xFFFFFFFF : 0,
(V1.vector4_u32[2] == V2.vector4_u32[2]) ? 0xFFFFFFFF : 0,
(V1.vector4_u32[3] == V2.vector4_u32[3]) ? 0xFFFFFFFF : 0,
} } };
return Control.v;
#elif defined(_XM_ARM_NEON_INTRINSICS_)
return vreinterpretq_f32_u32(vceqq_s32(vreinterpretq_s32_f32(V1), vreinterpretq_s32_f32(V2)));
#elif defined(_XM_SSE_INTRINSICS_)
__m128i V = _mm_cmpeq_epi32(_mm_castps_si128(V1), _mm_castps_si128(V2));
return _mm_castsi128_ps(V);
#endif
}
//------------------------------------------------------------------------------
_Use_decl_annotations_
inline XMVECTOR XM_CALLCONV XMVectorEqualIntR
(
uint32_t* pCR,
FXMVECTOR V1,
FXMVECTOR V2
) noexcept
{
assert(pCR != nullptr);
#if defined(_XM_NO_INTRINSICS_)
XMVECTOR Control = XMVectorEqualInt(V1, V2);
*pCR = 0;
if (XMVector4EqualInt(Control, XMVectorTrueInt()))
{
// All elements are equal
*pCR |= XM_CRMASK_CR6TRUE;
}
else if (XMVector4EqualInt(Control, XMVectorFalseInt()))
{
// All elements are not equal
*pCR |= XM_CRMASK_CR6FALSE;
}
return Control;
#elif defined(_XM_ARM_NEON_INTRINSICS_)
uint32x4_t vResult = vceqq_u32(vreinterpretq_u32_f32(V1), vreinterpretq_u32_f32(V2));
uint8x8x2_t vTemp = vzip_u8(vget_low_u8(vreinterpretq_u8_u32(vResult)), vget_high_u8(vreinterpretq_u8_u32(vResult)));
uint16x4x2_t vTemp2 = vzip_u16(vreinterpret_u16_u8(vTemp.val[0]), vreinterpret_u16_u8(vTemp.val[1]));
uint32_t r = vget_lane_u32(vreinterpret_u32_u16(vTemp2.val[1]), 1);
uint32_t CR = 0;
if (r == 0xFFFFFFFFU)
{
// All elements are equal
CR = XM_CRMASK_CR6TRUE;
}
else if (!r)
{
// All elements are not equal
CR = XM_CRMASK_CR6FALSE;
}
*pCR = CR;
return vreinterpretq_f32_u32(vResult);
#elif defined(_XM_SSE_INTRINSICS_)
__m128i V = _mm_cmpeq_epi32(_mm_castps_si128(V1), _mm_castps_si128(V2));
int iTemp = _mm_movemask_ps(_mm_castsi128_ps(V));
uint32_t CR = 0;
if (iTemp == 0x0F)
{
CR = XM_CRMASK_CR6TRUE;
}
else if (!iTemp)
{
CR = XM_CRMASK_CR6FALSE;
}
*pCR = CR;
return _mm_castsi128_ps(V);
#endif
}
//------------------------------------------------------------------------------
inline XMVECTOR XM_CALLCONV XMVectorNearEqual
(
FXMVECTOR V1,
FXMVECTOR V2,
FXMVECTOR Epsilon
) noexcept
{
#if defined(_XM_NO_INTRINSICS_)
float fDeltax = V1.vector4_f32[0] - V2.vector4_f32[0];
float fDeltay = V1.vector4_f32[1] - V2.vector4_f32[1];
float fDeltaz = V1.vector4_f32[2] - V2.vector4_f32[2];
float fDeltaw = V1.vector4_f32[3] - V2.vector4_f32[3];
fDeltax = fabsf(fDeltax);
fDeltay = fabsf(fDeltay);
fDeltaz = fabsf(fDeltaz);
fDeltaw = fabsf(fDeltaw);
XMVECTORU32 Control = { { {
(fDeltax <= Epsilon.vector4_f32[0]) ? 0xFFFFFFFFU : 0,
(fDeltay <= Epsilon.vector4_f32[1]) ? 0xFFFFFFFFU : 0,
(fDeltaz <= Epsilon.vector4_f32[2]) ? 0xFFFFFFFFU : 0,
(fDeltaw <= Epsilon.vector4_f32[3]) ? 0xFFFFFFFFU : 0,
} } };
return Control.v;
#elif defined(_XM_ARM_NEON_INTRINSICS_)
float32x4_t vDelta = vsubq_f32(V1, V2);
#ifdef _MSC_VER
return vacleq_f32(vDelta, Epsilon);
#else
return vreinterpretq_f32_u32(vcleq_f32(vabsq_f32(vDelta), Epsilon));
#endif
#elif defined(_XM_SSE_INTRINSICS_)
// Get the difference
XMVECTOR vDelta = _mm_sub_ps(V1, V2);
// Get the absolute value of the difference
XMVECTOR vTemp = _mm_setzero_ps();
vTemp = _mm_sub_ps(vTemp, vDelta);
vTemp = _mm_max_ps(vTemp, vDelta);
vTemp = _mm_cmple_ps(vTemp, Epsilon);
return vTemp;
#endif
}
//------------------------------------------------------------------------------
inline XMVECTOR XM_CALLCONV XMVectorNotEqual
(
FXMVECTOR V1,
FXMVECTOR V2
) noexcept
{
#if defined(_XM_NO_INTRINSICS_)
XMVECTORU32 Control = { { {
(V1.vector4_f32[0] != V2.vector4_f32[0]) ? 0xFFFFFFFF : 0,
(V1.vector4_f32[1] != V2.vector4_f32[1]) ? 0xFFFFFFFF : 0,
(V1.vector4_f32[2] != V2.vector4_f32[2]) ? 0xFFFFFFFF : 0,
(V1.vector4_f32[3] != V2.vector4_f32[3]) ? 0xFFFFFFFF : 0,
} } };
return Control.v;
#elif defined(_XM_ARM_NEON_INTRINSICS_)
return vreinterpretq_f32_u32(vmvnq_u32(vceqq_f32(V1, V2)));
#elif defined(_XM_SSE_INTRINSICS_)
return _mm_cmpneq_ps(V1, V2);
#endif
}
//------------------------------------------------------------------------------
inline XMVECTOR XM_CALLCONV XMVectorNotEqualInt
(
FXMVECTOR V1,
FXMVECTOR V2
) noexcept
{
#if defined(_XM_NO_INTRINSICS_)
XMVECTORU32 Control = { { {
(V1.vector4_u32[0] != V2.vector4_u32[0]) ? 0xFFFFFFFFU : 0,
(V1.vector4_u32[1] != V2.vector4_u32[1]) ? 0xFFFFFFFFU : 0,
(V1.vector4_u32[2] != V2.vector4_u32[2]) ? 0xFFFFFFFFU : 0,
(V1.vector4_u32[3] != V2.vector4_u32[3]) ? 0xFFFFFFFFU : 0
} } };
return Control.v;
#elif defined(_XM_ARM_NEON_INTRINSICS_)
return vreinterpretq_f32_u32(vmvnq_u32(
vceqq_u32(vreinterpretq_u32_f32(V1), vreinterpretq_u32_f32(V2))));
#elif defined(_XM_SSE_INTRINSICS_)
__m128i V = _mm_cmpeq_epi32(_mm_castps_si128(V1), _mm_castps_si128(V2));
return _mm_xor_ps(_mm_castsi128_ps(V), g_XMNegOneMask);
#endif
}
//------------------------------------------------------------------------------
inline XMVECTOR XM_CALLCONV XMVectorGreater
(
FXMVECTOR V1,
FXMVECTOR V2
) noexcept
{
#if defined(_XM_NO_INTRINSICS_)
XMVECTORU32 Control = { { {
(V1.vector4_f32[0] > V2.vector4_f32[0]) ? 0xFFFFFFFF : 0,
(V1.vector4_f32[1] > V2.vector4_f32[1]) ? 0xFFFFFFFF : 0,
(V1.vector4_f32[2] > V2.vector4_f32[2]) ? 0xFFFFFFFF : 0,
(V1.vector4_f32[3] > V2.vector4_f32[3]) ? 0xFFFFFFFF : 0
} } };
return Control.v;
#elif defined(_XM_ARM_NEON_INTRINSICS_)
return vreinterpretq_f32_u32(vcgtq_f32(V1, V2));
#elif defined(_XM_SSE_INTRINSICS_)
return _mm_cmpgt_ps(V1, V2);
#endif
}
//------------------------------------------------------------------------------
_Use_decl_annotations_
inline XMVECTOR XM_CALLCONV XMVectorGreaterR
(
uint32_t* pCR,
FXMVECTOR V1,
FXMVECTOR V2
) noexcept
{
assert(pCR != nullptr);
#if defined(_XM_NO_INTRINSICS_)
uint32_t ux = (V1.vector4_f32[0] > V2.vector4_f32[0]) ? 0xFFFFFFFFU : 0;
uint32_t uy = (V1.vector4_f32[1] > V2.vector4_f32[1]) ? 0xFFFFFFFFU : 0;
uint32_t uz = (V1.vector4_f32[2] > V2.vector4_f32[2]) ? 0xFFFFFFFFU : 0;
uint32_t uw = (V1.vector4_f32[3] > V2.vector4_f32[3]) ? 0xFFFFFFFFU : 0;
uint32_t CR = 0;
if (ux & uy & uz & uw)
{
// All elements are greater
CR = XM_CRMASK_CR6TRUE;
}
else if (!(ux | uy | uz | uw))
{
// All elements are not greater
CR = XM_CRMASK_CR6FALSE;
}
*pCR = CR;
XMVECTORU32 Control = { { { ux, uy, uz, uw } } };
return Control.v;
#elif defined(_XM_ARM_NEON_INTRINSICS_)
uint32x4_t vResult = vcgtq_f32(V1, V2);
uint8x8x2_t vTemp = vzip_u8(vget_low_u8(vreinterpretq_u8_u32(vResult)), vget_high_u8(vreinterpretq_u8_u32(vResult)));
uint16x4x2_t vTemp2 = vzip_u16(vreinterpret_u16_u8(vTemp.val[0]), vreinterpret_u16_u8(vTemp.val[1]));
uint32_t r = vget_lane_u32(vreinterpret_u32_u16(vTemp2.val[1]), 1);
uint32_t CR = 0;
if (r == 0xFFFFFFFFU)
{
// All elements are greater
CR = XM_CRMASK_CR6TRUE;
}
else if (!r)
{
// All elements are not greater
CR = XM_CRMASK_CR6FALSE;
}
*pCR = CR;
return vreinterpretq_f32_u32(vResult);
#elif defined(_XM_SSE_INTRINSICS_)
XMVECTOR vTemp = _mm_cmpgt_ps(V1, V2);
uint32_t CR = 0;
int iTest = _mm_movemask_ps(vTemp);
if (iTest == 0xf)
{
CR = XM_CRMASK_CR6TRUE;
}
else if (!iTest)
{
// All elements are not greater
CR = XM_CRMASK_CR6FALSE;
}
*pCR = CR;
return vTemp;
#endif
}
//------------------------------------------------------------------------------
inline XMVECTOR XM_CALLCONV XMVectorGreaterOrEqual
(
FXMVECTOR V1,
FXMVECTOR V2
) noexcept
{
#if defined(_XM_NO_INTRINSICS_)
XMVECTORU32 Control = { { {
(V1.vector4_f32[0] >= V2.vector4_f32[0]) ? 0xFFFFFFFF : 0,
(V1.vector4_f32[1] >= V2.vector4_f32[1]) ? 0xFFFFFFFF : 0,
(V1.vector4_f32[2] >= V2.vector4_f32[2]) ? 0xFFFFFFFF : 0,
(V1.vector4_f32[3] >= V2.vector4_f32[3]) ? 0xFFFFFFFF : 0
} } };
return Control.v;
#elif defined(_XM_ARM_NEON_INTRINSICS_)
return vreinterpretq_f32_u32(vcgeq_f32(V1, V2));
#elif defined(_XM_SSE_INTRINSICS_)
return _mm_cmpge_ps(V1, V2);
#endif
}
//------------------------------------------------------------------------------
_Use_decl_annotations_
inline XMVECTOR XM_CALLCONV XMVectorGreaterOrEqualR
(
uint32_t* pCR,
FXMVECTOR V1,
FXMVECTOR V2
) noexcept
{
assert(pCR != nullptr);
#if defined(_XM_NO_INTRINSICS_)
uint32_t ux = (V1.vector4_f32[0] >= V2.vector4_f32[0]) ? 0xFFFFFFFFU : 0;
uint32_t uy = (V1.vector4_f32[1] >= V2.vector4_f32[1]) ? 0xFFFFFFFFU : 0;
uint32_t uz = (V1.vector4_f32[2] >= V2.vector4_f32[2]) ? 0xFFFFFFFFU : 0;
uint32_t uw = (V1.vector4_f32[3] >= V2.vector4_f32[3]) ? 0xFFFFFFFFU : 0;
uint32_t CR = 0;
if (ux & uy & uz & uw)
{
// All elements are greater
CR = XM_CRMASK_CR6TRUE;
}
else if (!(ux | uy | uz | uw))
{
// All elements are not greater
CR = XM_CRMASK_CR6FALSE;
}
*pCR = CR;
XMVECTORU32 Control = { { { ux, uy, uz, uw } } };
return Control.v;
#elif defined(_XM_ARM_NEON_INTRINSICS_)
uint32x4_t vResult = vcgeq_f32(V1, V2);
uint8x8x2_t vTemp = vzip_u8(vget_low_u8(vreinterpretq_u8_u32(vResult)), vget_high_u8(vreinterpretq_u8_u32(vResult)));
uint16x4x2_t vTemp2 = vzip_u16(vreinterpret_u16_u8(vTemp.val[0]), vreinterpret_u16_u8(vTemp.val[1]));
uint32_t r = vget_lane_u32(vreinterpret_u32_u16(vTemp2.val[1]), 1);
uint32_t CR = 0;
if (r == 0xFFFFFFFFU)
{
// All elements are greater or equal
CR = XM_CRMASK_CR6TRUE;
}
else if (!r)
{
// All elements are not greater or equal
CR = XM_CRMASK_CR6FALSE;
}
*pCR = CR;
return vreinterpretq_f32_u32(vResult);
#elif defined(_XM_SSE_INTRINSICS_)
XMVECTOR vTemp = _mm_cmpge_ps(V1, V2);
uint32_t CR = 0;
int iTest = _mm_movemask_ps(vTemp);
if (iTest == 0xf)
{
CR = XM_CRMASK_CR6TRUE;
}
else if (!iTest)
{
// All elements are not greater
CR = XM_CRMASK_CR6FALSE;
}
*pCR = CR;
return vTemp;
#endif
}
//------------------------------------------------------------------------------
inline XMVECTOR XM_CALLCONV XMVectorLess
(
FXMVECTOR V1,
FXMVECTOR V2
) noexcept
{
#if defined(_XM_NO_INTRINSICS_)
XMVECTORU32 Control = { { {
(V1.vector4_f32[0] < V2.vector4_f32[0]) ? 0xFFFFFFFF : 0,
(V1.vector4_f32[1] < V2.vector4_f32[1]) ? 0xFFFFFFFF : 0,
(V1.vector4_f32[2] < V2.vector4_f32[2]) ? 0xFFFFFFFF : 0,
(V1.vector4_f32[3] < V2.vector4_f32[3]) ? 0xFFFFFFFF : 0
} } };
return Control.v;
#elif defined(_XM_ARM_NEON_INTRINSICS_)
return vreinterpretq_f32_u32(vcltq_f32(V1, V2));
#elif defined(_XM_SSE_INTRINSICS_)
return _mm_cmplt_ps(V1, V2);
#endif
}
//------------------------------------------------------------------------------
inline XMVECTOR XM_CALLCONV XMVectorLessOrEqual
(
FXMVECTOR V1,
FXMVECTOR V2
) noexcept
{
#if defined(_XM_NO_INTRINSICS_)
XMVECTORU32 Control = { { {
(V1.vector4_f32[0] <= V2.vector4_f32[0]) ? 0xFFFFFFFF : 0,
(V1.vector4_f32[1] <= V2.vector4_f32[1]) ? 0xFFFFFFFF : 0,
(V1.vector4_f32[2] <= V2.vector4_f32[2]) ? 0xFFFFFFFF : 0,
(V1.vector4_f32[3] <= V2.vector4_f32[3]) ? 0xFFFFFFFF : 0
} } };
return Control.v;
#elif defined(_XM_ARM_NEON_INTRINSICS_)
return vreinterpretq_f32_u32(vcleq_f32(V1, V2));
#elif defined(_XM_SSE_INTRINSICS_)
return _mm_cmple_ps(V1, V2);
#endif
}
//------------------------------------------------------------------------------
inline XMVECTOR XM_CALLCONV XMVectorInBounds
(
FXMVECTOR V,
FXMVECTOR Bounds
) noexcept
{
#if defined(_XM_NO_INTRINSICS_)
XMVECTORU32 Control = { { {
(V.vector4_f32[0] <= Bounds.vector4_f32[0] && V.vector4_f32[0] >= -Bounds.vector4_f32[0]) ? 0xFFFFFFFF : 0,
(V.vector4_f32[1] <= Bounds.vector4_f32[1] && V.vector4_f32[1] >= -Bounds.vector4_f32[1]) ? 0xFFFFFFFF : 0,
(V.vector4_f32[2] <= Bounds.vector4_f32[2] && V.vector4_f32[2] >= -Bounds.vector4_f32[2]) ? 0xFFFFFFFF : 0,
(V.vector4_f32[3] <= Bounds.vector4_f32[3] && V.vector4_f32[3] >= -Bounds.vector4_f32[3]) ? 0xFFFFFFFF : 0
} } };
return Control.v;
#elif defined(_XM_ARM_NEON_INTRINSICS_)
// Test if less than or equal
uint32x4_t vTemp1 = vcleq_f32(V, Bounds);
// Negate the bounds
uint32x4_t vTemp2 = vreinterpretq_u32_f32(vnegq_f32(Bounds));
// Test if greater or equal (Reversed)
vTemp2 = vcleq_f32(vreinterpretq_f32_u32(vTemp2), V);
// Blend answers
vTemp1 = vandq_u32(vTemp1, vTemp2);
return vreinterpretq_f32_u32(vTemp1);
#elif defined(_XM_SSE_INTRINSICS_)
// Test if less than or equal
XMVECTOR vTemp1 = _mm_cmple_ps(V, Bounds);
// Negate the bounds
XMVECTOR vTemp2 = _mm_mul_ps(Bounds, g_XMNegativeOne);
// Test if greater or equal (Reversed)
vTemp2 = _mm_cmple_ps(vTemp2, V);
// Blend answers
vTemp1 = _mm_and_ps(vTemp1, vTemp2);
return vTemp1;
#endif
}
//------------------------------------------------------------------------------
_Use_decl_annotations_
inline XMVECTOR XM_CALLCONV XMVectorInBoundsR
(
uint32_t* pCR,
FXMVECTOR V,
FXMVECTOR Bounds
) noexcept
{
assert(pCR != nullptr);
#if defined(_XM_NO_INTRINSICS_)
uint32_t ux = (V.vector4_f32[0] <= Bounds.vector4_f32[0] && V.vector4_f32[0] >= -Bounds.vector4_f32[0]) ? 0xFFFFFFFFU : 0;
uint32_t uy = (V.vector4_f32[1] <= Bounds.vector4_f32[1] && V.vector4_f32[1] >= -Bounds.vector4_f32[1]) ? 0xFFFFFFFFU : 0;
uint32_t uz = (V.vector4_f32[2] <= Bounds.vector4_f32[2] && V.vector4_f32[2] >= -Bounds.vector4_f32[2]) ? 0xFFFFFFFFU : 0;
uint32_t uw = (V.vector4_f32[3] <= Bounds.vector4_f32[3] && V.vector4_f32[3] >= -Bounds.vector4_f32[3]) ? 0xFFFFFFFFU : 0;
uint32_t CR = 0;
if (ux & uy & uz & uw)
{
// All elements are in bounds
CR = XM_CRMASK_CR6BOUNDS;
}
*pCR = CR;
XMVECTORU32 Control = { { { ux, uy, uz, uw } } };
return Control.v;
#elif defined(_XM_ARM_NEON_INTRINSICS_)
// Test if less than or equal
uint32x4_t vTemp1 = vcleq_f32(V, Bounds);
// Negate the bounds
uint32x4_t vTemp2 = vreinterpretq_u32_f32(vnegq_f32(Bounds));
// Test if greater or equal (Reversed)
vTemp2 = vcleq_f32(vreinterpretq_f32_u32(vTemp2), V);
// Blend answers
vTemp1 = vandq_u32(vTemp1, vTemp2);
uint8x8x2_t vTemp = vzip_u8(vget_low_u8(vreinterpretq_u8_u32(vTemp1)), vget_high_u8(vreinterpretq_u8_u32(vTemp1)));
uint16x4x2_t vTemp3 = vzip_u16(vreinterpret_u16_u8(vTemp.val[0]), vreinterpret_u16_u8(vTemp.val[1]));
uint32_t r = vget_lane_u32(vreinterpret_u32_u16(vTemp3.val[1]), 1);
uint32_t CR = 0;
if (r == 0xFFFFFFFFU)
{
// All elements are in bounds
CR = XM_CRMASK_CR6BOUNDS;
}
*pCR = CR;
return vreinterpretq_f32_u32(vTemp1);
#elif defined(_XM_SSE_INTRINSICS_)
// Test if less than or equal
XMVECTOR vTemp1 = _mm_cmple_ps(V, Bounds);
// Negate the bounds
XMVECTOR vTemp2 = _mm_mul_ps(Bounds, g_XMNegativeOne);
// Test if greater or equal (Reversed)
vTemp2 = _mm_cmple_ps(vTemp2, V);
// Blend answers
vTemp1 = _mm_and_ps(vTemp1, vTemp2);
uint32_t CR = 0;
if (_mm_movemask_ps(vTemp1) == 0xf)
{
// All elements are in bounds
CR = XM_CRMASK_CR6BOUNDS;
}
*pCR = CR;
return vTemp1;
#endif
}
//------------------------------------------------------------------------------
#if !defined(_XM_NO_INTRINSICS_) && defined(_MSC_VER) && !defined(__clang__) && !defined(__INTEL_COMPILER)
#pragma float_control(push)
#pragma float_control(precise, on)
#endif
inline XMVECTOR XM_CALLCONV XMVectorIsNaN(FXMVECTOR V) noexcept
{
#if defined(_XM_NO_INTRINSICS_)
XMVECTORU32 Control = { { {
XMISNAN(V.vector4_f32[0]) ? 0xFFFFFFFFU : 0,
XMISNAN(V.vector4_f32[1]) ? 0xFFFFFFFFU : 0,
XMISNAN(V.vector4_f32[2]) ? 0xFFFFFFFFU : 0,
XMISNAN(V.vector4_f32[3]) ? 0xFFFFFFFFU : 0
} } };
return Control.v;
#elif defined(_XM_ARM_NEON_INTRINSICS_)
// Test against itself. NaN is always not equal
uint32x4_t vTempNan = vceqq_f32(V, V);
// Flip results
return vreinterpretq_f32_u32(vmvnq_u32(vTempNan));
#elif defined(_XM_SSE_INTRINSICS_)
// Test against itself. NaN is always not equal
return _mm_cmpneq_ps(V, V);
#endif
}
#if !defined(_XM_NO_INTRINSICS_) && defined(_MSC_VER) && !defined(__clang__) && !defined(__INTEL_COMPILER)
#pragma float_control(pop)
#endif
//------------------------------------------------------------------------------
inline XMVECTOR XM_CALLCONV XMVectorIsInfinite(FXMVECTOR V) noexcept
{
#if defined(_XM_NO_INTRINSICS_)
XMVECTORU32 Control = { { {
XMISINF(V.vector4_f32[0]) ? 0xFFFFFFFFU : 0,
XMISINF(V.vector4_f32[1]) ? 0xFFFFFFFFU : 0,
XMISINF(V.vector4_f32[2]) ? 0xFFFFFFFFU : 0,
XMISINF(V.vector4_f32[3]) ? 0xFFFFFFFFU : 0
} } };
return Control.v;
#elif defined(_XM_ARM_NEON_INTRINSICS_)
// Mask off the sign bit
uint32x4_t vTemp = vandq_u32(vreinterpretq_u32_f32(V), g_XMAbsMask);
// Compare to infinity
vTemp = vceqq_f32(vreinterpretq_f32_u32(vTemp), g_XMInfinity);
// If any are infinity, the signs are true.
return vreinterpretq_f32_u32(vTemp);
#elif defined(_XM_SSE_INTRINSICS_)
// Mask off the sign bit
__m128 vTemp = _mm_and_ps(V, g_XMAbsMask);
// Compare to infinity
vTemp = _mm_cmpeq_ps(vTemp, g_XMInfinity);
// If any are infinity, the signs are true.
return vTemp;
#endif
}
//------------------------------------------------------------------------------
// Rounding and clamping operations
//------------------------------------------------------------------------------
//------------------------------------------------------------------------------
inline XMVECTOR XM_CALLCONV XMVectorMin
(
FXMVECTOR V1,
FXMVECTOR V2
) noexcept
{
#if defined(_XM_NO_INTRINSICS_)
XMVECTORF32 Result = { { {
(V1.vector4_f32[0] < V2.vector4_f32[0]) ? V1.vector4_f32[0] : V2.vector4_f32[0],
(V1.vector4_f32[1] < V2.vector4_f32[1]) ? V1.vector4_f32[1] : V2.vector4_f32[1],
(V1.vector4_f32[2] < V2.vector4_f32[2]) ? V1.vector4_f32[2] : V2.vector4_f32[2],
(V1.vector4_f32[3] < V2.vector4_f32[3]) ? V1.vector4_f32[3] : V2.vector4_f32[3]
} } };
return Result.v;
#elif defined(_XM_ARM_NEON_INTRINSICS_)
return vminq_f32(V1, V2);
#elif defined(_XM_SSE_INTRINSICS_)
return _mm_min_ps(V1, V2);
#endif
}
//------------------------------------------------------------------------------
inline XMVECTOR XM_CALLCONV XMVectorMax
(
FXMVECTOR V1,
FXMVECTOR V2
) noexcept
{
#if defined(_XM_NO_INTRINSICS_)
XMVECTORF32 Result = { { {
(V1.vector4_f32[0] > V2.vector4_f32[0]) ? V1.vector4_f32[0] : V2.vector4_f32[0],
(V1.vector4_f32[1] > V2.vector4_f32[1]) ? V1.vector4_f32[1] : V2.vector4_f32[1],
(V1.vector4_f32[2] > V2.vector4_f32[2]) ? V1.vector4_f32[2] : V2.vector4_f32[2],
(V1.vector4_f32[3] > V2.vector4_f32[3]) ? V1.vector4_f32[3] : V2.vector4_f32[3]
} } };
return Result.v;
#elif defined(_XM_ARM_NEON_INTRINSICS_)
return vmaxq_f32(V1, V2);
#elif defined(_XM_SSE_INTRINSICS_)
return _mm_max_ps(V1, V2);
#endif
}
//------------------------------------------------------------------------------
namespace Internal
{
// Round to nearest (even) a.k.a. banker's rounding
inline float round_to_nearest(float x) noexcept
{
float i = floorf(x);
x -= i;
if (x < 0.5f)
return i;
if (x > 0.5f)
return i + 1.f;
float int_part;
(void)modff(i / 2.f, &int_part);
if ((2.f * int_part) == i)
{
return i;
}
return i + 1.f;
}
}
#if !defined(_XM_NO_INTRINSICS_) && defined(_MSC_VER) && !defined(__clang__) && !defined(__INTEL_COMPILER)
#pragma float_control(push)
#pragma float_control(precise, on)
#endif
inline XMVECTOR XM_CALLCONV XMVectorRound(FXMVECTOR V) noexcept
{
#if defined(_XM_NO_INTRINSICS_)
XMVECTORF32 Result = { { {
Internal::round_to_nearest(V.vector4_f32[0]),
Internal::round_to_nearest(V.vector4_f32[1]),
Internal::round_to_nearest(V.vector4_f32[2]),
Internal::round_to_nearest(V.vector4_f32[3])
} } };
return Result.v;
#elif defined(_XM_ARM_NEON_INTRINSICS_)
#if defined(_M_ARM64) || defined(_M_HYBRID_X86_ARM64) || __aarch64__
return vrndnq_f32(V);
#else
uint32x4_t sign = vandq_u32(vreinterpretq_u32_f32(V), g_XMNegativeZero);
float32x4_t sMagic = vreinterpretq_f32_u32(vorrq_u32(g_XMNoFraction, sign));
float32x4_t R1 = vaddq_f32(V, sMagic);
R1 = vsubq_f32(R1, sMagic);
float32x4_t R2 = vabsq_f32(V);
uint32x4_t mask = vcleq_f32(R2, g_XMNoFraction);
return vbslq_f32(mask, R1, V);
#endif
#elif defined(_XM_SSE4_INTRINSICS_)
return _mm_round_ps(V, _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC);
#elif defined(_XM_SSE_INTRINSICS_)
__m128 sign = _mm_and_ps(V, g_XMNegativeZero);
__m128 sMagic = _mm_or_ps(g_XMNoFraction, sign);
__m128 R1 = _mm_add_ps(V, sMagic);
R1 = _mm_sub_ps(R1, sMagic);
__m128 R2 = _mm_and_ps(V, g_XMAbsMask);
__m128 mask = _mm_cmple_ps(R2, g_XMNoFraction);
R2 = _mm_andnot_ps(mask, V);
R1 = _mm_and_ps(R1, mask);
XMVECTOR vResult = _mm_xor_ps(R1, R2);
return vResult;
#endif
}
#if !defined(_XM_NO_INTRINSICS_) && defined(_MSC_VER) && !defined(__clang__) && !defined(__INTEL_COMPILER)
#pragma float_control(pop)
#endif
//------------------------------------------------------------------------------
inline XMVECTOR XM_CALLCONV XMVectorTruncate(FXMVECTOR V) noexcept
{
#if defined(_XM_NO_INTRINSICS_)
XMVECTOR Result;
uint32_t i;
// Avoid C4701
Result.vector4_f32[0] = 0.0f;
for (i = 0; i < 4; i++)
{
if (XMISNAN(V.vector4_f32[i]))
{
Result.vector4_u32[i] = 0x7FC00000;
}
else if (fabsf(V.vector4_f32[i]) < 8388608.0f)
{
Result.vector4_f32[i] = static_cast<float>(static_cast<int32_t>(V.vector4_f32[i]));
}
else
{
Result.vector4_f32[i] = V.vector4_f32[i];
}
}
return Result;
#elif defined(_XM_ARM_NEON_INTRINSICS_)
#if defined(_M_ARM64) || defined(_M_HYBRID_X86_ARM64) || __aarch64__
return vrndq_f32(V);
#else
float32x4_t vTest = vabsq_f32(V);
vTest = vreinterpretq_f32_u32(vcltq_f32(vTest, g_XMNoFraction));
int32x4_t vInt = vcvtq_s32_f32(V);
float32x4_t vResult = vcvtq_f32_s32(vInt);
// All numbers less than 8388608 will use the round to int
// All others, use the ORIGINAL value
return vbslq_f32(vreinterpretq_u32_f32(vTest), vResult, V);
#endif
#elif defined(_XM_SSE4_INTRINSICS_)
return _mm_round_ps(V, _MM_FROUND_TO_ZERO | _MM_FROUND_NO_EXC);
#elif defined(_XM_SSE_INTRINSICS_)
// To handle NAN, INF and numbers greater than 8388608, use masking
// Get the abs value
__m128i vTest = _mm_and_si128(_mm_castps_si128(V), g_XMAbsMask);
// Test for greater than 8388608 (All floats with NO fractionals, NAN and INF
vTest = _mm_cmplt_epi32(vTest, g_XMNoFraction);
// Convert to int and back to float for rounding with truncation
__m128i vInt = _mm_cvttps_epi32(V);
// Convert back to floats
XMVECTOR vResult = _mm_cvtepi32_ps(vInt);
// All numbers less than 8388608 will use the round to int
vResult = _mm_and_ps(vResult, _mm_castsi128_ps(vTest));
// All others, use the ORIGINAL value
vTest = _mm_andnot_si128(vTest, _mm_castps_si128(V));
vResult = _mm_or_ps(vResult, _mm_castsi128_ps(vTest));
return vResult;
#endif
}
//------------------------------------------------------------------------------
inline XMVECTOR XM_CALLCONV XMVectorFloor(FXMVECTOR V) noexcept
{
#if defined(_XM_NO_INTRINSICS_)
XMVECTORF32 Result = { { {
floorf(V.vector4_f32[0]),
floorf(V.vector4_f32[1]),
floorf(V.vector4_f32[2]),
floorf(V.vector4_f32[3])
} } };
return Result.v;
#elif defined(_XM_ARM_NEON_INTRINSICS_)
#if defined(_M_ARM64) || defined(_M_HYBRID_X86_ARM64) || __aarch64__
return vrndmq_f32(V);
#else
float32x4_t vTest = vabsq_f32(V);
vTest = vreinterpretq_f32_u32(vcltq_f32(vTest, g_XMNoFraction));
// Truncate
int32x4_t vInt = vcvtq_s32_f32(V);
float32x4_t vResult = vcvtq_f32_s32(vInt);
uint32x4_t vLargerMask = vcgtq_f32(vResult, V);
// 0 -> 0, 0xffffffff -> -1.0f
float32x4_t vLarger = vcvtq_f32_s32(vreinterpretq_s32_u32(vLargerMask));
vResult = vaddq_f32(vResult, vLarger);
// All numbers less than 8388608 will use the round to int
// All others, use the ORIGINAL value
return vbslq_f32(vreinterpretq_u32_f32(vTest), vResult, V);
#endif
#elif defined(_XM_SSE4_INTRINSICS_)
return _mm_floor_ps(V);
#elif defined(_XM_SSE_INTRINSICS_)
// To handle NAN, INF and numbers greater than 8388608, use masking
__m128i vTest = _mm_and_si128(_mm_castps_si128(V), g_XMAbsMask);
vTest = _mm_cmplt_epi32(vTest, g_XMNoFraction);
// Truncate
__m128i vInt = _mm_cvttps_epi32(V);
XMVECTOR vResult = _mm_cvtepi32_ps(vInt);
__m128 vLarger = _mm_cmpgt_ps(vResult, V);
// 0 -> 0, 0xffffffff -> -1.0f
vLarger = _mm_cvtepi32_ps(_mm_castps_si128(vLarger));
vResult = _mm_add_ps(vResult, vLarger);
// All numbers less than 8388608 will use the round to int
vResult = _mm_and_ps(vResult, _mm_castsi128_ps(vTest));
// All others, use the ORIGINAL value
vTest = _mm_andnot_si128(vTest, _mm_castps_si128(V));
vResult = _mm_or_ps(vResult, _mm_castsi128_ps(vTest));
return vResult;
#endif
}
//------------------------------------------------------------------------------
inline XMVECTOR XM_CALLCONV XMVectorCeiling(FXMVECTOR V) noexcept
{
#if defined(_XM_NO_INTRINSICS_)
XMVECTORF32 Result = { { {
ceilf(V.vector4_f32[0]),
ceilf(V.vector4_f32[1]),
ceilf(V.vector4_f32[2]),
ceilf(V.vector4_f32[3])
} } };
return Result.v;
#elif defined(_XM_ARM_NEON_INTRINSICS_)
#if defined(_M_ARM64) || defined(_M_HYBRID_X86_ARM64) || __aarch64__
return vrndpq_f32(V);
#else
float32x4_t vTest = vabsq_f32(V);
vTest = vreinterpretq_f32_u32(vcltq_f32(vTest, g_XMNoFraction));
// Truncate
int32x4_t vInt = vcvtq_s32_f32(V);
float32x4_t vResult = vcvtq_f32_s32(vInt);
uint32x4_t vSmallerMask = vcltq_f32(vResult, V);
// 0 -> 0, 0xffffffff -> -1.0f
float32x4_t vSmaller = vcvtq_f32_s32(vreinterpretq_s32_u32(vSmallerMask));
vResult = vsubq_f32(vResult, vSmaller);
// All numbers less than 8388608 will use the round to int
// All others, use the ORIGINAL value
return vbslq_f32(vreinterpretq_u32_f32(vTest), vResult, V);
#endif
#elif defined(_XM_SSE4_INTRINSICS_)
return _mm_ceil_ps(V);
#elif defined(_XM_SSE_INTRINSICS_)
// To handle NAN, INF and numbers greater than 8388608, use masking
__m128i vTest = _mm_and_si128(_mm_castps_si128(V), g_XMAbsMask);
vTest = _mm_cmplt_epi32(vTest, g_XMNoFraction);
// Truncate
__m128i vInt = _mm_cvttps_epi32(V);
XMVECTOR vResult = _mm_cvtepi32_ps(vInt);
__m128 vSmaller = _mm_cmplt_ps(vResult, V);
// 0 -> 0, 0xffffffff -> -1.0f
vSmaller = _mm_cvtepi32_ps(_mm_castps_si128(vSmaller));
vResult = _mm_sub_ps(vResult, vSmaller);
// All numbers less than 8388608 will use the round to int
vResult = _mm_and_ps(vResult, _mm_castsi128_ps(vTest));
// All others, use the ORIGINAL value
vTest = _mm_andnot_si128(vTest, _mm_castps_si128(V));
vResult = _mm_or_ps(vResult, _mm_castsi128_ps(vTest));
return vResult;
#endif
}
//------------------------------------------------------------------------------
inline XMVECTOR XM_CALLCONV XMVectorClamp
(
FXMVECTOR V,
FXMVECTOR Min,
FXMVECTOR Max
) noexcept
{
assert(XMVector4LessOrEqual(Min, Max));
#if defined(_XM_NO_INTRINSICS_)
XMVECTOR Result;
Result = XMVectorMax(Min, V);
Result = XMVectorMin(Max, Result);
return Result;
#elif defined(_XM_ARM_NEON_INTRINSICS_)
float32x4_t vResult = vmaxq_f32(Min, V);
vResult = vminq_f32(Max, vResult);
return vResult;
#elif defined(_XM_SSE_INTRINSICS_)
XMVECTOR vResult;
vResult = _mm_max_ps(Min, V);
vResult = _mm_min_ps(Max, vResult);
return vResult;
#endif
}
//------------------------------------------------------------------------------
inline XMVECTOR XM_CALLCONV XMVectorSaturate(FXMVECTOR V) noexcept
{
#if defined(_XM_NO_INTRINSICS_)
const XMVECTOR Zero = XMVectorZero();
return XMVectorClamp(V, Zero, g_XMOne.v);
#elif defined(_XM_ARM_NEON_INTRINSICS_)
// Set <0 to 0
float32x4_t vResult = vmaxq_f32(V, vdupq_n_f32(0));
// Set>1 to 1
return vminq_f32(vResult, vdupq_n_f32(1.0f));
#elif defined(_XM_SSE_INTRINSICS_)
// Set <0 to 0
XMVECTOR vResult = _mm_max_ps(V, g_XMZero);
// Set>1 to 1
return _mm_min_ps(vResult, g_XMOne);
#endif
}
//------------------------------------------------------------------------------
// Bitwise logical operations
//------------------------------------------------------------------------------
inline XMVECTOR XM_CALLCONV XMVectorAndInt
(
FXMVECTOR V1,
FXMVECTOR V2
) noexcept
{
#if defined(_XM_NO_INTRINSICS_)
XMVECTORU32 Result = { { {
V1.vector4_u32[0] & V2.vector4_u32[0],
V1.vector4_u32[1] & V2.vector4_u32[1],
V1.vector4_u32[2] & V2.vector4_u32[2],
V1.vector4_u32[3] & V2.vector4_u32[3]
} } };
return Result;
#elif defined(_XM_ARM_NEON_INTRINSICS_)
return vreinterpretq_f32_u32(vandq_u32(vreinterpretq_u32_f32(V1), vreinterpretq_u32_f32(V2)));
#elif defined(_XM_SSE_INTRINSICS_)
return _mm_and_ps(V1, V2);
#endif
}
//------------------------------------------------------------------------------
inline XMVECTOR XM_CALLCONV XMVectorAndCInt
(
FXMVECTOR V1,
FXMVECTOR V2
) noexcept
{
#if defined(_XM_NO_INTRINSICS_)
XMVECTORU32 Result = { { {
V1.vector4_u32[0] & ~V2.vector4_u32[0],
V1.vector4_u32[1] & ~V2.vector4_u32[1],
V1.vector4_u32[2] & ~V2.vector4_u32[2],
V1.vector4_u32[3] & ~V2.vector4_u32[3]
} } };
return Result.v;
#elif defined(_XM_ARM_NEON_INTRINSICS_)
return vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(V1), vreinterpretq_u32_f32(V2)));
#elif defined(_XM_SSE_INTRINSICS_)
__m128i V = _mm_andnot_si128(_mm_castps_si128(V2), _mm_castps_si128(V1));
return _mm_castsi128_ps(V);
#endif
}
//------------------------------------------------------------------------------
inline XMVECTOR XM_CALLCONV XMVectorOrInt
(
FXMVECTOR V1,
FXMVECTOR V2
) noexcept
{
#if defined(_XM_NO_INTRINSICS_)
XMVECTORU32 Result = { { {
V1.vector4_u32[0] | V2.vector4_u32[0],
V1.vector4_u32[1] | V2.vector4_u32[1],
V1.vector4_u32[2] | V2.vector4_u32[2],
V1.vector4_u32[3] | V2.vector4_u32[3]
} } };
return Result.v;
#elif defined(_XM_ARM_NEON_INTRINSICS_)
return vreinterpretq_f32_u32(vorrq_u32(vreinterpretq_u32_f32(V1), vreinterpretq_u32_f32(V2)));
#elif defined(_XM_SSE_INTRINSICS_)
__m128i V = _mm_or_si128(_mm_castps_si128(V1), _mm_castps_si128(V2));
return _mm_castsi128_ps(V);
#endif
}
//------------------------------------------------------------------------------
inline XMVECTOR XM_CALLCONV XMVectorNorInt
(
FXMVECTOR V1,
FXMVECTOR V2
) noexcept
{
#if defined(_XM_NO_INTRINSICS_)
XMVECTORU32 Result = { { {
~(V1.vector4_u32[0] | V2.vector4_u32[0]),
~(V1.vector4_u32[1] | V2.vector4_u32[1]),
~(V1.vector4_u32[2] | V2.vector4_u32[2]),
~(V1.vector4_u32[3] | V2.vector4_u32[3])
} } };
return Result.v;
#elif defined(_XM_ARM_NEON_INTRINSICS_)
uint32x4_t Result = vorrq_u32(vreinterpretq_u32_f32(V1), vreinterpretq_u32_f32(V2));
return vreinterpretq_f32_u32(vbicq_u32(g_XMNegOneMask, Result));
#elif defined(_XM_SSE_INTRINSICS_)
__m128i Result;
Result = _mm_or_si128(_mm_castps_si128(V1), _mm_castps_si128(V2));
Result = _mm_andnot_si128(Result, g_XMNegOneMask);
return _mm_castsi128_ps(Result);
#endif
}
//------------------------------------------------------------------------------
inline XMVECTOR XM_CALLCONV XMVectorXorInt
(
FXMVECTOR V1,
FXMVECTOR V2
) noexcept
{
#if defined(_XM_NO_INTRINSICS_)
XMVECTORU32 Result = { { {
V1.vector4_u32[0] ^ V2.vector4_u32[0],
V1.vector4_u32[1] ^ V2.vector4_u32[1],
V1.vector4_u32[2] ^ V2.vector4_u32[2],
V1.vector4_u32[3] ^ V2.vector4_u32[3]
} } };
return Result.v;
#elif defined(_XM_ARM_NEON_INTRINSICS_)
return vreinterpretq_f32_u32(veorq_u32(vreinterpretq_u32_f32(V1), vreinterpretq_u32_f32(V2)));
#elif defined(_XM_SSE_INTRINSICS_)
__m128i V = _mm_xor_si128(_mm_castps_si128(V1), _mm_castps_si128(V2));
return _mm_castsi128_ps(V);
#endif
}
//------------------------------------------------------------------------------
// Computation operations
//------------------------------------------------------------------------------
//------------------------------------------------------------------------------
inline XMVECTOR XM_CALLCONV XMVectorNegate(FXMVECTOR V) noexcept
{
#if defined(_XM_NO_INTRINSICS_)
XMVECTORF32 Result = { { {
-V.vector4_f32[0],
-V.vector4_f32[1],
-V.vector4_f32[2],
-V.vector4_f32[3]
} } };
return Result.v;
#elif defined(_XM_ARM_NEON_INTRINSICS_)
return vnegq_f32(V);
#elif defined(_XM_SSE_INTRINSICS_)
XMVECTOR Z;
Z = _mm_setzero_ps();
return _mm_sub_ps(Z, V);
#endif
}
//------------------------------------------------------------------------------
inline XMVECTOR XM_CALLCONV XMVectorAdd
(
FXMVECTOR V1,
FXMVECTOR V2
) noexcept
{
#if defined(_XM_NO_INTRINSICS_)
XMVECTORF32 Result = { { {
V1.vector4_f32[0] + V2.vector4_f32[0],
V1.vector4_f32[1] + V2.vector4_f32[1],
V1.vector4_f32[2] + V2.vector4_f32[2],
V1.vector4_f32[3] + V2.vector4_f32[3]
} } };
return Result.v;
#elif defined(_XM_ARM_NEON_INTRINSICS_)
return vaddq_f32(V1, V2);
#elif defined(_XM_SSE_INTRINSICS_)
return _mm_add_ps(V1, V2);
#endif
}
//------------------------------------------------------------------------------
inline XMVECTOR XM_CALLCONV XMVectorSum(FXMVECTOR V) noexcept
{
#if defined(_XM_NO_INTRINSICS_)
XMVECTORF32 Result;
Result.f[0] =
Result.f[1] =
Result.f[2] =
Result.f[3] = V.vector4_f32[0] + V.vector4_f32[1] + V.vector4_f32[2] + V.vector4_f32[3];
return Result.v;
#elif defined(_XM_ARM_NEON_INTRINSICS_)
#if defined(_M_ARM64) || defined(_M_HYBRID_X86_ARM64) || __aarch64__
float32x4_t vTemp = vpaddq_f32(V, V);
return vpaddq_f32(vTemp, vTemp);
#else
float32x2_t v1 = vget_low_f32(V);
float32x2_t v2 = vget_high_f32(V);
v1 = vadd_f32(v1, v2);
v1 = vpadd_f32(v1, v1);
return vcombine_f32(v1, v1);
#endif
#elif defined(_XM_SSE3_INTRINSICS_)
XMVECTOR vTemp = _mm_hadd_ps(V, V);
return _mm_hadd_ps(vTemp, vTemp);
#elif defined(_XM_SSE_INTRINSICS_)
XMVECTOR vTemp = XM_PERMUTE_PS(V, _MM_SHUFFLE(2, 3, 0, 1));
XMVECTOR vTemp2 = _mm_add_ps(V, vTemp);
vTemp = XM_PERMUTE_PS(vTemp2, _MM_SHUFFLE(1, 0, 3, 2));
return _mm_add_ps(vTemp, vTemp2);
#endif
}
//------------------------------------------------------------------------------
inline XMVECTOR XM_CALLCONV XMVectorAddAngles
(
FXMVECTOR V1,
FXMVECTOR V2
) noexcept
{
#if defined(_XM_NO_INTRINSICS_)
const XMVECTOR Zero = XMVectorZero();
// Add the given angles together. If the range of V1 is such
// that -Pi <= V1 < Pi and the range of V2 is such that
// -2Pi <= V2 <= 2Pi, then the range of the resulting angle
// will be -Pi <= Result < Pi.
XMVECTOR Result = XMVectorAdd(V1, V2);
XMVECTOR Mask = XMVectorLess(Result, g_XMNegativePi.v);
XMVECTOR Offset = XMVectorSelect(Zero, g_XMTwoPi.v, Mask);
Mask = XMVectorGreaterOrEqual(Result, g_XMPi.v);
Offset = XMVectorSelect(Offset, g_XMNegativeTwoPi.v, Mask);
Result = XMVectorAdd(Result, Offset);
return Result;
#elif defined(_XM_ARM_NEON_INTRINSICS_)
// Adjust the angles
float32x4_t vResult = vaddq_f32(V1, V2);
// Less than Pi?
uint32x4_t vOffset = vcltq_f32(vResult, g_XMNegativePi);
vOffset = vandq_u32(vOffset, g_XMTwoPi);
// Add 2Pi to all entries less than -Pi
vResult = vaddq_f32(vResult, vreinterpretq_f32_u32(vOffset));
// Greater than or equal to Pi?
vOffset = vcgeq_f32(vResult, g_XMPi);
vOffset = vandq_u32(vOffset, g_XMTwoPi);
// Sub 2Pi to all entries greater than Pi
vResult = vsubq_f32(vResult, vreinterpretq_f32_u32(vOffset));
return vResult;
#elif defined(_XM_SSE_INTRINSICS_)
// Adjust the angles
XMVECTOR vResult = _mm_add_ps(V1, V2);
// Less than Pi?
XMVECTOR vOffset = _mm_cmplt_ps(vResult, g_XMNegativePi);
vOffset = _mm_and_ps(vOffset, g_XMTwoPi);
// Add 2Pi to all entries less than -Pi
vResult = _mm_add_ps(vResult, vOffset);
// Greater than or equal to Pi?
vOffset = _mm_cmpge_ps(vResult, g_XMPi);
vOffset = _mm_and_ps(vOffset, g_XMTwoPi);
// Sub 2Pi to all entries greater than Pi
vResult = _mm_sub_ps(vResult, vOffset);
return vResult;
#endif
}
//------------------------------------------------------------------------------
inline XMVECTOR XM_CALLCONV XMVectorSubtract
(
FXMVECTOR V1,
FXMVECTOR V2
) noexcept
{
#if defined(_XM_NO_INTRINSICS_)
XMVECTORF32 Result = { { {
V1.vector4_f32[0] - V2.vector4_f32[0],
V1.vector4_f32[1] - V2.vector4_f32[1],
V1.vector4_f32[2] - V2.vector4_f32[2],
V1.vector4_f32[3] - V2.vector4_f32[3]
} } };
return Result.v;
#elif defined(_XM_ARM_NEON_INTRINSICS_)
return vsubq_f32(V1, V2);
#elif defined(_XM_SSE_INTRINSICS_)
return _mm_sub_ps(V1, V2);
#endif
}
//------------------------------------------------------------------------------
inline XMVECTOR XM_CALLCONV XMVectorSubtractAngles
(
FXMVECTOR V1,
FXMVECTOR V2
) noexcept
{
#if defined(_XM_NO_INTRINSICS_)
const XMVECTOR Zero = XMVectorZero();
// Subtract the given angles. If the range of V1 is such
// that -Pi <= V1 < Pi and the range of V2 is such that
// -2Pi <= V2 <= 2Pi, then the range of the resulting angle
// will be -Pi <= Result < Pi.
XMVECTOR Result = XMVectorSubtract(V1, V2);
XMVECTOR Mask = XMVectorLess(Result, g_XMNegativePi.v);
XMVECTOR Offset = XMVectorSelect(Zero, g_XMTwoPi.v, Mask);
Mask = XMVectorGreaterOrEqual(Result, g_XMPi.v);
Offset = XMVectorSelect(Offset, g_XMNegativeTwoPi.v, Mask);
Result = XMVectorAdd(Result, Offset);
return Result;
#elif defined(_XM_ARM_NEON_INTRINSICS_)
// Adjust the angles
XMVECTOR vResult = vsubq_f32(V1, V2);
// Less than Pi?
uint32x4_t vOffset = vcltq_f32(vResult, g_XMNegativePi);
vOffset = vandq_u32(vOffset, g_XMTwoPi);
// Add 2Pi to all entries less than -Pi
vResult = vaddq_f32(vResult, vreinterpretq_f32_u32(vOffset));
// Greater than or equal to Pi?
vOffset = vcgeq_f32(vResult, g_XMPi);
vOffset = vandq_u32(vOffset, g_XMTwoPi);
// Sub 2Pi to all entries greater than Pi
vResult = vsubq_f32(vResult, vreinterpretq_f32_u32(vOffset));
return vResult;
#elif defined(_XM_SSE_INTRINSICS_)
// Adjust the angles
XMVECTOR vResult = _mm_sub_ps(V1, V2);
// Less than Pi?
XMVECTOR vOffset = _mm_cmplt_ps(vResult, g_XMNegativePi);
vOffset = _mm_and_ps(vOffset, g_XMTwoPi);
// Add 2Pi to all entries less than -Pi
vResult = _mm_add_ps(vResult, vOffset);
// Greater than or equal to Pi?
vOffset = _mm_cmpge_ps(vResult, g_XMPi);
vOffset = _mm_and_ps(vOffset, g_XMTwoPi);
// Sub 2Pi to all entries greater than Pi
vResult = _mm_sub_ps(vResult, vOffset);
return vResult;
#endif
}
//------------------------------------------------------------------------------
inline XMVECTOR XM_CALLCONV XMVectorMultiply
(
FXMVECTOR V1,
FXMVECTOR V2
) noexcept
{
#if defined(_XM_NO_INTRINSICS_)
XMVECTORF32 Result = { { {
V1.vector4_f32[0] * V2.vector4_f32[0],
V1.vector4_f32[1] * V2.vector4_f32[1],
V1.vector4_f32[2] * V2.vector4_f32[2],
V1.vector4_f32[3] * V2.vector4_f32[3]
} } };
return Result.v;
#elif defined(_XM_ARM_NEON_INTRINSICS_)
return vmulq_f32(V1, V2);
#elif defined(_XM_SSE_INTRINSICS_)
return _mm_mul_ps(V1, V2);
#endif
}
//------------------------------------------------------------------------------
inline XMVECTOR XM_CALLCONV XMVectorMultiplyAdd
(
FXMVECTOR V1,
FXMVECTOR V2,
FXMVECTOR V3
) noexcept
{
#if defined(_XM_NO_INTRINSICS_)
XMVECTORF32 Result = { { {
V1.vector4_f32[0] * V2.vector4_f32[0] + V3.vector4_f32[0],
V1.vector4_f32[1] * V2.vector4_f32[1] + V3.vector4_f32[1],
V1.vector4_f32[2] * V2.vector4_f32[2] + V3.vector4_f32[2],
V1.vector4_f32[3] * V2.vector4_f32[3] + V3.vector4_f32[3]
} } };
return Result.v;
#elif defined(_XM_ARM_NEON_INTRINSICS_)
#if defined(_M_ARM64) || defined(_M_HYBRID_X86_ARM64) || __aarch64__
return vfmaq_f32(V3, V1, V2);
#else
return vmlaq_f32(V3, V1, V2);
#endif
#elif defined(_XM_SSE_INTRINSICS_)
return XM_FMADD_PS(V1, V2, V3);
#endif
}
//------------------------------------------------------------------------------
inline XMVECTOR XM_CALLCONV XMVectorDivide
(
FXMVECTOR V1,
FXMVECTOR V2
) noexcept
{
#if defined(_XM_NO_INTRINSICS_)
XMVECTORF32 Result = { { {
V1.vector4_f32[0] / V2.vector4_f32[0],
V1.vector4_f32[1] / V2.vector4_f32[1],
V1.vector4_f32[2] / V2.vector4_f32[2],
V1.vector4_f32[3] / V2.vector4_f32[3]
} } };
return Result.v;
#elif defined(_XM_ARM_NEON_INTRINSICS_)
#if defined(_M_ARM64) || defined(_M_HYBRID_X86_ARM64) || __aarch64__
return vdivq_f32(V1, V2);
#else
// 2 iterations of Newton-Raphson refinement of reciprocal
float32x4_t Reciprocal = vrecpeq_f32(V2);
float32x4_t S = vrecpsq_f32(Reciprocal, V2);
Reciprocal = vmulq_f32(S, Reciprocal);
S = vrecpsq_f32(Reciprocal, V2);
Reciprocal = vmulq_f32(S, Reciprocal);
return vmulq_f32(V1, Reciprocal);
#endif
#elif defined(_XM_SSE_INTRINSICS_)
return _mm_div_ps(V1, V2);
#endif
}
//------------------------------------------------------------------------------
inline XMVECTOR XM_CALLCONV XMVectorNegativeMultiplySubtract
(
FXMVECTOR V1,
FXMVECTOR V2,
FXMVECTOR V3
) noexcept
{
#if defined(_XM_NO_INTRINSICS_)
XMVECTORF32 Result = { { {
V3.vector4_f32[0] - (V1.vector4_f32[0] * V2.vector4_f32[0]),
V3.vector4_f32[1] - (V1.vector4_f32[1] * V2.vector4_f32[1]),
V3.vector4_f32[2] - (V1.vector4_f32[2] * V2.vector4_f32[2]),
V3.vector4_f32[3] - (V1.vector4_f32[3] * V2.vector4_f32[3])
} } };
return Result;
#elif defined(_XM_ARM_NEON_INTRINSICS_)
#if defined(_M_ARM64) || defined(_M_HYBRID_X86_ARM64) || __aarch64__
return vfmsq_f32(V3, V1, V2);
#else
return vmlsq_f32(V3, V1, V2);
#endif
#elif defined(_XM_SSE_INTRINSICS_)
return XM_FNMADD_PS(V1, V2, V3);
#endif
}
//------------------------------------------------------------------------------
inline XMVECTOR XM_CALLCONV XMVectorScale
(
FXMVECTOR V,
float ScaleFactor
) noexcept
{
#if defined(_XM_NO_INTRINSICS_)
XMVECTORF32 Result = { { {
V.vector4_f32[0] * ScaleFactor,
V.vector4_f32[1] * ScaleFactor,
V.vector4_f32[2] * ScaleFactor,
V.vector4_f32[3] * ScaleFactor
} } };
return Result.v;
#elif defined(_XM_ARM_NEON_INTRINSICS_)
return vmulq_n_f32(V, ScaleFactor);
#elif defined(_XM_SSE_INTRINSICS_)
XMVECTOR vResult = _mm_set_ps1(ScaleFactor);
return _mm_mul_ps(vResult, V);
#endif
}
//------------------------------------------------------------------------------
inline XMVECTOR XM_CALLCONV XMVectorReciprocalEst(FXMVECTOR V) noexcept
{
#if defined(_XM_NO_INTRINSICS_)
XMVECTORF32 Result = { { {
1.f / V.vector4_f32[0],
1.f / V.vector4_f32[1],
1.f / V.vector4_f32[2],
1.f / V.vector4_f32[3]
} } };
return Result.v;
#elif defined(_XM_ARM_NEON_INTRINSICS_)
return vrecpeq_f32(V);
#elif defined(_XM_SSE_INTRINSICS_)
return _mm_rcp_ps(V);
#endif
}
//------------------------------------------------------------------------------
inline XMVECTOR XM_CALLCONV XMVectorReciprocal(FXMVECTOR V) noexcept
{
#if defined(_XM_NO_INTRINSICS_)
XMVECTORF32 Result = { { {
1.f / V.vector4_f32[0],
1.f / V.vector4_f32[1],
1.f / V.vector4_f32[2],
1.f / V.vector4_f32[3]
} } };
return Result.v;
#elif defined(_XM_ARM_NEON_INTRINSICS_)
#if defined(_M_ARM64) || defined(_M_HYBRID_X86_ARM64) || __aarch64__
float32x4_t one = vdupq_n_f32(1.0f);
return vdivq_f32(one, V);
#else
// 2 iterations of Newton-Raphson refinement
float32x4_t Reciprocal = vrecpeq_f32(V);
float32x4_t S = vrecpsq_f32(Reciprocal, V);
Reciprocal = vmulq_f32(S, Reciprocal);
S = vrecpsq_f32(Reciprocal, V);
return vmulq_f32(S, Reciprocal);
#endif
#elif defined(_XM_SSE_INTRINSICS_)
return _mm_div_ps(g_XMOne, V);
#endif
}
//------------------------------------------------------------------------------
// Return an estimated square root
inline XMVECTOR XM_CALLCONV XMVectorSqrtEst(FXMVECTOR V) noexcept
{
#if defined(_XM_NO_INTRINSICS_)
XMVECTORF32 Result = { { {
sqrtf(V.vector4_f32[0]),
sqrtf(V.vector4_f32[1]),
sqrtf(V.vector4_f32[2]),
sqrtf(V.vector4_f32[3])
} } };
return Result.v;
#elif defined(_XM_ARM_NEON_INTRINSICS_)
// 1 iteration of Newton-Raphson refinment of sqrt
float32x4_t S0 = vrsqrteq_f32(V);
float32x4_t P0 = vmulq_f32(V, S0);
float32x4_t R0 = vrsqrtsq_f32(P0, S0);
float32x4_t S1 = vmulq_f32(S0, R0);
XMVECTOR VEqualsInfinity = XMVectorEqualInt(V, g_XMInfinity.v);
XMVECTOR VEqualsZero = XMVectorEqual(V, vdupq_n_f32(0));
XMVECTOR Result = vmulq_f32(V, S1);
XMVECTOR Select = XMVectorEqualInt(VEqualsInfinity, VEqualsZero);
return XMVectorSelect(V, Result, Select);
#elif defined(_XM_SSE_INTRINSICS_)
return _mm_sqrt_ps(V);
#endif
}
//------------------------------------------------------------------------------
inline XMVECTOR XM_CALLCONV XMVectorSqrt(FXMVECTOR V) noexcept
{
#if defined(_XM_NO_INTRINSICS_)
XMVECTORF32 Result = { { {
sqrtf(V.vector4_f32[0]),
sqrtf(V.vector4_f32[1]),
sqrtf(V.vector4_f32[2]),
sqrtf(V.vector4_f32[3])
} } };
return Result.v;
#elif defined(_XM_ARM_NEON_INTRINSICS_)
// 3 iterations of Newton-Raphson refinment of sqrt
float32x4_t S0 = vrsqrteq_f32(V);
float32x4_t P0 = vmulq_f32(V, S0);
float32x4_t R0 = vrsqrtsq_f32(P0, S0);
float32x4_t S1 = vmulq_f32(S0, R0);
float32x4_t P1 = vmulq_f32(V, S1);
float32x4_t R1 = vrsqrtsq_f32(P1, S1);
float32x4_t S2 = vmulq_f32(S1, R1);
float32x4_t P2 = vmulq_f32(V, S2);
float32x4_t R2 = vrsqrtsq_f32(P2, S2);
float32x4_t S3 = vmulq_f32(S2, R2);
XMVECTOR VEqualsInfinity = XMVectorEqualInt(V, g_XMInfinity.v);
XMVECTOR VEqualsZero = XMVectorEqual(V, vdupq_n_f32(0));
XMVECTOR Result = vmulq_f32(V, S3);
XMVECTOR Select = XMVectorEqualInt(VEqualsInfinity, VEqualsZero);
return XMVectorSelect(V, Result, Select);
#elif defined(_XM_SSE_INTRINSICS_)
return _mm_sqrt_ps(V);
#endif
}
//------------------------------------------------------------------------------
inline XMVECTOR XM_CALLCONV XMVectorReciprocalSqrtEst(FXMVECTOR V) noexcept
{
#if defined(_XM_NO_INTRINSICS_)
XMVECTORF32 Result = { { {
1.f / sqrtf(V.vector4_f32[0]),
1.f / sqrtf(V.vector4_f32[1]),
1.f / sqrtf(V.vector4_f32[2]),
1.f / sqrtf(V.vector4_f32[3])
} } };
return Result.v;
#elif defined(_XM_ARM_NEON_INTRINSICS_)
return vrsqrteq_f32(V);
#elif defined(_XM_SSE_INTRINSICS_)
return _mm_rsqrt_ps(V);
#endif
}
//------------------------------------------------------------------------------
inline XMVECTOR XM_CALLCONV XMVectorReciprocalSqrt(FXMVECTOR V) noexcept
{
#if defined(_XM_NO_INTRINSICS_)
XMVECTORF32 Result = { { {
1.f / sqrtf(V.vector4_f32[0]),
1.f / sqrtf(V.vector4_f32[1]),
1.f / sqrtf(V.vector4_f32[2]),
1.f / sqrtf(V.vector4_f32[3])
} } };
return Result;
#elif defined(_XM_ARM_NEON_INTRINSICS_)
// 2 iterations of Newton-Raphson refinement of reciprocal
float32x4_t S0 = vrsqrteq_f32(V);
float32x4_t P0 = vmulq_f32(V, S0);
float32x4_t R0 = vrsqrtsq_f32(P0, S0);
float32x4_t S1 = vmulq_f32(S0, R0);
float32x4_t P1 = vmulq_f32(V, S1);
float32x4_t R1 = vrsqrtsq_f32(P1, S1);
return vmulq_f32(S1, R1);
#elif defined(_XM_SSE_INTRINSICS_)
XMVECTOR vResult = _mm_sqrt_ps(V);
vResult = _mm_div_ps(g_XMOne, vResult);
return vResult;
#endif
}
//------------------------------------------------------------------------------
inline XMVECTOR XM_CALLCONV XMVectorExp2(FXMVECTOR V) noexcept
{
#if defined(_XM_NO_INTRINSICS_)
XMVECTORF32 Result = { { {
exp2f(V.vector4_f32[0]),
exp2f(V.vector4_f32[1]),
exp2f(V.vector4_f32[2]),
exp2f(V.vector4_f32[3])
} } };
return Result.v;
#elif defined(_XM_ARM_NEON_INTRINSICS_)
int32x4_t itrunc = vcvtq_s32_f32(V);
float32x4_t ftrunc = vcvtq_f32_s32(itrunc);
float32x4_t y = vsubq_f32(V, ftrunc);
float32x4_t poly = vmlaq_f32(g_XMExpEst6, g_XMExpEst7, y);
poly = vmlaq_f32(g_XMExpEst5, poly, y);
poly = vmlaq_f32(g_XMExpEst4, poly, y);
poly = vmlaq_f32(g_XMExpEst3, poly, y);
poly = vmlaq_f32(g_XMExpEst2, poly, y);
poly = vmlaq_f32(g_XMExpEst1, poly, y);
poly = vmlaq_f32(g_XMOne, poly, y);
int32x4_t biased = vaddq_s32(itrunc, g_XMExponentBias);
biased = vshlq_n_s32(biased, 23);
float32x4_t result0 = XMVectorDivide(vreinterpretq_f32_s32(biased), poly);
biased = vaddq_s32(itrunc, g_XM253);
biased = vshlq_n_s32(biased, 23);
float32x4_t result1 = XMVectorDivide(vreinterpretq_f32_s32(biased), poly);
result1 = vmulq_f32(g_XMMinNormal.v, result1);
// Use selection to handle the cases
// if (V is NaN) -> QNaN;
// else if (V sign bit set)
// if (V > -150)
// if (V.exponent < -126) -> result1
// else -> result0
// else -> +0
// else
// if (V < 128) -> result0
// else -> +inf
uint32x4_t comp = vcltq_s32(vreinterpretq_s32_f32(V), g_XMBin128);
float32x4_t result2 = vbslq_f32(comp, result0, g_XMInfinity);
comp = vcltq_s32(itrunc, g_XMSubnormalExponent);
float32x4_t result3 = vbslq_f32(comp, result1, result0);
comp = vcltq_s32(vreinterpretq_s32_f32(V), g_XMBinNeg150);
float32x4_t result4 = vbslq_f32(comp, result3, g_XMZero);
int32x4_t sign = vandq_s32(vreinterpretq_s32_f32(V), g_XMNegativeZero);
comp = vceqq_s32(sign, g_XMNegativeZero);
float32x4_t result5 = vbslq_f32(comp, result4, result2);
int32x4_t t0 = vandq_s32(vreinterpretq_s32_f32(V), g_XMQNaNTest);
int32x4_t t1 = vandq_s32(vreinterpretq_s32_f32(V), g_XMInfinity);
t0 = vreinterpretq_s32_u32(vceqq_s32(t0, g_XMZero));
t1 = vreinterpretq_s32_u32(vceqq_s32(t1, g_XMInfinity));
int32x4_t isNaN = vbicq_s32(t1, t0);
float32x4_t vResult = vbslq_f32(vreinterpretq_u32_s32(isNaN), g_XMQNaN, result5);
return vResult;
#elif defined(_XM_SVML_INTRINSICS_)
XMVECTOR Result = _mm_exp2_ps(V);
return Result;
#elif defined(_XM_SSE_INTRINSICS_)
__m128i itrunc = _mm_cvttps_epi32(V);
__m128 ftrunc = _mm_cvtepi32_ps(itrunc);
__m128 y = _mm_sub_ps(V, ftrunc);
__m128 poly = XM_FMADD_PS(g_XMExpEst7, y, g_XMExpEst6);
poly = XM_FMADD_PS(poly, y, g_XMExpEst5);
poly = XM_FMADD_PS(poly, y, g_XMExpEst4);
poly = XM_FMADD_PS(poly, y, g_XMExpEst3);
poly = XM_FMADD_PS(poly, y, g_XMExpEst2);
poly = XM_FMADD_PS(poly, y, g_XMExpEst1);
poly = XM_FMADD_PS(poly, y, g_XMOne);
__m128i biased = _mm_add_epi32(itrunc, g_XMExponentBias);
biased = _mm_slli_epi32(biased, 23);
__m128 result0 = _mm_div_ps(_mm_castsi128_ps(biased), poly);
biased = _mm_add_epi32(itrunc, g_XM253);
biased = _mm_slli_epi32(biased, 23);
__m128 result1 = _mm_div_ps(_mm_castsi128_ps(biased), poly);
result1 = _mm_mul_ps(g_XMMinNormal.v, result1);
// Use selection to handle the cases
// if (V is NaN) -> QNaN;
// else if (V sign bit set)
// if (V > -150)
// if (V.exponent < -126) -> result1
// else -> result0
// else -> +0
// else
// if (V < 128) -> result0
// else -> +inf
__m128i comp = _mm_cmplt_epi32(_mm_castps_si128(V), g_XMBin128);
__m128i select0 = _mm_and_si128(comp, _mm_castps_si128(result0));
__m128i select1 = _mm_andnot_si128(comp, g_XMInfinity);
__m128i result2 = _mm_or_si128(select0, select1);
comp = _mm_cmplt_epi32(itrunc, g_XMSubnormalExponent);
select1 = _mm_and_si128(comp, _mm_castps_si128(result1));
select0 = _mm_andnot_si128(comp, _mm_castps_si128(result0));
__m128i result3 = _mm_or_si128(select0, select1);
comp = _mm_cmplt_epi32(_mm_castps_si128(V), g_XMBinNeg150);
select0 = _mm_and_si128(comp, result3);
select1 = _mm_andnot_si128(comp, g_XMZero);
__m128i result4 = _mm_or_si128(select0, select1);
__m128i sign = _mm_and_si128(_mm_castps_si128(V), g_XMNegativeZero);
comp = _mm_cmpeq_epi32(sign, g_XMNegativeZero);
select0 = _mm_and_si128(comp, result4);
select1 = _mm_andnot_si128(comp, result2);
__m128i result5 = _mm_or_si128(select0, select1);
__m128i t0 = _mm_and_si128(_mm_castps_si128(V), g_XMQNaNTest);
__m128i t1 = _mm_and_si128(_mm_castps_si128(V), g_XMInfinity);
t0 = _mm_cmpeq_epi32(t0, g_XMZero);
t1 = _mm_cmpeq_epi32(t1, g_XMInfinity);
__m128i isNaN = _mm_andnot_si128(t0, t1);
select0 = _mm_and_si128(isNaN, g_XMQNaN);
select1 = _mm_andnot_si128(isNaN, result5);
__m128i vResult = _mm_or_si128(select0, select1);
return _mm_castsi128_ps(vResult);
#endif
}
//------------------------------------------------------------------------------
inline XMVECTOR XM_CALLCONV XMVectorExp10(FXMVECTOR V) noexcept
{
#if defined(_XM_NO_INTRINSICS_)
XMVECTORF32 Result = { { {
powf(10.0f, V.vector4_f32[0]),
powf(10.0f, V.vector4_f32[1]),
powf(10.0f, V.vector4_f32[2]),
powf(10.0f, V.vector4_f32[3])
} } };
return Result.v;
#elif defined(_XM_SVML_INTRINSICS_)
XMVECTOR Result = _mm_exp10_ps(V);
return Result;
#else
// exp10(V) = exp2(vin*log2(10))
XMVECTOR Vten = XMVectorMultiply(g_XMLg10, V);
return XMVectorExp2(Vten);
#endif
}
//------------------------------------------------------------------------------
inline XMVECTOR XM_CALLCONV XMVectorExpE(FXMVECTOR V) noexcept
{
#if defined(_XM_NO_INTRINSICS_)
XMVECTORF32 Result = { { {
expf(V.vector4_f32[0]),
expf(V.vector4_f32[1]),
expf(V.vector4_f32[2]),
expf(V.vector4_f32[3])
} } };
return Result.v;
#elif defined(_XM_SVML_INTRINSICS_)
XMVECTOR Result = _mm_exp_ps(V);
return Result;
#else
// expE(V) = exp2(vin*log2(e))
XMVECTOR Ve = XMVectorMultiply(g_XMLgE, V);
return XMVectorExp2(Ve);
#endif
}
//------------------------------------------------------------------------------
inline XMVECTOR XM_CALLCONV XMVectorExp(FXMVECTOR V) noexcept
{
return XMVectorExp2(V);
}
//------------------------------------------------------------------------------
#if defined(_XM_SSE_INTRINSICS_)
namespace Internal
{
inline __m128i multi_sll_epi32(__m128i value, __m128i count) noexcept
{
__m128i v = _mm_shuffle_epi32(value, _MM_SHUFFLE(0, 0, 0, 0));
__m128i c = _mm_shuffle_epi32(count, _MM_SHUFFLE(0, 0, 0, 0));
c = _mm_and_si128(c, g_XMMaskX);
__m128i r0 = _mm_sll_epi32(v, c);
v = _mm_shuffle_epi32(value, _MM_SHUFFLE(1, 1, 1, 1));
c = _mm_shuffle_epi32(count, _MM_SHUFFLE(1, 1, 1, 1));
c = _mm_and_si128(c, g_XMMaskX);
__m128i r1 = _mm_sll_epi32(v, c);
v = _mm_shuffle_epi32(value, _MM_SHUFFLE(2, 2, 2, 2));
c = _mm_shuffle_epi32(count, _MM_SHUFFLE(2, 2, 2, 2));
c = _mm_and_si128(c, g_XMMaskX);
__m128i r2 = _mm_sll_epi32(v, c);
v = _mm_shuffle_epi32(value, _MM_SHUFFLE(3, 3, 3, 3));
c = _mm_shuffle_epi32(count, _MM_SHUFFLE(3, 3, 3, 3));
c = _mm_and_si128(c, g_XMMaskX);
__m128i r3 = _mm_sll_epi32(v, c);
// (r0,r0,r1,r1)
__m128 r01 = _mm_shuffle_ps(_mm_castsi128_ps(r0), _mm_castsi128_ps(r1), _MM_SHUFFLE(0, 0, 0, 0));
// (r2,r2,r3,r3)
__m128 r23 = _mm_shuffle_ps(_mm_castsi128_ps(r2), _mm_castsi128_ps(r3), _MM_SHUFFLE(0, 0, 0, 0));
// (r0,r1,r2,r3)
__m128 result = _mm_shuffle_ps(r01, r23, _MM_SHUFFLE(2, 0, 2, 0));
return _mm_castps_si128(result);
}
inline __m128i multi_srl_epi32(__m128i value, __m128i count) noexcept
{
__m128i v = _mm_shuffle_epi32(value, _MM_SHUFFLE(0, 0, 0, 0));
__m128i c = _mm_shuffle_epi32(count, _MM_SHUFFLE(0, 0, 0, 0));
c = _mm_and_si128(c, g_XMMaskX);
__m128i r0 = _mm_srl_epi32(v, c);
v = _mm_shuffle_epi32(value, _MM_SHUFFLE(1, 1, 1, 1));
c = _mm_shuffle_epi32(count, _MM_SHUFFLE(1, 1, 1, 1));
c = _mm_and_si128(c, g_XMMaskX);
__m128i r1 = _mm_srl_epi32(v, c);
v = _mm_shuffle_epi32(value, _MM_SHUFFLE(2, 2, 2, 2));
c = _mm_shuffle_epi32(count, _MM_SHUFFLE(2, 2, 2, 2));
c = _mm_and_si128(c, g_XMMaskX);
__m128i r2 = _mm_srl_epi32(v, c);
v = _mm_shuffle_epi32(value, _MM_SHUFFLE(3, 3, 3, 3));
c = _mm_shuffle_epi32(count, _MM_SHUFFLE(3, 3, 3, 3));
c = _mm_and_si128(c, g_XMMaskX);
__m128i r3 = _mm_srl_epi32(v, c);
// (r0,r0,r1,r1)
__m128 r01 = _mm_shuffle_ps(_mm_castsi128_ps(r0), _mm_castsi128_ps(r1), _MM_SHUFFLE(0, 0, 0, 0));
// (r2,r2,r3,r3)
__m128 r23 = _mm_shuffle_ps(_mm_castsi128_ps(r2), _mm_castsi128_ps(r3), _MM_SHUFFLE(0, 0, 0, 0));
// (r0,r1,r2,r3)
__m128 result = _mm_shuffle_ps(r01, r23, _MM_SHUFFLE(2, 0, 2, 0));
return _mm_castps_si128(result);
}
inline __m128i GetLeadingBit(const __m128i value) noexcept
{
static const XMVECTORI32 g_XM0000FFFF = { { { 0x0000FFFF, 0x0000FFFF, 0x0000FFFF, 0x0000FFFF } } };
static const XMVECTORI32 g_XM000000FF = { { { 0x000000FF, 0x000000FF, 0x000000FF, 0x000000FF } } };
static const XMVECTORI32 g_XM0000000F = { { { 0x0000000F, 0x0000000F, 0x0000000F, 0x0000000F } } };
static const XMVECTORI32 g_XM00000003 = { { { 0x00000003, 0x00000003, 0x00000003, 0x00000003 } } };
__m128i v = value, r, c, b, s;
c = _mm_cmpgt_epi32(v, g_XM0000FFFF); // c = (v > 0xFFFF)
b = _mm_srli_epi32(c, 31); // b = (c ? 1 : 0)
r = _mm_slli_epi32(b, 4); // r = (b << 4)
v = multi_srl_epi32(v, r); // v = (v >> r)
c = _mm_cmpgt_epi32(v, g_XM000000FF); // c = (v > 0xFF)
b = _mm_srli_epi32(c, 31); // b = (c ? 1 : 0)
s = _mm_slli_epi32(b, 3); // s = (b << 3)
v = multi_srl_epi32(v, s); // v = (v >> s)
r = _mm_or_si128(r, s); // r = (r | s)
c = _mm_cmpgt_epi32(v, g_XM0000000F); // c = (v > 0xF)
b = _mm_srli_epi32(c, 31); // b = (c ? 1 : 0)
s = _mm_slli_epi32(b, 2); // s = (b << 2)
v = multi_srl_epi32(v, s); // v = (v >> s)
r = _mm_or_si128(r, s); // r = (r | s)
c = _mm_cmpgt_epi32(v, g_XM00000003); // c = (v > 0x3)
b = _mm_srli_epi32(c, 31); // b = (c ? 1 : 0)
s = _mm_slli_epi32(b, 1); // s = (b << 1)
v = multi_srl_epi32(v, s); // v = (v >> s)
r = _mm_or_si128(r, s); // r = (r | s)
s = _mm_srli_epi32(v, 1);
r = _mm_or_si128(r, s);
return r;
}
} // namespace Internal
#endif // _XM_SSE_INTRINSICS_
#if defined(_XM_ARM_NEON_INTRINSICS_)
namespace Internal
{
inline int32x4_t GetLeadingBit(const int32x4_t value) noexcept
{
static const XMVECTORI32 g_XM0000FFFF = { { { 0x0000FFFF, 0x0000FFFF, 0x0000FFFF, 0x0000FFFF } } };
static const XMVECTORI32 g_XM000000FF = { { { 0x000000FF, 0x000000FF, 0x000000FF, 0x000000FF } } };
static const XMVECTORI32 g_XM0000000F = { { { 0x0000000F, 0x0000000F, 0x0000000F, 0x0000000F } } };
static const XMVECTORI32 g_XM00000003 = { { { 0x00000003, 0x00000003, 0x00000003, 0x00000003 } } };
uint32x4_t c = vcgtq_s32(value, g_XM0000FFFF); // c = (v > 0xFFFF)
int32x4_t b = vshrq_n_s32(vreinterpretq_s32_u32(c), 31); // b = (c ? 1 : 0)
int32x4_t r = vshlq_n_s32(b, 4); // r = (b << 4)
r = vnegq_s32(r);
int32x4_t v = vshlq_s32(value, r); // v = (v >> r)
c = vcgtq_s32(v, g_XM000000FF); // c = (v > 0xFF)
b = vshrq_n_s32(vreinterpretq_s32_u32(c), 31); // b = (c ? 1 : 0)
int32x4_t s = vshlq_n_s32(b, 3); // s = (b << 3)
s = vnegq_s32(s);
v = vshlq_s32(v, s); // v = (v >> s)
r = vorrq_s32(r, s); // r = (r | s)
c = vcgtq_s32(v, g_XM0000000F); // c = (v > 0xF)
b = vshrq_n_s32(vreinterpretq_s32_u32(c), 31); // b = (c ? 1 : 0)
s = vshlq_n_s32(b, 2); // s = (b << 2)
s = vnegq_s32(s);
v = vshlq_s32(v, s); // v = (v >> s)
r = vorrq_s32(r, s); // r = (r | s)
c = vcgtq_s32(v, g_XM00000003); // c = (v > 0x3)
b = vshrq_n_s32(vreinterpretq_s32_u32(c), 31); // b = (c ? 1 : 0)
s = vshlq_n_s32(b, 1); // s = (b << 1)
s = vnegq_s32(s);
v = vshlq_s32(v, s); // v = (v >> s)
r = vorrq_s32(r, s); // r = (r | s)
s = vshrq_n_s32(v, 1);
r = vorrq_s32(r, s);
return r;
}
} // namespace Internal
#endif
//------------------------------------------------------------------------------
inline XMVECTOR XM_CALLCONV XMVectorLog2(FXMVECTOR V) noexcept
{
#if defined(_XM_NO_INTRINSICS_)
XMVECTORF32 Result = { { {
log2f(V.vector4_f32[0]),
log2f(V.vector4_f32[1]),
log2f(V.vector4_f32[2]),
log2f(V.vector4_f32[3])
} } };
return Result.v;
#elif defined(_XM_ARM_NEON_INTRINSICS_)
int32x4_t rawBiased = vandq_s32(vreinterpretq_s32_f32(V), g_XMInfinity);
int32x4_t trailing = vandq_s32(vreinterpretq_s32_f32(V), g_XMQNaNTest);
uint32x4_t isExponentZero = vceqq_s32(vreinterpretq_s32_f32(g_XMZero), rawBiased);
// Compute exponent and significand for normals.
int32x4_t biased = vshrq_n_s32(rawBiased, 23);
int32x4_t exponentNor = vsubq_s32(biased, g_XMExponentBias);
int32x4_t trailingNor = trailing;
// Compute exponent and significand for subnormals.
int32x4_t leading = Internal::GetLeadingBit(trailing);
int32x4_t shift = vsubq_s32(g_XMNumTrailing, leading);
int32x4_t exponentSub = vsubq_s32(g_XMSubnormalExponent, shift);
int32x4_t trailingSub = vshlq_s32(trailing, shift);
trailingSub = vandq_s32(trailingSub, g_XMQNaNTest);
int32x4_t e = vbslq_s32(isExponentZero, exponentSub, exponentNor);
int32x4_t t = vbslq_s32(isExponentZero, trailingSub, trailingNor);
// Compute the approximation.
int32x4_t tmp = vorrq_s32(vreinterpretq_s32_f32(g_XMOne), t);
float32x4_t y = vsubq_f32(vreinterpretq_f32_s32(tmp), g_XMOne);
float32x4_t log2 = vmlaq_f32(g_XMLogEst6, g_XMLogEst7, y);
log2 = vmlaq_f32(g_XMLogEst5, log2, y);
log2 = vmlaq_f32(g_XMLogEst4, log2, y);
log2 = vmlaq_f32(g_XMLogEst3, log2, y);
log2 = vmlaq_f32(g_XMLogEst2, log2, y);
log2 = vmlaq_f32(g_XMLogEst1, log2, y);
log2 = vmlaq_f32(g_XMLogEst0, log2, y);
log2 = vmlaq_f32(vcvtq_f32_s32(e), log2, y);
// if (x is NaN) -> QNaN
// else if (V is positive)
// if (V is infinite) -> +inf
// else -> log2(V)
// else
// if (V is zero) -> -inf
// else -> -QNaN
uint32x4_t isInfinite = vandq_u32(vreinterpretq_u32_f32(V), g_XMAbsMask);
isInfinite = vceqq_u32(isInfinite, g_XMInfinity);
uint32x4_t isGreaterZero = vcgtq_f32(V, g_XMZero);
uint32x4_t isNotFinite = vcgtq_f32(V, g_XMInfinity);
uint32x4_t isPositive = vbicq_u32(isGreaterZero, isNotFinite);
uint32x4_t isZero = vandq_u32(vreinterpretq_u32_f32(V), g_XMAbsMask);
isZero = vceqq_u32(isZero, g_XMZero);
uint32x4_t t0 = vandq_u32(vreinterpretq_u32_f32(V), g_XMQNaNTest);
uint32x4_t t1 = vandq_u32(vreinterpretq_u32_f32(V), g_XMInfinity);
t0 = vceqq_u32(t0, g_XMZero);
t1 = vceqq_u32(t1, g_XMInfinity);
uint32x4_t isNaN = vbicq_u32(t1, t0);
float32x4_t result = vbslq_f32(isInfinite, g_XMInfinity, log2);
float32x4_t tmp2 = vbslq_f32(isZero, g_XMNegInfinity, g_XMNegQNaN);
result = vbslq_f32(isPositive, result, tmp2);
result = vbslq_f32(isNaN, g_XMQNaN, result);
return result;
#elif defined(_XM_SVML_INTRINSICS_)
XMVECTOR Result = _mm_log2_ps(V);
return Result;
#elif defined(_XM_SSE_INTRINSICS_)
__m128i rawBiased = _mm_and_si128(_mm_castps_si128(V), g_XMInfinity);
__m128i trailing = _mm_and_si128(_mm_castps_si128(V), g_XMQNaNTest);
__m128i isExponentZero = _mm_cmpeq_epi32(g_XMZero, rawBiased);
// Compute exponent and significand for normals.
__m128i biased = _mm_srli_epi32(rawBiased, 23);
__m128i exponentNor = _mm_sub_epi32(biased, g_XMExponentBias);
__m128i trailingNor = trailing;
// Compute exponent and significand for subnormals.
__m128i leading = Internal::GetLeadingBit(trailing);
__m128i shift = _mm_sub_epi32(g_XMNumTrailing, leading);
__m128i exponentSub = _mm_sub_epi32(g_XMSubnormalExponent, shift);
__m128i trailingSub = Internal::multi_sll_epi32(trailing, shift);
trailingSub = _mm_and_si128(trailingSub, g_XMQNaNTest);
__m128i select0 = _mm_and_si128(isExponentZero, exponentSub);
__m128i select1 = _mm_andnot_si128(isExponentZero, exponentNor);
__m128i e = _mm_or_si128(select0, select1);
select0 = _mm_and_si128(isExponentZero, trailingSub);
select1 = _mm_andnot_si128(isExponentZero, trailingNor);
__m128i t = _mm_or_si128(select0, select1);
// Compute the approximation.
__m128i tmp = _mm_or_si128(g_XMOne, t);
__m128 y = _mm_sub_ps(_mm_castsi128_ps(tmp), g_XMOne);
__m128 log2 = XM_FMADD_PS(g_XMLogEst7, y, g_XMLogEst6);
log2 = XM_FMADD_PS(log2, y, g_XMLogEst5);
log2 = XM_FMADD_PS(log2, y, g_XMLogEst4);
log2 = XM_FMADD_PS(log2, y, g_XMLogEst3);
log2 = XM_FMADD_PS(log2, y, g_XMLogEst2);
log2 = XM_FMADD_PS(log2, y, g_XMLogEst1);
log2 = XM_FMADD_PS(log2, y, g_XMLogEst0);
log2 = XM_FMADD_PS(log2, y, _mm_cvtepi32_ps(e));
// if (x is NaN) -> QNaN
// else if (V is positive)
// if (V is infinite) -> +inf
// else -> log2(V)
// else
// if (V is zero) -> -inf
// else -> -QNaN
__m128i isInfinite = _mm_and_si128(_mm_castps_si128(V), g_XMAbsMask);
isInfinite = _mm_cmpeq_epi32(isInfinite, g_XMInfinity);
__m128i isGreaterZero = _mm_cmpgt_epi32(_mm_castps_si128(V), g_XMZero);
__m128i isNotFinite = _mm_cmpgt_epi32(_mm_castps_si128(V), g_XMInfinity);
__m128i isPositive = _mm_andnot_si128(isNotFinite, isGreaterZero);
__m128i isZero = _mm_and_si128(_mm_castps_si128(V), g_XMAbsMask);
isZero = _mm_cmpeq_epi32(isZero, g_XMZero);
__m128i t0 = _mm_and_si128(_mm_castps_si128(V), g_XMQNaNTest);
__m128i t1 = _mm_and_si128(_mm_castps_si128(V), g_XMInfinity);
t0 = _mm_cmpeq_epi32(t0, g_XMZero);
t1 = _mm_cmpeq_epi32(t1, g_XMInfinity);
__m128i isNaN = _mm_andnot_si128(t0, t1);
select0 = _mm_and_si128(isInfinite, g_XMInfinity);
select1 = _mm_andnot_si128(isInfinite, _mm_castps_si128(log2));
__m128i result = _mm_or_si128(select0, select1);
select0 = _mm_and_si128(isZero, g_XMNegInfinity);
select1 = _mm_andnot_si128(isZero, g_XMNegQNaN);
tmp = _mm_or_si128(select0, select1);
select0 = _mm_and_si128(isPositive, result);
select1 = _mm_andnot_si128(isPositive, tmp);
result = _mm_or_si128(select0, select1);
select0 = _mm_and_si128(isNaN, g_XMQNaN);
select1 = _mm_andnot_si128(isNaN, result);
result = _mm_or_si128(select0, select1);
return _mm_castsi128_ps(result);
#endif
}
//------------------------------------------------------------------------------
inline XMVECTOR XM_CALLCONV XMVectorLog10(FXMVECTOR V) noexcept
{
#if defined(_XM_NO_INTRINSICS_)
XMVECTORF32 Result = { { {
log10f(V.vector4_f32[0]),
log10f(V.vector4_f32[1]),
log10f(V.vector4_f32[2]),
log10f(V.vector4_f32[3])
} } };
return Result.v;
#elif defined(_XM_ARM_NEON_INTRINSICS_)
int32x4_t rawBiased = vandq_s32(vreinterpretq_s32_f32(V), g_XMInfinity);
int32x4_t trailing = vandq_s32(vreinterpretq_s32_f32(V), g_XMQNaNTest);
uint32x4_t isExponentZero = vceqq_s32(g_XMZero, rawBiased);
// Compute exponent and significand for normals.
int32x4_t biased = vshrq_n_s32(rawBiased, 23);
int32x4_t exponentNor = vsubq_s32(biased, g_XMExponentBias);
int32x4_t trailingNor = trailing;
// Compute exponent and significand for subnormals.
int32x4_t leading = Internal::GetLeadingBit(trailing);
int32x4_t shift = vsubq_s32(g_XMNumTrailing, leading);
int32x4_t exponentSub = vsubq_s32(g_XMSubnormalExponent, shift);
int32x4_t trailingSub = vshlq_s32(trailing, shift);
trailingSub = vandq_s32(trailingSub, g_XMQNaNTest);
int32x4_t e = vbslq_s32(isExponentZero, exponentSub, exponentNor);
int32x4_t t = vbslq_s32(isExponentZero, trailingSub, trailingNor);
// Compute the approximation.
int32x4_t tmp = vorrq_s32(g_XMOne, t);
float32x4_t y = vsubq_f32(vreinterpretq_f32_s32(tmp), g_XMOne);
float32x4_t log2 = vmlaq_f32(g_XMLogEst6, g_XMLogEst7, y);
log2 = vmlaq_f32(g_XMLogEst5, log2, y);
log2 = vmlaq_f32(g_XMLogEst4, log2, y);
log2 = vmlaq_f32(g_XMLogEst3, log2, y);
log2 = vmlaq_f32(g_XMLogEst2, log2, y);
log2 = vmlaq_f32(g_XMLogEst1, log2, y);
log2 = vmlaq_f32(g_XMLogEst0, log2, y);
log2 = vmlaq_f32(vcvtq_f32_s32(e), log2, y);
log2 = vmulq_f32(g_XMInvLg10, log2);
// if (x is NaN) -> QNaN
// else if (V is positive)
// if (V is infinite) -> +inf
// else -> log2(V)
// else
// if (V is zero) -> -inf
// else -> -QNaN
uint32x4_t isInfinite = vandq_u32(vreinterpretq_u32_f32(V), g_XMAbsMask);
isInfinite = vceqq_u32(isInfinite, g_XMInfinity);
uint32x4_t isGreaterZero = vcgtq_s32(vreinterpretq_s32_f32(V), g_XMZero);
uint32x4_t isNotFinite = vcgtq_s32(vreinterpretq_s32_f32(V), g_XMInfinity);
uint32x4_t isPositive = vbicq_u32(isGreaterZero, isNotFinite);
uint32x4_t isZero = vandq_u32(vreinterpretq_u32_f32(V), g_XMAbsMask);
isZero = vceqq_u32(isZero, g_XMZero);
uint32x4_t t0 = vandq_u32(vreinterpretq_u32_f32(V), g_XMQNaNTest);
uint32x4_t t1 = vandq_u32(vreinterpretq_u32_f32(V), g_XMInfinity);
t0 = vceqq_u32(t0, g_XMZero);
t1 = vceqq_u32(t1, g_XMInfinity);
uint32x4_t isNaN = vbicq_u32(t1, t0);
float32x4_t result = vbslq_f32(isInfinite, g_XMInfinity, log2);
float32x4_t tmp2 = vbslq_f32(isZero, g_XMNegInfinity, g_XMNegQNaN);
result = vbslq_f32(isPositive, result, tmp2);
result = vbslq_f32(isNaN, g_XMQNaN, result);
return result;
#elif defined(_XM_SVML_INTRINSICS_)
XMVECTOR Result = _mm_log10_ps(V);
return Result;
#elif defined(_XM_SSE_INTRINSICS_)
__m128i rawBiased = _mm_and_si128(_mm_castps_si128(V), g_XMInfinity);
__m128i trailing = _mm_and_si128(_mm_castps_si128(V), g_XMQNaNTest);
__m128i isExponentZero = _mm_cmpeq_epi32(g_XMZero, rawBiased);
// Compute exponent and significand for normals.
__m128i biased = _mm_srli_epi32(rawBiased, 23);
__m128i exponentNor = _mm_sub_epi32(biased, g_XMExponentBias);
__m128i trailingNor = trailing;
// Compute exponent and significand for subnormals.
__m128i leading = Internal::GetLeadingBit(trailing);
__m128i shift = _mm_sub_epi32(g_XMNumTrailing, leading);
__m128i exponentSub = _mm_sub_epi32(g_XMSubnormalExponent, shift);
__m128i trailingSub = Internal::multi_sll_epi32(trailing, shift);
trailingSub = _mm_and_si128(trailingSub, g_XMQNaNTest);
__m128i select0 = _mm_and_si128(isExponentZero, exponentSub);
__m128i select1 = _mm_andnot_si128(isExponentZero, exponentNor);
__m128i e = _mm_or_si128(select0, select1);
select0 = _mm_and_si128(isExponentZero, trailingSub);
select1 = _mm_andnot_si128(isExponentZero, trailingNor);
__m128i t = _mm_or_si128(select0, select1);
// Compute the approximation.
__m128i tmp = _mm_or_si128(g_XMOne, t);
__m128 y = _mm_sub_ps(_mm_castsi128_ps(tmp), g_XMOne);
__m128 log2 = XM_FMADD_PS(g_XMLogEst7, y, g_XMLogEst6);
log2 = XM_FMADD_PS(log2, y, g_XMLogEst5);
log2 = XM_FMADD_PS(log2, y, g_XMLogEst4);
log2 = XM_FMADD_PS(log2, y, g_XMLogEst3);
log2 = XM_FMADD_PS(log2, y, g_XMLogEst2);
log2 = XM_FMADD_PS(log2, y, g_XMLogEst1);
log2 = XM_FMADD_PS(log2, y, g_XMLogEst0);
log2 = XM_FMADD_PS(log2, y, _mm_cvtepi32_ps(e));
log2 = _mm_mul_ps(g_XMInvLg10, log2);
// if (x is NaN) -> QNaN
// else if (V is positive)
// if (V is infinite) -> +inf
// else -> log2(V)
// else
// if (V is zero) -> -inf
// else -> -QNaN
__m128i isInfinite = _mm_and_si128(_mm_castps_si128(V), g_XMAbsMask);
isInfinite = _mm_cmpeq_epi32(isInfinite, g_XMInfinity);
__m128i isGreaterZero = _mm_cmpgt_epi32(_mm_castps_si128(V), g_XMZero);
__m128i isNotFinite = _mm_cmpgt_epi32(_mm_castps_si128(V), g_XMInfinity);
__m128i isPositive = _mm_andnot_si128(isNotFinite, isGreaterZero);
__m128i isZero = _mm_and_si128(_mm_castps_si128(V), g_XMAbsMask);
isZero = _mm_cmpeq_epi32(isZero, g_XMZero);
__m128i t0 = _mm_and_si128(_mm_castps_si128(V), g_XMQNaNTest);
__m128i t1 = _mm_and_si128(_mm_castps_si128(V), g_XMInfinity);
t0 = _mm_cmpeq_epi32(t0, g_XMZero);
t1 = _mm_cmpeq_epi32(t1, g_XMInfinity);
__m128i isNaN = _mm_andnot_si128(t0, t1);
select0 = _mm_and_si128(isInfinite, g_XMInfinity);
select1 = _mm_andnot_si128(isInfinite, _mm_castps_si128(log2));
__m128i result = _mm_or_si128(select0, select1);
select0 = _mm_and_si128(isZero, g_XMNegInfinity);
select1 = _mm_andnot_si128(isZero, g_XMNegQNaN);
tmp = _mm_or_si128(select0, select1);
select0 = _mm_and_si128(isPositive, result);
select1 = _mm_andnot_si128(isPositive, tmp);
result = _mm_or_si128(select0, select1);
select0 = _mm_and_si128(isNaN, g_XMQNaN);
select1 = _mm_andnot_si128(isNaN, result);
result = _mm_or_si128(select0, select1);
return _mm_castsi128_ps(result);
#endif
}
//------------------------------------------------------------------------------
inline XMVECTOR XM_CALLCONV XMVectorLogE(FXMVECTOR V) noexcept
{
#if defined(_XM_NO_INTRINSICS_)
XMVECTORF32 Result = { { {
logf(V.vector4_f32[0]),
logf(V.vector4_f32[1]),
logf(V.vector4_f32[2]),
logf(V.vector4_f32[3])
} } };
return Result.v;
#elif defined(_XM_ARM_NEON_INTRINSICS_)
int32x4_t rawBiased = vandq_s32(vreinterpretq_s32_f32(V), g_XMInfinity);
int32x4_t trailing = vandq_s32(vreinterpretq_s32_f32(V), g_XMQNaNTest);
uint32x4_t isExponentZero = vceqq_s32(g_XMZero, rawBiased);
// Compute exponent and significand for normals.
int32x4_t biased = vshrq_n_s32(rawBiased, 23);
int32x4_t exponentNor = vsubq_s32(biased, g_XMExponentBias);
int32x4_t trailingNor = trailing;
// Compute exponent and significand for subnormals.
int32x4_t leading = Internal::GetLeadingBit(trailing);
int32x4_t shift = vsubq_s32(g_XMNumTrailing, leading);
int32x4_t exponentSub = vsubq_s32(g_XMSubnormalExponent, shift);
int32x4_t trailingSub = vshlq_s32(trailing, shift);
trailingSub = vandq_s32(trailingSub, g_XMQNaNTest);
int32x4_t e = vbslq_s32(isExponentZero, exponentSub, exponentNor);
int32x4_t t = vbslq_s32(isExponentZero, trailingSub, trailingNor);
// Compute the approximation.
int32x4_t tmp = vorrq_s32(g_XMOne, t);
float32x4_t y = vsubq_f32(vreinterpretq_f32_s32(tmp), g_XMOne);
float32x4_t log2 = vmlaq_f32(g_XMLogEst6, g_XMLogEst7, y);
log2 = vmlaq_f32(g_XMLogEst5, log2, y);
log2 = vmlaq_f32(g_XMLogEst4, log2, y);
log2 = vmlaq_f32(g_XMLogEst3, log2, y);
log2 = vmlaq_f32(g_XMLogEst2, log2, y);
log2 = vmlaq_f32(g_XMLogEst1, log2, y);
log2 = vmlaq_f32(g_XMLogEst0, log2, y);
log2 = vmlaq_f32(vcvtq_f32_s32(e), log2, y);
log2 = vmulq_f32(g_XMInvLgE, log2);
// if (x is NaN) -> QNaN
// else if (V is positive)
// if (V is infinite) -> +inf
// else -> log2(V)
// else
// if (V is zero) -> -inf
// else -> -QNaN
uint32x4_t isInfinite = vandq_u32(vreinterpretq_u32_f32(V), g_XMAbsMask);
isInfinite = vceqq_u32(isInfinite, g_XMInfinity);
uint32x4_t isGreaterZero = vcgtq_s32(vreinterpretq_s32_f32(V), g_XMZero);
uint32x4_t isNotFinite = vcgtq_s32(vreinterpretq_s32_f32(V), g_XMInfinity);
uint32x4_t isPositive = vbicq_u32(isGreaterZero, isNotFinite);
uint32x4_t isZero = vandq_u32(vreinterpretq_u32_f32(V), g_XMAbsMask);
isZero = vceqq_u32(isZero, g_XMZero);
uint32x4_t t0 = vandq_u32(vreinterpretq_u32_f32(V), g_XMQNaNTest);
uint32x4_t t1 = vandq_u32(vreinterpretq_u32_f32(V), g_XMInfinity);
t0 = vceqq_u32(t0, g_XMZero);
t1 = vceqq_u32(t1, g_XMInfinity);
uint32x4_t isNaN = vbicq_u32(t1, t0);
float32x4_t result = vbslq_f32(isInfinite, g_XMInfinity, log2);
float32x4_t tmp2 = vbslq_f32(isZero, g_XMNegInfinity, g_XMNegQNaN);
result = vbslq_f32(isPositive, result, tmp2);
result = vbslq_f32(isNaN, g_XMQNaN, result);
return result;
#elif defined(_XM_SVML_INTRINSICS_)
XMVECTOR Result = _mm_log_ps(V);
return Result;
#elif defined(_XM_SSE_INTRINSICS_)
__m128i rawBiased = _mm_and_si128(_mm_castps_si128(V), g_XMInfinity);
__m128i trailing = _mm_and_si128(_mm_castps_si128(V), g_XMQNaNTest);
__m128i isExponentZero = _mm_cmpeq_epi32(g_XMZero, rawBiased);
// Compute exponent and significand for normals.
__m128i biased = _mm_srli_epi32(rawBiased, 23);
__m128i exponentNor = _mm_sub_epi32(biased, g_XMExponentBias);
__m128i trailingNor = trailing;
// Compute exponent and significand for subnormals.
__m128i leading = Internal::GetLeadingBit(trailing);
__m128i shift = _mm_sub_epi32(g_XMNumTrailing, leading);
__m128i exponentSub = _mm_sub_epi32(g_XMSubnormalExponent, shift);
__m128i trailingSub = Internal::multi_sll_epi32(trailing, shift);
trailingSub = _mm_and_si128(trailingSub, g_XMQNaNTest);
__m128i select0 = _mm_and_si128(isExponentZero, exponentSub);
__m128i select1 = _mm_andnot_si128(isExponentZero, exponentNor);
__m128i e = _mm_or_si128(select0, select1);
select0 = _mm_and_si128(isExponentZero, trailingSub);
select1 = _mm_andnot_si128(isExponentZero, trailingNor);
__m128i t = _mm_or_si128(select0, select1);
// Compute the approximation.
__m128i tmp = _mm_or_si128(g_XMOne, t);
__m128 y = _mm_sub_ps(_mm_castsi128_ps(tmp), g_XMOne);
__m128 log2 = XM_FMADD_PS(g_XMLogEst7, y, g_XMLogEst6);
log2 = XM_FMADD_PS(log2, y, g_XMLogEst5);
log2 = XM_FMADD_PS(log2, y, g_XMLogEst4);
log2 = XM_FMADD_PS(log2, y, g_XMLogEst3);
log2 = XM_FMADD_PS(log2, y, g_XMLogEst2);
log2 = XM_FMADD_PS(log2, y, g_XMLogEst1);
log2 = XM_FMADD_PS(log2, y, g_XMLogEst0);
log2 = XM_FMADD_PS(log2, y, _mm_cvtepi32_ps(e));
log2 = _mm_mul_ps(g_XMInvLgE, log2);
// if (x is NaN) -> QNaN
// else if (V is positive)
// if (V is infinite) -> +inf
// else -> log2(V)
// else
// if (V is zero) -> -inf
// else -> -QNaN
__m128i isInfinite = _mm_and_si128(_mm_castps_si128(V), g_XMAbsMask);
isInfinite = _mm_cmpeq_epi32(isInfinite, g_XMInfinity);
__m128i isGreaterZero = _mm_cmpgt_epi32(_mm_castps_si128(V), g_XMZero);
__m128i isNotFinite = _mm_cmpgt_epi32(_mm_castps_si128(V), g_XMInfinity);
__m128i isPositive = _mm_andnot_si128(isNotFinite, isGreaterZero);
__m128i isZero = _mm_and_si128(_mm_castps_si128(V), g_XMAbsMask);
isZero = _mm_cmpeq_epi32(isZero, g_XMZero);
__m128i t0 = _mm_and_si128(_mm_castps_si128(V), g_XMQNaNTest);
__m128i t1 = _mm_and_si128(_mm_castps_si128(V), g_XMInfinity);
t0 = _mm_cmpeq_epi32(t0, g_XMZero);
t1 = _mm_cmpeq_epi32(t1, g_XMInfinity);
__m128i isNaN = _mm_andnot_si128(t0, t1);
select0 = _mm_and_si128(isInfinite, g_XMInfinity);
select1 = _mm_andnot_si128(isInfinite, _mm_castps_si128(log2));
__m128i result = _mm_or_si128(select0, select1);
select0 = _mm_and_si128(isZero, g_XMNegInfinity);
select1 = _mm_andnot_si128(isZero, g_XMNegQNaN);
tmp = _mm_or_si128(select0, select1);
select0 = _mm_and_si128(isPositive, result);
select1 = _mm_andnot_si128(isPositive, tmp);
result = _mm_or_si128(select0, select1);
select0 = _mm_and_si128(isNaN, g_XMQNaN);
select1 = _mm_andnot_si128(isNaN, result);
result = _mm_or_si128(select0, select1);
return _mm_castsi128_ps(result);
#endif
}
//------------------------------------------------------------------------------
inline XMVECTOR XM_CALLCONV XMVectorLog(FXMVECTOR V) noexcept
{
return XMVectorLog2(V);
}
//------------------------------------------------------------------------------
inline XMVECTOR XM_CALLCONV XMVectorPow
(
FXMVECTOR V1,
FXMVECTOR V2
) noexcept
{
#if defined(_XM_NO_INTRINSICS_)
XMVECTORF32 Result = { { {
powf(V1.vector4_f32[0], V2.vector4_f32[0]),
powf(V1.vector4_f32[1], V2.vector4_f32[1]),
powf(V1.vector4_f32[2], V2.vector4_f32[2]),
powf(V1.vector4_f32[3], V2.vector4_f32[3])
} } };
return Result.v;
#elif defined(_XM_ARM_NEON_INTRINSICS_)
XMVECTORF32 vResult = { { {
powf(vgetq_lane_f32(V1, 0), vgetq_lane_f32(V2, 0)),
powf(vgetq_lane_f32(V1, 1), vgetq_lane_f32(V2, 1)),
powf(vgetq_lane_f32(V1, 2), vgetq_lane_f32(V2, 2)),
powf(vgetq_lane_f32(V1, 3), vgetq_lane_f32(V2, 3))
} } };
return vResult.v;
#elif defined(_XM_SVML_INTRINSICS_)
XMVECTOR Result = _mm_pow_ps(V1, V2);
return Result;
#elif defined(_XM_SSE_INTRINSICS_)
XM_ALIGNED_DATA(16) float a[4];
XM_ALIGNED_DATA(16) float b[4];
_mm_store_ps(a, V1);
_mm_store_ps(b, V2);
XMVECTOR vResult = _mm_setr_ps(
powf(a[0], b[0]),
powf(a[1], b[1]),
powf(a[2], b[2]),
powf(a[3], b[3]));
return vResult;
#endif
}
//------------------------------------------------------------------------------
inline XMVECTOR XM_CALLCONV XMVectorAbs(FXMVECTOR V) noexcept
{
#if defined(_XM_NO_INTRINSICS_)
XMVECTORF32 vResult = { { {
fabsf(V.vector4_f32[0]),
fabsf(V.vector4_f32[1]),
fabsf(V.vector4_f32[2]),
fabsf(V.vector4_f32[3])
} } };
return vResult.v;
#elif defined(_XM_ARM_NEON_INTRINSICS_)
return vabsq_f32(V);
#elif defined(_XM_SSE_INTRINSICS_)
XMVECTOR vResult = _mm_setzero_ps();
vResult = _mm_sub_ps(vResult, V);
vResult = _mm_max_ps(vResult, V);
return vResult;
#endif
}
//------------------------------------------------------------------------------
inline XMVECTOR XM_CALLCONV XMVectorMod
(
FXMVECTOR V1,
FXMVECTOR V2
) noexcept
{
// V1 % V2 = V1 - V2 * truncate(V1 / V2)
#if defined(_XM_NO_INTRINSICS_)
XMVECTOR Quotient = XMVectorDivide(V1, V2);
Quotient = XMVectorTruncate(Quotient);
XMVECTOR Result = XMVectorNegativeMultiplySubtract(V2, Quotient, V1);
return Result;
#elif defined(_XM_ARM_NEON_INTRINSICS_)
XMVECTOR vResult = XMVectorDivide(V1, V2);
vResult = XMVectorTruncate(vResult);
return vmlsq_f32(V1, vResult, V2);
#elif defined(_XM_SSE_INTRINSICS_)
XMVECTOR vResult = _mm_div_ps(V1, V2);
vResult = XMVectorTruncate(vResult);
return XM_FNMADD_PS(vResult, V2, V1);
#endif
}
//------------------------------------------------------------------------------
inline XMVECTOR XM_CALLCONV XMVectorModAngles(FXMVECTOR Angles) noexcept
{
#if defined(_XM_NO_INTRINSICS_)
XMVECTOR V;
XMVECTOR Result;
// Modulo the range of the given angles such that -XM_PI <= Angles < XM_PI
V = XMVectorMultiply(Angles, g_XMReciprocalTwoPi.v);
V = XMVectorRound(V);
Result = XMVectorNegativeMultiplySubtract(g_XMTwoPi.v, V, Angles);
return Result;
#elif defined(_XM_ARM_NEON_INTRINSICS_)
// Modulo the range of the given angles such that -XM_PI <= Angles < XM_PI
XMVECTOR vResult = vmulq_f32(Angles, g_XMReciprocalTwoPi);
// Use the inline function due to complexity for rounding
vResult = XMVectorRound(vResult);
return vmlsq_f32(Angles, vResult, g_XMTwoPi);
#elif defined(_XM_SSE_INTRINSICS_)
// Modulo the range of the given angles such that -XM_PI <= Angles < XM_PI
XMVECTOR vResult = _mm_mul_ps(Angles, g_XMReciprocalTwoPi);
// Use the inline function due to complexity for rounding
vResult = XMVectorRound(vResult);
return XM_FNMADD_PS(vResult, g_XMTwoPi, Angles);
#endif
}
//------------------------------------------------------------------------------
inline XMVECTOR XM_CALLCONV XMVectorSin(FXMVECTOR V) noexcept
{
// 11-degree minimax approximation
#if defined(_XM_NO_INTRINSICS_)
XMVECTORF32 Result = { { {
sinf(V.vector4_f32[0]),
sinf(V.vector4_f32[1]),
sinf(V.vector4_f32[2]),
sinf(V.vector4_f32[3])
} } };
return Result.v;
#elif defined(_XM_ARM_NEON_INTRINSICS_)
// Force the value within the bounds of pi
XMVECTOR x = XMVectorModAngles(V);
// Map in [-pi/2,pi/2] with sin(y) = sin(x).
uint32x4_t sign = vandq_u32(vreinterpretq_u32_f32(x), g_XMNegativeZero);
uint32x4_t c = vorrq_u32(g_XMPi, sign); // pi when x >= 0, -pi when x < 0
float32x4_t absx = vabsq_f32(x);
float32x4_t rflx = vsubq_f32(vreinterpretq_f32_u32(c), x);
uint32x4_t comp = vcleq_f32(absx, g_XMHalfPi);
x = vbslq_f32(comp, x, rflx);
float32x4_t x2 = vmulq_f32(x, x);
// Compute polynomial approximation
const XMVECTOR SC1 = g_XMSinCoefficients1;
const XMVECTOR SC0 = g_XMSinCoefficients0;
XMVECTOR vConstants = vdupq_lane_f32(vget_high_f32(SC0), 1);
XMVECTOR Result = vmlaq_lane_f32(vConstants, x2, vget_low_f32(SC1), 0);
vConstants = vdupq_lane_f32(vget_high_f32(SC0), 0);
Result = vmlaq_f32(vConstants, Result, x2);
vConstants = vdupq_lane_f32(vget_low_f32(SC0), 1);
Result = vmlaq_f32(vConstants, Result, x2);
vConstants = vdupq_lane_f32(vget_low_f32(SC0), 0);
Result = vmlaq_f32(vConstants, Result, x2);
Result = vmlaq_f32(g_XMOne, Result, x2);
Result = vmulq_f32(Result, x);
return Result;
#elif defined(_XM_SVML_INTRINSICS_)
XMVECTOR Result = _mm_sin_ps(V);
return Result;
#elif defined(_XM_SSE_INTRINSICS_)
// Force the value within the bounds of pi
XMVECTOR x = XMVectorModAngles(V);
// Map in [-pi/2,pi/2] with sin(y) = sin(x).
__m128 sign = _mm_and_ps(x, g_XMNegativeZero);
__m128 c = _mm_or_ps(g_XMPi, sign); // pi when x >= 0, -pi when x < 0
__m128 absx = _mm_andnot_ps(sign, x); // |x|
__m128 rflx = _mm_sub_ps(c, x);
__m128 comp = _mm_cmple_ps(absx, g_XMHalfPi);
__m128 select0 = _mm_and_ps(comp, x);
__m128 select1 = _mm_andnot_ps(comp, rflx);
x = _mm_or_ps(select0, select1);
__m128 x2 = _mm_mul_ps(x, x);
// Compute polynomial approximation
const XMVECTOR SC1 = g_XMSinCoefficients1;
__m128 vConstantsB = XM_PERMUTE_PS(SC1, _MM_SHUFFLE(0, 0, 0, 0));
const XMVECTOR SC0 = g_XMSinCoefficients0;
__m128 vConstants = XM_PERMUTE_PS(SC0, _MM_SHUFFLE(3, 3, 3, 3));
__m128 Result = XM_FMADD_PS(vConstantsB, x2, vConstants);
vConstants = XM_PERMUTE_PS(SC0, _MM_SHUFFLE(2, 2, 2, 2));
Result = XM_FMADD_PS(Result, x2, vConstants);
vConstants = XM_PERMUTE_PS(SC0, _MM_SHUFFLE(1, 1, 1, 1));
Result = XM_FMADD_PS(Result, x2, vConstants);
vConstants = XM_PERMUTE_PS(SC0, _MM_SHUFFLE(0, 0, 0, 0));
Result = XM_FMADD_PS(Result, x2, vConstants);
Result = XM_FMADD_PS(Result, x2, g_XMOne);
Result = _mm_mul_ps(Result, x);
return Result;
#endif
}
//------------------------------------------------------------------------------
inline XMVECTOR XM_CALLCONV XMVectorCos(FXMVECTOR V) noexcept
{
// 10-degree minimax approximation
#if defined(_XM_NO_INTRINSICS_)
XMVECTORF32 Result = { { {
cosf(V.vector4_f32[0]),
cosf(V.vector4_f32[1]),
cosf(V.vector4_f32[2]),
cosf(V.vector4_f32[3])
} } };
return Result.v;
#elif defined(_XM_ARM_NEON_INTRINSICS_)
// Map V to x in [-pi,pi].
XMVECTOR x = XMVectorModAngles(V);
// Map in [-pi/2,pi/2] with cos(y) = sign*cos(x).
uint32x4_t sign = vandq_u32(vreinterpretq_u32_f32(x), g_XMNegativeZero);
uint32x4_t c = vorrq_u32(g_XMPi, sign); // pi when x >= 0, -pi when x < 0
float32x4_t absx = vabsq_f32(x);
float32x4_t rflx = vsubq_f32(vreinterpretq_f32_u32(c), x);
uint32x4_t comp = vcleq_f32(absx, g_XMHalfPi);
x = vbslq_f32(comp, x, rflx);
float32x4_t fsign = vbslq_f32(comp, g_XMOne, g_XMNegativeOne);
float32x4_t x2 = vmulq_f32(x, x);
// Compute polynomial approximation
const XMVECTOR CC1 = g_XMCosCoefficients1;
const XMVECTOR CC0 = g_XMCosCoefficients0;
XMVECTOR vConstants = vdupq_lane_f32(vget_high_f32(CC0), 1);
XMVECTOR Result = vmlaq_lane_f32(vConstants, x2, vget_low_f32(CC1), 0);
vConstants = vdupq_lane_f32(vget_high_f32(CC0), 0);
Result = vmlaq_f32(vConstants, Result, x2);
vConstants = vdupq_lane_f32(vget_low_f32(CC0), 1);
Result = vmlaq_f32(vConstants, Result, x2);
vConstants = vdupq_lane_f32(vget_low_f32(CC0), 0);
Result = vmlaq_f32(vConstants, Result, x2);
Result = vmlaq_f32(g_XMOne, Result, x2);
Result = vmulq_f32(Result, fsign);
return Result;
#elif defined(_XM_SVML_INTRINSICS_)
XMVECTOR Result = _mm_cos_ps(V);
return Result;
#elif defined(_XM_SSE_INTRINSICS_)
// Map V to x in [-pi,pi].
XMVECTOR x = XMVectorModAngles(V);
// Map in [-pi/2,pi/2] with cos(y) = sign*cos(x).
XMVECTOR sign = _mm_and_ps(x, g_XMNegativeZero);
__m128 c = _mm_or_ps(g_XMPi, sign); // pi when x >= 0, -pi when x < 0
__m128 absx = _mm_andnot_ps(sign, x); // |x|
__m128 rflx = _mm_sub_ps(c, x);
__m128 comp = _mm_cmple_ps(absx, g_XMHalfPi);
__m128 select0 = _mm_and_ps(comp, x);
__m128 select1 = _mm_andnot_ps(comp, rflx);
x = _mm_or_ps(select0, select1);
select0 = _mm_and_ps(comp, g_XMOne);
select1 = _mm_andnot_ps(comp, g_XMNegativeOne);
sign = _mm_or_ps(select0, select1);
__m128 x2 = _mm_mul_ps(x, x);
// Compute polynomial approximation
const XMVECTOR CC1 = g_XMCosCoefficients1;
__m128 vConstantsB = XM_PERMUTE_PS(CC1, _MM_SHUFFLE(0, 0, 0, 0));
const XMVECTOR CC0 = g_XMCosCoefficients0;
__m128 vConstants = XM_PERMUTE_PS(CC0, _MM_SHUFFLE(3, 3, 3, 3));
__m128 Result = XM_FMADD_PS(vConstantsB, x2, vConstants);
vConstants = XM_PERMUTE_PS(CC0, _MM_SHUFFLE(2, 2, 2, 2));
Result = XM_FMADD_PS(Result, x2, vConstants);
vConstants = XM_PERMUTE_PS(CC0, _MM_SHUFFLE(1, 1, 1, 1));
Result = XM_FMADD_PS(Result, x2, vConstants);
vConstants = XM_PERMUTE_PS(CC0, _MM_SHUFFLE(0, 0, 0, 0));
Result = XM_FMADD_PS(Result, x2, vConstants);
Result = XM_FMADD_PS(Result, x2, g_XMOne);
Result = _mm_mul_ps(Result, sign);
return Result;
#endif
}
//------------------------------------------------------------------------------
_Use_decl_annotations_
inline void XM_CALLCONV XMVectorSinCos
(
XMVECTOR* pSin,
XMVECTOR* pCos,
FXMVECTOR V
) noexcept
{
assert(pSin != nullptr);
assert(pCos != nullptr);
// 11/10-degree minimax approximation
#if defined(_XM_NO_INTRINSICS_)
XMVECTORF32 Sin = { { {
sinf(V.vector4_f32[0]),
sinf(V.vector4_f32[1]),
sinf(V.vector4_f32[2]),
sinf(V.vector4_f32[3])
} } };
XMVECTORF32 Cos = { { {
cosf(V.vector4_f32[0]),
cosf(V.vector4_f32[1]),
cosf(V.vector4_f32[2]),
cosf(V.vector4_f32[3])
} } };
*pSin = Sin.v;
*pCos = Cos.v;
#elif defined(_XM_ARM_NEON_INTRINSICS_)
// Force the value within the bounds of pi
XMVECTOR x = XMVectorModAngles(V);
// Map in [-pi/2,pi/2] with cos(y) = sign*cos(x).
uint32x4_t sign = vandq_u32(vreinterpretq_u32_f32(x), g_XMNegativeZero);
uint32x4_t c = vorrq_u32(g_XMPi, sign); // pi when x >= 0, -pi when x < 0
float32x4_t absx = vabsq_f32(x);
float32x4_t rflx = vsubq_f32(vreinterpretq_f32_u32(c), x);
uint32x4_t comp = vcleq_f32(absx, g_XMHalfPi);
x = vbslq_f32(comp, x, rflx);
float32x4_t fsign = vbslq_f32(comp, g_XMOne, g_XMNegativeOne);
float32x4_t x2 = vmulq_f32(x, x);
// Compute polynomial approximation for sine
const XMVECTOR SC1 = g_XMSinCoefficients1;
const XMVECTOR SC0 = g_XMSinCoefficients0;
XMVECTOR vConstants = vdupq_lane_f32(vget_high_f32(SC0), 1);
XMVECTOR Result = vmlaq_lane_f32(vConstants, x2, vget_low_f32(SC1), 0);
vConstants = vdupq_lane_f32(vget_high_f32(SC0), 0);
Result = vmlaq_f32(vConstants, Result, x2);
vConstants = vdupq_lane_f32(vget_low_f32(SC0), 1);
Result = vmlaq_f32(vConstants, Result, x2);
vConstants = vdupq_lane_f32(vget_low_f32(SC0), 0);
Result = vmlaq_f32(vConstants, Result, x2);
Result = vmlaq_f32(g_XMOne, Result, x2);
*pSin = vmulq_f32(Result, x);
// Compute polynomial approximation for cosine
const XMVECTOR CC1 = g_XMCosCoefficients1;
const XMVECTOR CC0 = g_XMCosCoefficients0;
vConstants = vdupq_lane_f32(vget_high_f32(CC0), 1);
Result = vmlaq_lane_f32(vConstants, x2, vget_low_f32(CC1), 0);
vConstants = vdupq_lane_f32(vget_high_f32(CC0), 0);
Result = vmlaq_f32(vConstants, Result, x2);
vConstants = vdupq_lane_f32(vget_low_f32(CC0), 1);
Result = vmlaq_f32(vConstants, Result, x2);
vConstants = vdupq_lane_f32(vget_low_f32(CC0), 0);
Result = vmlaq_f32(vConstants, Result, x2);
Result = vmlaq_f32(g_XMOne, Result, x2);
*pCos = vmulq_f32(Result, fsign);
#elif defined(_XM_SVML_INTRINSICS_)
*pSin = _mm_sincos_ps(pCos, V);
#elif defined(_XM_SSE_INTRINSICS_)
// Force the value within the bounds of pi
XMVECTOR x = XMVectorModAngles(V);
// Map in [-pi/2,pi/2] with sin(y) = sin(x), cos(y) = sign*cos(x).
XMVECTOR sign = _mm_and_ps(x, g_XMNegativeZero);
__m128 c = _mm_or_ps(g_XMPi, sign); // pi when x >= 0, -pi when x < 0
__m128 absx = _mm_andnot_ps(sign, x); // |x|
__m128 rflx = _mm_sub_ps(c, x);
__m128 comp = _mm_cmple_ps(absx, g_XMHalfPi);
__m128 select0 = _mm_and_ps(comp, x);
__m128 select1 = _mm_andnot_ps(comp, rflx);
x = _mm_or_ps(select0, select1);
select0 = _mm_and_ps(comp, g_XMOne);
select1 = _mm_andnot_ps(comp, g_XMNegativeOne);
sign = _mm_or_ps(select0, select1);
__m128 x2 = _mm_mul_ps(x, x);
// Compute polynomial approximation of sine
const XMVECTOR SC1 = g_XMSinCoefficients1;
__m128 vConstantsB = XM_PERMUTE_PS(SC1, _MM_SHUFFLE(0, 0, 0, 0));
const XMVECTOR SC0 = g_XMSinCoefficients0;
__m128 vConstants = XM_PERMUTE_PS(SC0, _MM_SHUFFLE(3, 3, 3, 3));
__m128 Result = XM_FMADD_PS(vConstantsB, x2, vConstants);
vConstants = XM_PERMUTE_PS(SC0, _MM_SHUFFLE(2, 2, 2, 2));
Result = XM_FMADD_PS(Result, x2, vConstants);
vConstants = XM_PERMUTE_PS(SC0, _MM_SHUFFLE(1, 1, 1, 1));
Result = XM_FMADD_PS(Result, x2, vConstants);
vConstants = XM_PERMUTE_PS(SC0, _MM_SHUFFLE(0, 0, 0, 0));
Result = XM_FMADD_PS(Result, x2, vConstants);
Result = XM_FMADD_PS(Result, x2, g_XMOne);
Result = _mm_mul_ps(Result, x);
*pSin = Result;
// Compute polynomial approximation of cosine
const XMVECTOR CC1 = g_XMCosCoefficients1;
vConstantsB = XM_PERMUTE_PS(CC1, _MM_SHUFFLE(0, 0, 0, 0));
const XMVECTOR CC0 = g_XMCosCoefficients0;
vConstants = XM_PERMUTE_PS(CC0, _MM_SHUFFLE(3, 3, 3, 3));
Result = XM_FMADD_PS(vConstantsB, x2, vConstants);
vConstants = XM_PERMUTE_PS(CC0, _MM_SHUFFLE(2, 2, 2, 2));
Result = XM_FMADD_PS(Result, x2, vConstants);
vConstants = XM_PERMUTE_PS(CC0, _MM_SHUFFLE(1, 1, 1, 1));
Result = XM_FMADD_PS(Result, x2, vConstants);
vConstants = XM_PERMUTE_PS(CC0, _MM_SHUFFLE(0, 0, 0, 0));
Result = XM_FMADD_PS(Result, x2, vConstants);
Result = XM_FMADD_PS(Result, x2, g_XMOne);
Result = _mm_mul_ps(Result, sign);
*pCos = Result;
#endif
}
//------------------------------------------------------------------------------
inline XMVECTOR XM_CALLCONV XMVectorTan(FXMVECTOR V) noexcept
{
// Cody and Waite algorithm to compute tangent.
#if defined(_XM_NO_INTRINSICS_)
XMVECTORF32 Result = { { {
tanf(V.vector4_f32[0]),
tanf(V.vector4_f32[1]),
tanf(V.vector4_f32[2]),
tanf(V.vector4_f32[3])
} } };
return Result.v;
#elif defined(_XM_SVML_INTRINSICS_)
XMVECTOR Result = _mm_tan_ps(V);
return Result;
#elif defined(_XM_SSE_INTRINSICS_) || defined(_XM_ARM_NEON_INTRINSICS_)
static const XMVECTORF32 TanCoefficients0 = { { { 1.0f, -4.667168334e-1f, 2.566383229e-2f, -3.118153191e-4f } } };
static const XMVECTORF32 TanCoefficients1 = { { { 4.981943399e-7f, -1.333835001e-1f, 3.424887824e-3f, -1.786170734e-5f } } };
static const XMVECTORF32 TanConstants = { { { 1.570796371f, 6.077100628e-11f, 0.000244140625f, 0.63661977228f /*2 / Pi*/ } } };
static const XMVECTORU32 Mask = { { { 0x1, 0x1, 0x1, 0x1 } } };
XMVECTOR TwoDivPi = XMVectorSplatW(TanConstants.v);
XMVECTOR Zero = XMVectorZero();
XMVECTOR C0 = XMVectorSplatX(TanConstants.v);
XMVECTOR C1 = XMVectorSplatY(TanConstants.v);
XMVECTOR Epsilon = XMVectorSplatZ(TanConstants.v);
XMVECTOR VA = XMVectorMultiply(V, TwoDivPi);
VA = XMVectorRound(VA);
XMVECTOR VC = XMVectorNegativeMultiplySubtract(VA, C0, V);
XMVECTOR VB = XMVectorAbs(VA);
VC = XMVectorNegativeMultiplySubtract(VA, C1, VC);
#if defined(_XM_ARM_NEON_INTRINSICS_) && !defined(_XM_NO_INTRINSICS_)
VB = vreinterpretq_f32_u32(vcvtq_u32_f32(VB));
#elif defined(_XM_SSE_INTRINSICS_) && !defined(_XM_NO_INTRINSICS_)
reinterpret_cast<__m128i*>(&VB)[0] = _mm_cvttps_epi32(VB);
#else
for (size_t i = 0; i < 4; i++)
{
VB.vector4_u32[i] = static_cast<uint32_t>(VB.vector4_f32[i]);
}
#endif
XMVECTOR VC2 = XMVectorMultiply(VC, VC);
XMVECTOR T7 = XMVectorSplatW(TanCoefficients1.v);
XMVECTOR T6 = XMVectorSplatZ(TanCoefficients1.v);
XMVECTOR T4 = XMVectorSplatX(TanCoefficients1.v);
XMVECTOR T3 = XMVectorSplatW(TanCoefficients0.v);
XMVECTOR T5 = XMVectorSplatY(TanCoefficients1.v);
XMVECTOR T2 = XMVectorSplatZ(TanCoefficients0.v);
XMVECTOR T1 = XMVectorSplatY(TanCoefficients0.v);
XMVECTOR T0 = XMVectorSplatX(TanCoefficients0.v);
XMVECTOR VBIsEven = XMVectorAndInt(VB, Mask.v);
VBIsEven = XMVectorEqualInt(VBIsEven, Zero);
XMVECTOR N = XMVectorMultiplyAdd(VC2, T7, T6);
XMVECTOR D = XMVectorMultiplyAdd(VC2, T4, T3);
N = XMVectorMultiplyAdd(VC2, N, T5);
D = XMVectorMultiplyAdd(VC2, D, T2);
N = XMVectorMultiply(VC2, N);
D = XMVectorMultiplyAdd(VC2, D, T1);
N = XMVectorMultiplyAdd(VC, N, VC);
XMVECTOR VCNearZero = XMVectorInBounds(VC, Epsilon);
D = XMVectorMultiplyAdd(VC2, D, T0);
N = XMVectorSelect(N, VC, VCNearZero);
D = XMVectorSelect(D, g_XMOne.v, VCNearZero);
XMVECTOR R0 = XMVectorNegate(N);
XMVECTOR R1 = XMVectorDivide(N, D);
R0 = XMVectorDivide(D, R0);
XMVECTOR VIsZero = XMVectorEqual(V, Zero);
XMVECTOR Result = XMVectorSelect(R0, R1, VBIsEven);
Result = XMVectorSelect(Result, Zero, VIsZero);
return Result;
#endif
}
//------------------------------------------------------------------------------
inline XMVECTOR XM_CALLCONV XMVectorSinH(FXMVECTOR V) noexcept
{
#if defined(_XM_NO_INTRINSICS_)
XMVECTORF32 Result = { { {
sinhf(V.vector4_f32[0]),
sinhf(V.vector4_f32[1]),
sinhf(V.vector4_f32[2]),
sinhf(V.vector4_f32[3])
} } };
return Result.v;
#elif defined(_XM_ARM_NEON_INTRINSICS_)
static const XMVECTORF32 Scale = { { { 1.442695040888963f, 1.442695040888963f, 1.442695040888963f, 1.442695040888963f } } }; // 1.0f / ln(2.0f)
XMVECTOR V1 = vmlaq_f32(g_XMNegativeOne.v, V, Scale.v);
XMVECTOR V2 = vmlsq_f32(g_XMNegativeOne.v, V, Scale.v);
XMVECTOR E1 = XMVectorExp(V1);
XMVECTOR E2 = XMVectorExp(V2);
return vsubq_f32(E1, E2);
#elif defined(_XM_SVML_INTRINSICS_)
XMVECTOR Result = _mm_sinh_ps(V);
return Result;
#elif defined(_XM_SSE_INTRINSICS_)
static const XMVECTORF32 Scale = { { { 1.442695040888963f, 1.442695040888963f, 1.442695040888963f, 1.442695040888963f } } }; // 1.0f / ln(2.0f)
XMVECTOR V1 = XM_FMADD_PS(V, Scale, g_XMNegativeOne);
XMVECTOR V2 = XM_FNMADD_PS(V, Scale, g_XMNegativeOne);
XMVECTOR E1 = XMVectorExp(V1);
XMVECTOR E2 = XMVectorExp(V2);
return _mm_sub_ps(E1, E2);
#endif
}
//------------------------------------------------------------------------------
inline XMVECTOR XM_CALLCONV XMVectorCosH(FXMVECTOR V) noexcept
{
#if defined(_XM_NO_INTRINSICS_)
XMVECTORF32 Result = { { {
coshf(V.vector4_f32[0]),
coshf(V.vector4_f32[1]),
coshf(V.vector4_f32[2]),
coshf(V.vector4_f32[3])
} } };
return Result.v;
#elif defined(_XM_ARM_NEON_INTRINSICS_)
static const XMVECTORF32 Scale = { { { 1.442695040888963f, 1.442695040888963f, 1.442695040888963f, 1.442695040888963f } } }; // 1.0f / ln(2.0f)
XMVECTOR V1 = vmlaq_f32(g_XMNegativeOne.v, V, Scale.v);
XMVECTOR V2 = vmlsq_f32(g_XMNegativeOne.v, V, Scale.v);
XMVECTOR E1 = XMVectorExp(V1);
XMVECTOR E2 = XMVectorExp(V2);
return vaddq_f32(E1, E2);
#elif defined(_XM_SVML_INTRINSICS_)
XMVECTOR Result = _mm_cosh_ps(V);
return Result;
#elif defined(_XM_SSE_INTRINSICS_)
static const XMVECTORF32 Scale = { { { 1.442695040888963f, 1.442695040888963f, 1.442695040888963f, 1.442695040888963f } } }; // 1.0f / ln(2.0f)
XMVECTOR V1 = XM_FMADD_PS(V, Scale.v, g_XMNegativeOne.v);
XMVECTOR V2 = XM_FNMADD_PS(V, Scale.v, g_XMNegativeOne.v);
XMVECTOR E1 = XMVectorExp(V1);
XMVECTOR E2 = XMVectorExp(V2);
return _mm_add_ps(E1, E2);
#endif
}
//------------------------------------------------------------------------------
inline XMVECTOR XM_CALLCONV XMVectorTanH(FXMVECTOR V) noexcept
{
#if defined(_XM_NO_INTRINSICS_)
XMVECTORF32 Result = { { {
tanhf(V.vector4_f32[0]),
tanhf(V.vector4_f32[1]),
tanhf(V.vector4_f32[2]),
tanhf(V.vector4_f32[3])
} } };
return Result.v;
#elif defined(_XM_ARM_NEON_INTRINSICS_)
static const XMVECTORF32 Scale = { { { 2.8853900817779268f, 2.8853900817779268f, 2.8853900817779268f, 2.8853900817779268f } } }; // 2.0f / ln(2.0f)
XMVECTOR E = vmulq_f32(V, Scale.v);
E = XMVectorExp(E);
E = vmlaq_f32(g_XMOneHalf.v, E, g_XMOneHalf.v);
E = XMVectorReciprocal(E);
return vsubq_f32(g_XMOne.v, E);
#elif defined(_XM_SVML_INTRINSICS_)
XMVECTOR Result = _mm_tanh_ps(V);
return Result;
#elif defined(_XM_SSE_INTRINSICS_)
static const XMVECTORF32 Scale = { { { 2.8853900817779268f, 2.8853900817779268f, 2.8853900817779268f, 2.8853900817779268f } } }; // 2.0f / ln(2.0f)
XMVECTOR E = _mm_mul_ps(V, Scale.v);
E = XMVectorExp(E);
E = XM_FMADD_PS(E, g_XMOneHalf.v, g_XMOneHalf.v);
E = _mm_div_ps(g_XMOne.v, E);
return _mm_sub_ps(g_XMOne.v, E);
#endif
}
//------------------------------------------------------------------------------
inline XMVECTOR XM_CALLCONV XMVectorASin(FXMVECTOR V) noexcept
{
// 7-degree minimax approximation
#if defined(_XM_NO_INTRINSICS_)
XMVECTORF32 Result = { { {
asinf(V.vector4_f32[0]),
asinf(V.vector4_f32[1]),
asinf(V.vector4_f32[2]),
asinf(V.vector4_f32[3])
} } };
return Result.v;
#elif defined(_XM_ARM_NEON_INTRINSICS_)
uint32x4_t nonnegative = vcgeq_f32(V, g_XMZero);
float32x4_t x = vabsq_f32(V);
// Compute (1-|V|), clamp to zero to avoid sqrt of negative number.
float32x4_t oneMValue = vsubq_f32(g_XMOne, x);
float32x4_t clampOneMValue = vmaxq_f32(g_XMZero, oneMValue);
float32x4_t root = XMVectorSqrt(clampOneMValue);
// Compute polynomial approximation
const XMVECTOR AC1 = g_XMArcCoefficients1;
XMVECTOR vConstants = vdupq_lane_f32(vget_high_f32(AC1), 0);
XMVECTOR t0 = vmlaq_lane_f32(vConstants, x, vget_high_f32(AC1), 1);
vConstants = vdupq_lane_f32(vget_low_f32(AC1), 1);
t0 = vmlaq_f32(vConstants, t0, x);
vConstants = vdupq_lane_f32(vget_low_f32(AC1), 0);
t0 = vmlaq_f32(vConstants, t0, x);
const XMVECTOR AC0 = g_XMArcCoefficients0;
vConstants = vdupq_lane_f32(vget_high_f32(AC0), 1);
t0 = vmlaq_f32(vConstants, t0, x);
vConstants = vdupq_lane_f32(vget_high_f32(AC0), 0);
t0 = vmlaq_f32(vConstants, t0, x);
vConstants = vdupq_lane_f32(vget_low_f32(AC0), 1);
t0 = vmlaq_f32(vConstants, t0, x);
vConstants = vdupq_lane_f32(vget_low_f32(AC0), 0);
t0 = vmlaq_f32(vConstants, t0, x);
t0 = vmulq_f32(t0, root);
float32x4_t t1 = vsubq_f32(g_XMPi, t0);
t0 = vbslq_f32(nonnegative, t0, t1);
t0 = vsubq_f32(g_XMHalfPi, t0);
return t0;
#elif defined(_XM_SVML_INTRINSICS_)
XMVECTOR Result = _mm_asin_ps(V);
return Result;
#elif defined(_XM_SSE_INTRINSICS_)
__m128 nonnegative = _mm_cmpge_ps(V, g_XMZero);
__m128 mvalue = _mm_sub_ps(g_XMZero, V);
__m128 x = _mm_max_ps(V, mvalue); // |V|
// Compute (1-|V|), clamp to zero to avoid sqrt of negative number.
__m128 oneMValue = _mm_sub_ps(g_XMOne, x);
__m128 clampOneMValue = _mm_max_ps(g_XMZero, oneMValue);
__m128 root = _mm_sqrt_ps(clampOneMValue); // sqrt(1-|V|)
// Compute polynomial approximation
const XMVECTOR AC1 = g_XMArcCoefficients1;
__m128 vConstantsB = XM_PERMUTE_PS(AC1, _MM_SHUFFLE(3, 3, 3, 3));
__m128 vConstants = XM_PERMUTE_PS(AC1, _MM_SHUFFLE(2, 2, 2, 2));
__m128 t0 = XM_FMADD_PS(vConstantsB, x, vConstants);
vConstants = XM_PERMUTE_PS(AC1, _MM_SHUFFLE(1, 1, 1, 1));
t0 = XM_FMADD_PS(t0, x, vConstants);
vConstants = XM_PERMUTE_PS(AC1, _MM_SHUFFLE(0, 0, 0, 0));
t0 = XM_FMADD_PS(t0, x, vConstants);
const XMVECTOR AC0 = g_XMArcCoefficients0;
vConstants = XM_PERMUTE_PS(AC0, _MM_SHUFFLE(3, 3, 3, 3));
t0 = XM_FMADD_PS(t0, x, vConstants);
vConstants = XM_PERMUTE_PS(AC0, _MM_SHUFFLE(2, 2, 2, 2));
t0 = XM_FMADD_PS(t0, x, vConstants);
vConstants = XM_PERMUTE_PS(AC0, _MM_SHUFFLE(1, 1, 1, 1));
t0 = XM_FMADD_PS(t0, x, vConstants);
vConstants = XM_PERMUTE_PS(AC0, _MM_SHUFFLE(0, 0, 0, 0));
t0 = XM_FMADD_PS(t0, x, vConstants);
t0 = _mm_mul_ps(t0, root);
__m128 t1 = _mm_sub_ps(g_XMPi, t0);
t0 = _mm_and_ps(nonnegative, t0);
t1 = _mm_andnot_ps(nonnegative, t1);
t0 = _mm_or_ps(t0, t1);
t0 = _mm_sub_ps(g_XMHalfPi, t0);
return t0;
#endif
}
//------------------------------------------------------------------------------
inline XMVECTOR XM_CALLCONV XMVectorACos(FXMVECTOR V) noexcept
{
// 7-degree minimax approximation
#if defined(_XM_NO_INTRINSICS_)
XMVECTORF32 Result = { { {
acosf(V.vector4_f32[0]),
acosf(V.vector4_f32[1]),
acosf(V.vector4_f32[2]),
acosf(V.vector4_f32[3])
} } };
return Result.v;
#elif defined(_XM_ARM_NEON_INTRINSICS_)
uint32x4_t nonnegative = vcgeq_f32(V, g_XMZero);
float32x4_t x = vabsq_f32(V);
// Compute (1-|V|), clamp to zero to avoid sqrt of negative number.
float32x4_t oneMValue = vsubq_f32(g_XMOne, x);
float32x4_t clampOneMValue = vmaxq_f32(g_XMZero, oneMValue);
float32x4_t root = XMVectorSqrt(clampOneMValue);
// Compute polynomial approximation
const XMVECTOR AC1 = g_XMArcCoefficients1;
XMVECTOR vConstants = vdupq_lane_f32(vget_high_f32(AC1), 0);
XMVECTOR t0 = vmlaq_lane_f32(vConstants, x, vget_high_f32(AC1), 1);
vConstants = vdupq_lane_f32(vget_low_f32(AC1), 1);
t0 = vmlaq_f32(vConstants, t0, x);
vConstants = vdupq_lane_f32(vget_low_f32(AC1), 0);
t0 = vmlaq_f32(vConstants, t0, x);
const XMVECTOR AC0 = g_XMArcCoefficients0;
vConstants = vdupq_lane_f32(vget_high_f32(AC0), 1);
t0 = vmlaq_f32(vConstants, t0, x);
vConstants = vdupq_lane_f32(vget_high_f32(AC0), 0);
t0 = vmlaq_f32(vConstants, t0, x);
vConstants = vdupq_lane_f32(vget_low_f32(AC0), 1);
t0 = vmlaq_f32(vConstants, t0, x);
vConstants = vdupq_lane_f32(vget_low_f32(AC0), 0);
t0 = vmlaq_f32(vConstants, t0, x);
t0 = vmulq_f32(t0, root);
float32x4_t t1 = vsubq_f32(g_XMPi, t0);
t0 = vbslq_f32(nonnegative, t0, t1);
return t0;
#elif defined(_XM_SVML_INTRINSICS_)
XMVECTOR Result = _mm_acos_ps(V);
return Result;
#elif defined(_XM_SSE_INTRINSICS_)
__m128 nonnegative = _mm_cmpge_ps(V, g_XMZero);
__m128 mvalue = _mm_sub_ps(g_XMZero, V);
__m128 x = _mm_max_ps(V, mvalue); // |V|
// Compute (1-|V|), clamp to zero to avoid sqrt of negative number.
__m128 oneMValue = _mm_sub_ps(g_XMOne, x);
__m128 clampOneMValue = _mm_max_ps(g_XMZero, oneMValue);
__m128 root = _mm_sqrt_ps(clampOneMValue); // sqrt(1-|V|)
// Compute polynomial approximation
const XMVECTOR AC1 = g_XMArcCoefficients1;
__m128 vConstantsB = XM_PERMUTE_PS(AC1, _MM_SHUFFLE(3, 3, 3, 3));
__m128 vConstants = XM_PERMUTE_PS(AC1, _MM_SHUFFLE(2, 2, 2, 2));
__m128 t0 = XM_FMADD_PS(vConstantsB, x, vConstants);
vConstants = XM_PERMUTE_PS(AC1, _MM_SHUFFLE(1, 1, 1, 1));
t0 = XM_FMADD_PS(t0, x, vConstants);
vConstants = XM_PERMUTE_PS(AC1, _MM_SHUFFLE(0, 0, 0, 0));
t0 = XM_FMADD_PS(t0, x, vConstants);
const XMVECTOR AC0 = g_XMArcCoefficients0;
vConstants = XM_PERMUTE_PS(AC0, _MM_SHUFFLE(3, 3, 3, 3));
t0 = XM_FMADD_PS(t0, x, vConstants);
vConstants = XM_PERMUTE_PS(AC0, _MM_SHUFFLE(2, 2, 2, 2));
t0 = XM_FMADD_PS(t0, x, vConstants);
vConstants = XM_PERMUTE_PS(AC0, _MM_SHUFFLE(1, 1, 1, 1));
t0 = XM_FMADD_PS(t0, x, vConstants);
vConstants = XM_PERMUTE_PS(AC0, _MM_SHUFFLE(0, 0, 0, 0));
t0 = XM_FMADD_PS(t0, x, vConstants);
t0 = _mm_mul_ps(t0, root);
__m128 t1 = _mm_sub_ps(g_XMPi, t0);
t0 = _mm_and_ps(nonnegative, t0);
t1 = _mm_andnot_ps(nonnegative, t1);
t0 = _mm_or_ps(t0, t1);
return t0;
#endif
}
//------------------------------------------------------------------------------
inline XMVECTOR XM_CALLCONV XMVectorATan(FXMVECTOR V) noexcept
{
// 17-degree minimax approximation
#if defined(_XM_NO_INTRINSICS_)
XMVECTORF32 Result = { { {
atanf(V.vector4_f32[0]),
atanf(V.vector4_f32[1]),
atanf(V.vector4_f32[2]),
atanf(V.vector4_f32[3])
} } };
return Result.v;
#elif defined(_XM_ARM_NEON_INTRINSICS_)
float32x4_t absV = vabsq_f32(V);
float32x4_t invV = XMVectorReciprocal(V);
uint32x4_t comp = vcgtq_f32(V, g_XMOne);
float32x4_t sign = vbslq_f32(comp, g_XMOne, g_XMNegativeOne);
comp = vcleq_f32(absV, g_XMOne);
sign = vbslq_f32(comp, g_XMZero, sign);
float32x4_t x = vbslq_f32(comp, V, invV);
float32x4_t x2 = vmulq_f32(x, x);
// Compute polynomial approximation
const XMVECTOR TC1 = g_XMATanCoefficients1;
XMVECTOR vConstants = vdupq_lane_f32(vget_high_f32(TC1), 0);
XMVECTOR Result = vmlaq_lane_f32(vConstants, x2, vget_high_f32(TC1), 1);
vConstants = vdupq_lane_f32(vget_low_f32(TC1), 1);
Result = vmlaq_f32(vConstants, Result, x2);
vConstants = vdupq_lane_f32(vget_low_f32(TC1), 0);
Result = vmlaq_f32(vConstants, Result, x2);
const XMVECTOR TC0 = g_XMATanCoefficients0;
vConstants = vdupq_lane_f32(vget_high_f32(TC0), 1);
Result = vmlaq_f32(vConstants, Result, x2);
vConstants = vdupq_lane_f32(vget_high_f32(TC0), 0);
Result = vmlaq_f32(vConstants, Result, x2);
vConstants = vdupq_lane_f32(vget_low_f32(TC0), 1);
Result = vmlaq_f32(vConstants, Result, x2);
vConstants = vdupq_lane_f32(vget_low_f32(TC0), 0);
Result = vmlaq_f32(vConstants, Result, x2);
Result = vmlaq_f32(g_XMOne, Result, x2);
Result = vmulq_f32(Result, x);
float32x4_t result1 = vmulq_f32(sign, g_XMHalfPi);
result1 = vsubq_f32(result1, Result);
comp = vceqq_f32(sign, g_XMZero);
Result = vbslq_f32(comp, Result, result1);
return Result;
#elif defined(_XM_SVML_INTRINSICS_)
XMVECTOR Result = _mm_atan_ps(V);
return Result;
#elif defined(_XM_SSE_INTRINSICS_)
__m128 absV = XMVectorAbs(V);
__m128 invV = _mm_div_ps(g_XMOne, V);
__m128 comp = _mm_cmpgt_ps(V, g_XMOne);
__m128 select0 = _mm_and_ps(comp, g_XMOne);
__m128 select1 = _mm_andnot_ps(comp, g_XMNegativeOne);
__m128 sign = _mm_or_ps(select0, select1);
comp = _mm_cmple_ps(absV, g_XMOne);
select0 = _mm_and_ps(comp, g_XMZero);
select1 = _mm_andnot_ps(comp, sign);
sign = _mm_or_ps(select0, select1);
select0 = _mm_and_ps(comp, V);
select1 = _mm_andnot_ps(comp, invV);
__m128 x = _mm_or_ps(select0, select1);
__m128 x2 = _mm_mul_ps(x, x);
// Compute polynomial approximation
const XMVECTOR TC1 = g_XMATanCoefficients1;
__m128 vConstantsB = XM_PERMUTE_PS(TC1, _MM_SHUFFLE(3, 3, 3, 3));
__m128 vConstants = XM_PERMUTE_PS(TC1, _MM_SHUFFLE(2, 2, 2, 2));
__m128 Result = XM_FMADD_PS(vConstantsB, x2, vConstants);
vConstants = XM_PERMUTE_PS(TC1, _MM_SHUFFLE(1, 1, 1, 1));
Result = XM_FMADD_PS(Result, x2, vConstants);
vConstants = XM_PERMUTE_PS(TC1, _MM_SHUFFLE(0, 0, 0, 0));
Result = XM_FMADD_PS(Result, x2, vConstants);
const XMVECTOR TC0 = g_XMATanCoefficients0;
vConstants = XM_PERMUTE_PS(TC0, _MM_SHUFFLE(3, 3, 3, 3));
Result = XM_FMADD_PS(Result, x2, vConstants);
vConstants = XM_PERMUTE_PS(TC0, _MM_SHUFFLE(2, 2, 2, 2));
Result = XM_FMADD_PS(Result, x2, vConstants);
vConstants = XM_PERMUTE_PS(TC0, _MM_SHUFFLE(1, 1, 1, 1));
Result = XM_FMADD_PS(Result, x2, vConstants);
vConstants = XM_PERMUTE_PS(TC0, _MM_SHUFFLE(0, 0, 0, 0));
Result = XM_FMADD_PS(Result, x2, vConstants);
Result = XM_FMADD_PS(Result, x2, g_XMOne);
Result = _mm_mul_ps(Result, x);
__m128 result1 = _mm_mul_ps(sign, g_XMHalfPi);
result1 = _mm_sub_ps(result1, Result);
comp = _mm_cmpeq_ps(sign, g_XMZero);
select0 = _mm_and_ps(comp, Result);
select1 = _mm_andnot_ps(comp, result1);
Result = _mm_or_ps(select0, select1);
return Result;
#endif
}
//------------------------------------------------------------------------------
inline XMVECTOR XM_CALLCONV XMVectorATan2
(
FXMVECTOR Y,
FXMVECTOR X
) noexcept
{
#if defined(_XM_NO_INTRINSICS_)
XMVECTORF32 Result = { { {
atan2f(Y.vector4_f32[0], X.vector4_f32[0]),
atan2f(Y.vector4_f32[1], X.vector4_f32[1]),
atan2f(Y.vector4_f32[2], X.vector4_f32[2]),
atan2f(Y.vector4_f32[3], X.vector4_f32[3])
} } };
return Result.v;
#elif defined(_XM_SVML_INTRINSICS_)
XMVECTOR Result = _mm_atan2_ps(Y, X);
return Result;
#else
// Return the inverse tangent of Y / X in the range of -Pi to Pi with the following exceptions:
// Y == 0 and X is Negative -> Pi with the sign of Y
// y == 0 and x is positive -> 0 with the sign of y
// Y != 0 and X == 0 -> Pi / 2 with the sign of Y
// Y != 0 and X is Negative -> atan(y/x) + (PI with the sign of Y)
// X == -Infinity and Finite Y -> Pi with the sign of Y
// X == +Infinity and Finite Y -> 0 with the sign of Y
// Y == Infinity and X is Finite -> Pi / 2 with the sign of Y
// Y == Infinity and X == -Infinity -> 3Pi / 4 with the sign of Y
// Y == Infinity and X == +Infinity -> Pi / 4 with the sign of Y
static const XMVECTORF32 ATan2Constants = { { { XM_PI, XM_PIDIV2, XM_PIDIV4, XM_PI * 3.0f / 4.0f } } };
XMVECTOR Zero = XMVectorZero();
XMVECTOR ATanResultValid = XMVectorTrueInt();
XMVECTOR Pi = XMVectorSplatX(ATan2Constants);
XMVECTOR PiOverTwo = XMVectorSplatY(ATan2Constants);
XMVECTOR PiOverFour = XMVectorSplatZ(ATan2Constants);
XMVECTOR ThreePiOverFour = XMVectorSplatW(ATan2Constants);
XMVECTOR YEqualsZero = XMVectorEqual(Y, Zero);
XMVECTOR XEqualsZero = XMVectorEqual(X, Zero);
XMVECTOR XIsPositive = XMVectorAndInt(X, g_XMNegativeZero.v);
XIsPositive = XMVectorEqualInt(XIsPositive, Zero);
XMVECTOR YEqualsInfinity = XMVectorIsInfinite(Y);
XMVECTOR XEqualsInfinity = XMVectorIsInfinite(X);
XMVECTOR YSign = XMVectorAndInt(Y, g_XMNegativeZero.v);
Pi = XMVectorOrInt(Pi, YSign);
PiOverTwo = XMVectorOrInt(PiOverTwo, YSign);
PiOverFour = XMVectorOrInt(PiOverFour, YSign);
ThreePiOverFour = XMVectorOrInt(ThreePiOverFour, YSign);
XMVECTOR R1 = XMVectorSelect(Pi, YSign, XIsPositive);
XMVECTOR R2 = XMVectorSelect(ATanResultValid, PiOverTwo, XEqualsZero);
XMVECTOR R3 = XMVectorSelect(R2, R1, YEqualsZero);
XMVECTOR R4 = XMVectorSelect(ThreePiOverFour, PiOverFour, XIsPositive);
XMVECTOR R5 = XMVectorSelect(PiOverTwo, R4, XEqualsInfinity);
XMVECTOR Result = XMVectorSelect(R3, R5, YEqualsInfinity);
ATanResultValid = XMVectorEqualInt(Result, ATanResultValid);
XMVECTOR V = XMVectorDivide(Y, X);
XMVECTOR R0 = XMVectorATan(V);
R1 = XMVectorSelect(Pi, g_XMNegativeZero, XIsPositive);
R2 = XMVectorAdd(R0, R1);
return XMVectorSelect(Result, R2, ATanResultValid);
#endif
}
//------------------------------------------------------------------------------
inline XMVECTOR XM_CALLCONV XMVectorSinEst(FXMVECTOR V) noexcept
{
// 7-degree minimax approximation
#if defined(_XM_NO_INTRINSICS_)
XMVECTORF32 Result = { { {
sinf(V.vector4_f32[0]),
sinf(V.vector4_f32[1]),
sinf(V.vector4_f32[2]),
sinf(V.vector4_f32[3])
} } };
return Result.v;
#elif defined(_XM_ARM_NEON_INTRINSICS_)
// Force the value within the bounds of pi
XMVECTOR x = XMVectorModAngles(V);
// Map in [-pi/2,pi/2] with sin(y) = sin(x).
uint32x4_t sign = vandq_u32(vreinterpretq_u32_f32(x), g_XMNegativeZero);
uint32x4_t c = vorrq_u32(g_XMPi, sign); // pi when x >= 0, -pi when x < 0
float32x4_t absx = vabsq_f32(x);
float32x4_t rflx = vsubq_f32(vreinterpretq_f32_u32(c), x);
uint32x4_t comp = vcleq_f32(absx, g_XMHalfPi);
x = vbslq_f32(comp, x, rflx);
float32x4_t x2 = vmulq_f32(x, x);
// Compute polynomial approximation
const XMVECTOR SEC = g_XMSinCoefficients1;
XMVECTOR vConstants = vdupq_lane_f32(vget_high_f32(SEC), 0);
XMVECTOR Result = vmlaq_lane_f32(vConstants, x2, vget_high_f32(SEC), 1);
vConstants = vdupq_lane_f32(vget_low_f32(SEC), 1);
Result = vmlaq_f32(vConstants, Result, x2);
Result = vmlaq_f32(g_XMOne, Result, x2);
Result = vmulq_f32(Result, x);
return Result;
#elif defined(_XM_SVML_INTRINSICS_)
XMVECTOR Result = _mm_sin_ps(V);
return Result;
#elif defined(_XM_SSE_INTRINSICS_)
// Force the value within the bounds of pi
XMVECTOR x = XMVectorModAngles(V);
// Map in [-pi/2,pi/2] with sin(y) = sin(x).
__m128 sign = _mm_and_ps(x, g_XMNegativeZero);
__m128 c = _mm_or_ps(g_XMPi, sign); // pi when x >= 0, -pi when x < 0
__m128 absx = _mm_andnot_ps(sign, x); // |x|
__m128 rflx = _mm_sub_ps(c, x);
__m128 comp = _mm_cmple_ps(absx, g_XMHalfPi);
__m128 select0 = _mm_and_ps(comp, x);
__m128 select1 = _mm_andnot_ps(comp, rflx);
x = _mm_or_ps(select0, select1);
__m128 x2 = _mm_mul_ps(x, x);
// Compute polynomial approximation
const XMVECTOR SEC = g_XMSinCoefficients1;
__m128 vConstantsB = XM_PERMUTE_PS(SEC, _MM_SHUFFLE(3, 3, 3, 3));
__m128 vConstants = XM_PERMUTE_PS(SEC, _MM_SHUFFLE(2, 2, 2, 2));
__m128 Result = XM_FMADD_PS(vConstantsB, x2, vConstants);
vConstants = XM_PERMUTE_PS(SEC, _MM_SHUFFLE(1, 1, 1, 1));
Result = XM_FMADD_PS(Result, x2, vConstants);
Result = XM_FMADD_PS(Result, x2, g_XMOne);
Result = _mm_mul_ps(Result, x);
return Result;
#endif
}
//------------------------------------------------------------------------------
inline XMVECTOR XM_CALLCONV XMVectorCosEst(FXMVECTOR V) noexcept
{
// 6-degree minimax approximation
#if defined(_XM_NO_INTRINSICS_)
XMVECTORF32 Result = { { {
cosf(V.vector4_f32[0]),
cosf(V.vector4_f32[1]),
cosf(V.vector4_f32[2]),
cosf(V.vector4_f32[3])
} } };
return Result.v;
#elif defined(_XM_ARM_NEON_INTRINSICS_)
// Map V to x in [-pi,pi].
XMVECTOR x = XMVectorModAngles(V);
// Map in [-pi/2,pi/2] with cos(y) = sign*cos(x).
uint32x4_t sign = vandq_u32(vreinterpretq_u32_f32(x), g_XMNegativeZero);
uint32x4_t c = vorrq_u32(g_XMPi, sign); // pi when x >= 0, -pi when x < 0
float32x4_t absx = vabsq_f32(x);
float32x4_t rflx = vsubq_f32(vreinterpretq_f32_u32(c), x);
uint32x4_t comp = vcleq_f32(absx, g_XMHalfPi);
x = vbslq_f32(comp, x, rflx);
float32x4_t fsign = vbslq_f32(comp, g_XMOne, g_XMNegativeOne);
float32x4_t x2 = vmulq_f32(x, x);
// Compute polynomial approximation
const XMVECTOR CEC = g_XMCosCoefficients1;
XMVECTOR vConstants = vdupq_lane_f32(vget_high_f32(CEC), 0);
XMVECTOR Result = vmlaq_lane_f32(vConstants, x2, vget_high_f32(CEC), 1);
vConstants = vdupq_lane_f32(vget_low_f32(CEC), 1);
Result = vmlaq_f32(vConstants, Result, x2);
Result = vmlaq_f32(g_XMOne, Result, x2);
Result = vmulq_f32(Result, fsign);
return Result;
#elif defined(_XM_SVML_INTRINSICS_)
XMVECTOR Result = _mm_cos_ps(V);
return Result;
#elif defined(_XM_SSE_INTRINSICS_)
// Map V to x in [-pi,pi].
XMVECTOR x = XMVectorModAngles(V);
// Map in [-pi/2,pi/2] with cos(y) = sign*cos(x).
XMVECTOR sign = _mm_and_ps(x, g_XMNegativeZero);
__m128 c = _mm_or_ps(g_XMPi, sign); // pi when x >= 0, -pi when x < 0
__m128 absx = _mm_andnot_ps(sign, x); // |x|
__m128 rflx = _mm_sub_ps(c, x);
__m128 comp = _mm_cmple_ps(absx, g_XMHalfPi);
__m128 select0 = _mm_and_ps(comp, x);
__m128 select1 = _mm_andnot_ps(comp, rflx);
x = _mm_or_ps(select0, select1);
select0 = _mm_and_ps(comp, g_XMOne);
select1 = _mm_andnot_ps(comp, g_XMNegativeOne);
sign = _mm_or_ps(select0, select1);
__m128 x2 = _mm_mul_ps(x, x);
// Compute polynomial approximation
const XMVECTOR CEC = g_XMCosCoefficients1;
__m128 vConstantsB = XM_PERMUTE_PS(CEC, _MM_SHUFFLE(3, 3, 3, 3));
__m128 vConstants = XM_PERMUTE_PS(CEC, _MM_SHUFFLE(2, 2, 2, 2));
__m128 Result = XM_FMADD_PS(vConstantsB, x2, vConstants);
vConstants = XM_PERMUTE_PS(CEC, _MM_SHUFFLE(1, 1, 1, 1));
Result = XM_FMADD_PS(Result, x2, vConstants);
Result = XM_FMADD_PS(Result, x2, g_XMOne);
Result = _mm_mul_ps(Result, sign);
return Result;
#endif
}
//------------------------------------------------------------------------------
_Use_decl_annotations_
inline void XM_CALLCONV XMVectorSinCosEst
(
XMVECTOR* pSin,
XMVECTOR* pCos,
FXMVECTOR V
) noexcept
{
assert(pSin != nullptr);
assert(pCos != nullptr);
// 7/6-degree minimax approximation
#if defined(_XM_NO_INTRINSICS_)
XMVECTORF32 Sin = { { {
sinf(V.vector4_f32[0]),
sinf(V.vector4_f32[1]),
sinf(V.vector4_f32[2]),
sinf(V.vector4_f32[3])
} } };
XMVECTORF32 Cos = { { {
cosf(V.vector4_f32[0]),
cosf(V.vector4_f32[1]),
cosf(V.vector4_f32[2]),
cosf(V.vector4_f32[3])
} } };
*pSin = Sin.v;
*pCos = Cos.v;
#elif defined(_XM_ARM_NEON_INTRINSICS_)
// Force the value within the bounds of pi
XMVECTOR x = XMVectorModAngles(V);
// Map in [-pi/2,pi/2] with cos(y) = sign*cos(x).
uint32x4_t sign = vandq_u32(vreinterpretq_u32_f32(x), g_XMNegativeZero);
uint32x4_t c = vorrq_u32(g_XMPi, sign); // pi when x >= 0, -pi when x < 0
float32x4_t absx = vabsq_f32(x);
float32x4_t rflx = vsubq_f32(vreinterpretq_f32_u32(c), x);
uint32x4_t comp = vcleq_f32(absx, g_XMHalfPi);
x = vbslq_f32(comp, x, rflx);
float32x4_t fsign = vbslq_f32(comp, g_XMOne, g_XMNegativeOne);
float32x4_t x2 = vmulq_f32(x, x);
// Compute polynomial approximation for sine
const XMVECTOR SEC = g_XMSinCoefficients1;
XMVECTOR vConstants = vdupq_lane_f32(vget_high_f32(SEC), 0);
XMVECTOR Result = vmlaq_lane_f32(vConstants, x2, vget_high_f32(SEC), 1);
vConstants = vdupq_lane_f32(vget_low_f32(SEC), 1);
Result = vmlaq_f32(vConstants, Result, x2);
Result = vmlaq_f32(g_XMOne, Result, x2);
*pSin = vmulq_f32(Result, x);
// Compute polynomial approximation
const XMVECTOR CEC = g_XMCosCoefficients1;
vConstants = vdupq_lane_f32(vget_high_f32(CEC), 0);
Result = vmlaq_lane_f32(vConstants, x2, vget_high_f32(CEC), 1);
vConstants = vdupq_lane_f32(vget_low_f32(CEC), 1);
Result = vmlaq_f32(vConstants, Result, x2);
Result = vmlaq_f32(g_XMOne, Result, x2);
*pCos = vmulq_f32(Result, fsign);
#elif defined(_XM_SSE_INTRINSICS_)
// Force the value within the bounds of pi
XMVECTOR x = XMVectorModAngles(V);
// Map in [-pi/2,pi/2] with sin(y) = sin(x), cos(y) = sign*cos(x).
XMVECTOR sign = _mm_and_ps(x, g_XMNegativeZero);
__m128 c = _mm_or_ps(g_XMPi, sign); // pi when x >= 0, -pi when x < 0
__m128 absx = _mm_andnot_ps(sign, x); // |x|
__m128 rflx = _mm_sub_ps(c, x);
__m128 comp = _mm_cmple_ps(absx, g_XMHalfPi);
__m128 select0 = _mm_and_ps(comp, x);
__m128 select1 = _mm_andnot_ps(comp, rflx);
x = _mm_or_ps(select0, select1);
select0 = _mm_and_ps(comp, g_XMOne);
select1 = _mm_andnot_ps(comp, g_XMNegativeOne);
sign = _mm_or_ps(select0, select1);
__m128 x2 = _mm_mul_ps(x, x);
// Compute polynomial approximation for sine
const XMVECTOR SEC = g_XMSinCoefficients1;
__m128 vConstantsB = XM_PERMUTE_PS(SEC, _MM_SHUFFLE(3, 3, 3, 3));
__m128 vConstants = XM_PERMUTE_PS(SEC, _MM_SHUFFLE(2, 2, 2, 2));
__m128 Result = XM_FMADD_PS(vConstantsB, x2, vConstants);
vConstants = XM_PERMUTE_PS(SEC, _MM_SHUFFLE(1, 1, 1, 1));
Result = XM_FMADD_PS(Result, x2, vConstants);
Result = XM_FMADD_PS(Result, x2, g_XMOne);
Result = _mm_mul_ps(Result, x);
*pSin = Result;
// Compute polynomial approximation for cosine
const XMVECTOR CEC = g_XMCosCoefficients1;
vConstantsB = XM_PERMUTE_PS(CEC, _MM_SHUFFLE(3, 3, 3, 3));
vConstants = XM_PERMUTE_PS(CEC, _MM_SHUFFLE(2, 2, 2, 2));
Result = XM_FMADD_PS(vConstantsB, x2, vConstants);
vConstants = XM_PERMUTE_PS(CEC, _MM_SHUFFLE(1, 1, 1, 1));
Result = XM_FMADD_PS(Result, x2, vConstants);
Result = XM_FMADD_PS(Result, x2, g_XMOne);
Result = _mm_mul_ps(Result, sign);
*pCos = Result;
#endif
}
//------------------------------------------------------------------------------
inline XMVECTOR XM_CALLCONV XMVectorTanEst(FXMVECTOR V) noexcept
{
#if defined(_XM_NO_INTRINSICS_)
XMVECTORF32 Result = { { {
tanf(V.vector4_f32[0]),
tanf(V.vector4_f32[1]),
tanf(V.vector4_f32[2]),
tanf(V.vector4_f32[3])
} } };
return Result.v;
#elif defined(_XM_SVML_INTRINSICS_)
XMVECTOR Result = _mm_tan_ps(V);
return Result;
#else
XMVECTOR OneOverPi = XMVectorSplatW(g_XMTanEstCoefficients.v);
XMVECTOR V1 = XMVectorMultiply(V, OneOverPi);
V1 = XMVectorRound(V1);
V1 = XMVectorNegativeMultiplySubtract(g_XMPi.v, V1, V);
XMVECTOR T0 = XMVectorSplatX(g_XMTanEstCoefficients.v);
XMVECTOR T1 = XMVectorSplatY(g_XMTanEstCoefficients.v);
XMVECTOR T2 = XMVectorSplatZ(g_XMTanEstCoefficients.v);
XMVECTOR V2T2 = XMVectorNegativeMultiplySubtract(V1, V1, T2);
XMVECTOR V2 = XMVectorMultiply(V1, V1);
XMVECTOR V1T0 = XMVectorMultiply(V1, T0);
XMVECTOR V1T1 = XMVectorMultiply(V1, T1);
XMVECTOR D = XMVectorReciprocalEst(V2T2);
XMVECTOR N = XMVectorMultiplyAdd(V2, V1T1, V1T0);
return XMVectorMultiply(N, D);
#endif
}
//------------------------------------------------------------------------------
inline XMVECTOR XM_CALLCONV XMVectorASinEst(FXMVECTOR V) noexcept
{
// 3-degree minimax approximation
#if defined(_XM_NO_INTRINSICS_)
XMVECTORF32 Result;
Result.f[0] = asinf(V.vector4_f32[0]);
Result.f[1] = asinf(V.vector4_f32[1]);
Result.f[2] = asinf(V.vector4_f32[2]);
Result.f[3] = asinf(V.vector4_f32[3]);
return Result.v;
#elif defined(_XM_ARM_NEON_INTRINSICS_)
uint32x4_t nonnegative = vcgeq_f32(V, g_XMZero);
float32x4_t x = vabsq_f32(V);
// Compute (1-|V|), clamp to zero to avoid sqrt of negative number.
float32x4_t oneMValue = vsubq_f32(g_XMOne, x);
float32x4_t clampOneMValue = vmaxq_f32(g_XMZero, oneMValue);
float32x4_t root = XMVectorSqrt(clampOneMValue);
// Compute polynomial approximation
const XMVECTOR AEC = g_XMArcEstCoefficients;
XMVECTOR vConstants = vdupq_lane_f32(vget_high_f32(AEC), 0);
XMVECTOR t0 = vmlaq_lane_f32(vConstants, x, vget_high_f32(AEC), 1);
vConstants = vdupq_lane_f32(vget_low_f32(AEC), 1);
t0 = vmlaq_f32(vConstants, t0, x);
vConstants = vdupq_lane_f32(vget_low_f32(AEC), 0);
t0 = vmlaq_f32(vConstants, t0, x);
t0 = vmulq_f32(t0, root);
float32x4_t t1 = vsubq_f32(g_XMPi, t0);
t0 = vbslq_f32(nonnegative, t0, t1);
t0 = vsubq_f32(g_XMHalfPi, t0);
return t0;
#elif defined(_XM_SVML_INTRINSICS_)
XMVECTOR Result = _mm_asin_ps(V);
return Result;
#elif defined(_XM_SSE_INTRINSICS_)
__m128 nonnegative = _mm_cmpge_ps(V, g_XMZero);
__m128 mvalue = _mm_sub_ps(g_XMZero, V);
__m128 x = _mm_max_ps(V, mvalue); // |V|
// Compute (1-|V|), clamp to zero to avoid sqrt of negative number.
__m128 oneMValue = _mm_sub_ps(g_XMOne, x);
__m128 clampOneMValue = _mm_max_ps(g_XMZero, oneMValue);
__m128 root = _mm_sqrt_ps(clampOneMValue); // sqrt(1-|V|)
// Compute polynomial approximation
const XMVECTOR AEC = g_XMArcEstCoefficients;
__m128 vConstantsB = XM_PERMUTE_PS(AEC, _MM_SHUFFLE(3, 3, 3, 3));
__m128 vConstants = XM_PERMUTE_PS(AEC, _MM_SHUFFLE(2, 2, 2, 2));
__m128 t0 = XM_FMADD_PS(vConstantsB, x, vConstants);
vConstants = XM_PERMUTE_PS(AEC, _MM_SHUFFLE(1, 1, 1, 1));
t0 = XM_FMADD_PS(t0, x, vConstants);
vConstants = XM_PERMUTE_PS(AEC, _MM_SHUFFLE(0, 0, 0, 0));
t0 = XM_FMADD_PS(t0, x, vConstants);
t0 = _mm_mul_ps(t0, root);
__m128 t1 = _mm_sub_ps(g_XMPi, t0);
t0 = _mm_and_ps(nonnegative, t0);
t1 = _mm_andnot_ps(nonnegative, t1);
t0 = _mm_or_ps(t0, t1);
t0 = _mm_sub_ps(g_XMHalfPi, t0);
return t0;
#endif
}
//------------------------------------------------------------------------------
inline XMVECTOR XM_CALLCONV XMVectorACosEst(FXMVECTOR V) noexcept
{
// 3-degree minimax approximation
#if defined(_XM_NO_INTRINSICS_)
XMVECTORF32 Result = { { {
acosf(V.vector4_f32[0]),
acosf(V.vector4_f32[1]),
acosf(V.vector4_f32[2]),
acosf(V.vector4_f32[3])
} } };
return Result.v;
#elif defined(_XM_ARM_NEON_INTRINSICS_)
uint32x4_t nonnegative = vcgeq_f32(V, g_XMZero);
float32x4_t x = vabsq_f32(V);
// Compute (1-|V|), clamp to zero to avoid sqrt of negative number.
float32x4_t oneMValue = vsubq_f32(g_XMOne, x);
float32x4_t clampOneMValue = vmaxq_f32(g_XMZero, oneMValue);
float32x4_t root = XMVectorSqrt(clampOneMValue);
// Compute polynomial approximation
const XMVECTOR AEC = g_XMArcEstCoefficients;
XMVECTOR vConstants = vdupq_lane_f32(vget_high_f32(AEC), 0);
XMVECTOR t0 = vmlaq_lane_f32(vConstants, x, vget_high_f32(AEC), 1);
vConstants = vdupq_lane_f32(vget_low_f32(AEC), 1);
t0 = vmlaq_f32(vConstants, t0, x);
vConstants = vdupq_lane_f32(vget_low_f32(AEC), 0);
t0 = vmlaq_f32(vConstants, t0, x);
t0 = vmulq_f32(t0, root);
float32x4_t t1 = vsubq_f32(g_XMPi, t0);
t0 = vbslq_f32(nonnegative, t0, t1);
return t0;
#elif defined(_XM_SVML_INTRINSICS_)
XMVECTOR Result = _mm_acos_ps(V);
return Result;
#elif defined(_XM_SSE_INTRINSICS_)
__m128 nonnegative = _mm_cmpge_ps(V, g_XMZero);
__m128 mvalue = _mm_sub_ps(g_XMZero, V);
__m128 x = _mm_max_ps(V, mvalue); // |V|
// Compute (1-|V|), clamp to zero to avoid sqrt of negative number.
__m128 oneMValue = _mm_sub_ps(g_XMOne, x);
__m128 clampOneMValue = _mm_max_ps(g_XMZero, oneMValue);
__m128 root = _mm_sqrt_ps(clampOneMValue); // sqrt(1-|V|)
// Compute polynomial approximation
const XMVECTOR AEC = g_XMArcEstCoefficients;
__m128 vConstantsB = XM_PERMUTE_PS(AEC, _MM_SHUFFLE(3, 3, 3, 3));
__m128 vConstants = XM_PERMUTE_PS(AEC, _MM_SHUFFLE(2, 2, 2, 2));
__m128 t0 = XM_FMADD_PS(vConstantsB, x, vConstants);
vConstants = XM_PERMUTE_PS(AEC, _MM_SHUFFLE(1, 1, 1, 1));
t0 = XM_FMADD_PS(t0, x, vConstants);
vConstants = XM_PERMUTE_PS(AEC, _MM_SHUFFLE(0, 0, 0, 0));
t0 = XM_FMADD_PS(t0, x, vConstants);
t0 = _mm_mul_ps(t0, root);
__m128 t1 = _mm_sub_ps(g_XMPi, t0);
t0 = _mm_and_ps(nonnegative, t0);
t1 = _mm_andnot_ps(nonnegative, t1);
t0 = _mm_or_ps(t0, t1);
return t0;
#endif
}
//------------------------------------------------------------------------------
inline XMVECTOR XM_CALLCONV XMVectorATanEst(FXMVECTOR V) noexcept
{
// 9-degree minimax approximation
#if defined(_XM_NO_INTRINSICS_)
XMVECTORF32 Result = { { {
atanf(V.vector4_f32[0]),
atanf(V.vector4_f32[1]),
atanf(V.vector4_f32[2]),
atanf(V.vector4_f32[3])
} } };
return Result.v;
#elif defined(_XM_ARM_NEON_INTRINSICS_)
float32x4_t absV = vabsq_f32(V);
float32x4_t invV = XMVectorReciprocalEst(V);
uint32x4_t comp = vcgtq_f32(V, g_XMOne);
float32x4_t sign = vbslq_f32(comp, g_XMOne, g_XMNegativeOne);
comp = vcleq_f32(absV, g_XMOne);
sign = vbslq_f32(comp, g_XMZero, sign);
float32x4_t x = vbslq_f32(comp, V, invV);
float32x4_t x2 = vmulq_f32(x, x);
// Compute polynomial approximation
const XMVECTOR AEC = g_XMATanEstCoefficients1;
XMVECTOR vConstants = vdupq_lane_f32(vget_high_f32(AEC), 0);
XMVECTOR Result = vmlaq_lane_f32(vConstants, x2, vget_high_f32(AEC), 1);
vConstants = vdupq_lane_f32(vget_low_f32(AEC), 1);
Result = vmlaq_f32(vConstants, Result, x2);
vConstants = vdupq_lane_f32(vget_low_f32(AEC), 0);
Result = vmlaq_f32(vConstants, Result, x2);
// ATanEstCoefficients0 is already splatted
Result = vmlaq_f32(g_XMATanEstCoefficients0, Result, x2);
Result = vmulq_f32(Result, x);
float32x4_t result1 = vmulq_f32(sign, g_XMHalfPi);
result1 = vsubq_f32(result1, Result);
comp = vceqq_f32(sign, g_XMZero);
Result = vbslq_f32(comp, Result, result1);
return Result;
#elif defined(_XM_SVML_INTRINSICS_)
XMVECTOR Result = _mm_atan_ps(V);
return Result;
#elif defined(_XM_SSE_INTRINSICS_)
__m128 absV = XMVectorAbs(V);
__m128 invV = _mm_div_ps(g_XMOne, V);
__m128 comp = _mm_cmpgt_ps(V, g_XMOne);
__m128 select0 = _mm_and_ps(comp, g_XMOne);
__m128 select1 = _mm_andnot_ps(comp, g_XMNegativeOne);
__m128 sign = _mm_or_ps(select0, select1);
comp = _mm_cmple_ps(absV, g_XMOne);
select0 = _mm_and_ps(comp, g_XMZero);
select1 = _mm_andnot_ps(comp, sign);
sign = _mm_or_ps(select0, select1);
select0 = _mm_and_ps(comp, V);
select1 = _mm_andnot_ps(comp, invV);
__m128 x = _mm_or_ps(select0, select1);
__m128 x2 = _mm_mul_ps(x, x);
// Compute polynomial approximation
const XMVECTOR AEC = g_XMATanEstCoefficients1;
__m128 vConstantsB = XM_PERMUTE_PS(AEC, _MM_SHUFFLE(3, 3, 3, 3));
__m128 vConstants = XM_PERMUTE_PS(AEC, _MM_SHUFFLE(2, 2, 2, 2));
__m128 Result = XM_FMADD_PS(vConstantsB, x2, vConstants);
vConstants = XM_PERMUTE_PS(AEC, _MM_SHUFFLE(1, 1, 1, 1));
Result = XM_FMADD_PS(Result, x2, vConstants);
vConstants = XM_PERMUTE_PS(AEC, _MM_SHUFFLE(0, 0, 0, 0));
Result = XM_FMADD_PS(Result, x2, vConstants);
// ATanEstCoefficients0 is already splatted
Result = XM_FMADD_PS(Result, x2, g_XMATanEstCoefficients0);
Result = _mm_mul_ps(Result, x);
__m128 result1 = _mm_mul_ps(sign, g_XMHalfPi);
result1 = _mm_sub_ps(result1, Result);
comp = _mm_cmpeq_ps(sign, g_XMZero);
select0 = _mm_and_ps(comp, Result);
select1 = _mm_andnot_ps(comp, result1);
Result = _mm_or_ps(select0, select1);
return Result;
#endif
}
//------------------------------------------------------------------------------
inline XMVECTOR XM_CALLCONV XMVectorATan2Est
(
FXMVECTOR Y,
FXMVECTOR X
) noexcept
{
#if defined(_XM_NO_INTRINSICS_)
XMVECTORF32 Result = { { {
atan2f(Y.vector4_f32[0], X.vector4_f32[0]),
atan2f(Y.vector4_f32[1], X.vector4_f32[1]),
atan2f(Y.vector4_f32[2], X.vector4_f32[2]),
atan2f(Y.vector4_f32[3], X.vector4_f32[3]),
} } };
return Result.v;
#elif defined(_XM_SVML_INTRINSICS_)
XMVECTOR Result = _mm_atan2_ps(Y, X);
return Result;
#else
static const XMVECTORF32 ATan2Constants = { { { XM_PI, XM_PIDIV2, XM_PIDIV4, 2.3561944905f /* Pi*3/4 */ } } };
const XMVECTOR Zero = XMVectorZero();
XMVECTOR ATanResultValid = XMVectorTrueInt();
XMVECTOR Pi = XMVectorSplatX(ATan2Constants);
XMVECTOR PiOverTwo = XMVectorSplatY(ATan2Constants);
XMVECTOR PiOverFour = XMVectorSplatZ(ATan2Constants);
XMVECTOR ThreePiOverFour = XMVectorSplatW(ATan2Constants);
XMVECTOR YEqualsZero = XMVectorEqual(Y, Zero);
XMVECTOR XEqualsZero = XMVectorEqual(X, Zero);
XMVECTOR XIsPositive = XMVectorAndInt(X, g_XMNegativeZero.v);
XIsPositive = XMVectorEqualInt(XIsPositive, Zero);
XMVECTOR YEqualsInfinity = XMVectorIsInfinite(Y);
XMVECTOR XEqualsInfinity = XMVectorIsInfinite(X);
XMVECTOR YSign = XMVectorAndInt(Y, g_XMNegativeZero.v);
Pi = XMVectorOrInt(Pi, YSign);
PiOverTwo = XMVectorOrInt(PiOverTwo, YSign);
PiOverFour = XMVectorOrInt(PiOverFour, YSign);
ThreePiOverFour = XMVectorOrInt(ThreePiOverFour, YSign);
XMVECTOR R1 = XMVectorSelect(Pi, YSign, XIsPositive);
XMVECTOR R2 = XMVectorSelect(ATanResultValid, PiOverTwo, XEqualsZero);
XMVECTOR R3 = XMVectorSelect(R2, R1, YEqualsZero);
XMVECTOR R4 = XMVectorSelect(ThreePiOverFour, PiOverFour, XIsPositive);
XMVECTOR R5 = XMVectorSelect(PiOverTwo, R4, XEqualsInfinity);
XMVECTOR Result = XMVectorSelect(R3, R5, YEqualsInfinity);
ATanResultValid = XMVectorEqualInt(Result, ATanResultValid);
XMVECTOR Reciprocal = XMVectorReciprocalEst(X);
XMVECTOR V = XMVectorMultiply(Y, Reciprocal);
XMVECTOR R0 = XMVectorATanEst(V);
R1 = XMVectorSelect(Pi, g_XMNegativeZero, XIsPositive);
R2 = XMVectorAdd(R0, R1);
Result = XMVectorSelect(Result, R2, ATanResultValid);
return Result;
#endif
}
//------------------------------------------------------------------------------
inline XMVECTOR XM_CALLCONV XMVectorLerp
(
FXMVECTOR V0,
FXMVECTOR V1,
float t
) noexcept
{
// V0 + t * (V1 - V0)
#if defined(_XM_NO_INTRINSICS_)
XMVECTOR Scale = XMVectorReplicate(t);
XMVECTOR Length = XMVectorSubtract(V1, V0);
return XMVectorMultiplyAdd(Length, Scale, V0);
#elif defined(_XM_ARM_NEON_INTRINSICS_)
XMVECTOR L = vsubq_f32(V1, V0);
return vmlaq_n_f32(V0, L, t);
#elif defined(_XM_SSE_INTRINSICS_)
XMVECTOR L = _mm_sub_ps(V1, V0);
XMVECTOR S = _mm_set_ps1(t);
return XM_FMADD_PS(L, S, V0);
#endif
}
//------------------------------------------------------------------------------
inline XMVECTOR XM_CALLCONV XMVectorLerpV
(
FXMVECTOR V0,
FXMVECTOR V1,
FXMVECTOR T
) noexcept
{
// V0 + T * (V1 - V0)
#if defined(_XM_NO_INTRINSICS_)
XMVECTOR Length = XMVectorSubtract(V1, V0);
return XMVectorMultiplyAdd(Length, T, V0);
#elif defined(_XM_ARM_NEON_INTRINSICS_)
XMVECTOR L = vsubq_f32(V1, V0);
return vmlaq_f32(V0, L, T);
#elif defined(_XM_SSE_INTRINSICS_)
XMVECTOR Length = _mm_sub_ps(V1, V0);
return XM_FMADD_PS(Length, T, V0);
#endif
}
//------------------------------------------------------------------------------
inline XMVECTOR XM_CALLCONV XMVectorHermite
(
FXMVECTOR Position0,
FXMVECTOR Tangent0,
FXMVECTOR Position1,
GXMVECTOR Tangent1,
float t
) noexcept
{
// Result = (2 * t^3 - 3 * t^2 + 1) * Position0 +
// (t^3 - 2 * t^2 + t) * Tangent0 +
// (-2 * t^3 + 3 * t^2) * Position1 +
// (t^3 - t^2) * Tangent1
#if defined(_XM_NO_INTRINSICS_)
float t2 = t * t;
float t3 = t * t2;
XMVECTOR P0 = XMVectorReplicate(2.0f * t3 - 3.0f * t2 + 1.0f);
XMVECTOR T0 = XMVectorReplicate(t3 - 2.0f * t2 + t);
XMVECTOR P1 = XMVectorReplicate(-2.0f * t3 + 3.0f * t2);
XMVECTOR T1 = XMVectorReplicate(t3 - t2);
XMVECTOR Result = XMVectorMultiply(P0, Position0);
Result = XMVectorMultiplyAdd(T0, Tangent0, Result);
Result = XMVectorMultiplyAdd(P1, Position1, Result);
Result = XMVectorMultiplyAdd(T1, Tangent1, Result);
return Result;
#elif defined(_XM_ARM_NEON_INTRINSICS_)
float t2 = t * t;
float t3 = t * t2;
float p0 = 2.0f * t3 - 3.0f * t2 + 1.0f;
float t0 = t3 - 2.0f * t2 + t;
float p1 = -2.0f * t3 + 3.0f * t2;
float t1 = t3 - t2;
XMVECTOR vResult = vmulq_n_f32(Position0, p0);
vResult = vmlaq_n_f32(vResult, Tangent0, t0);
vResult = vmlaq_n_f32(vResult, Position1, p1);
vResult = vmlaq_n_f32(vResult, Tangent1, t1);
return vResult;
#elif defined(_XM_SSE_INTRINSICS_)
float t2 = t * t;
float t3 = t * t2;
XMVECTOR P0 = _mm_set_ps1(2.0f * t3 - 3.0f * t2 + 1.0f);
XMVECTOR T0 = _mm_set_ps1(t3 - 2.0f * t2 + t);
XMVECTOR P1 = _mm_set_ps1(-2.0f * t3 + 3.0f * t2);
XMVECTOR T1 = _mm_set_ps1(t3 - t2);
XMVECTOR vResult = _mm_mul_ps(P0, Position0);
vResult = XM_FMADD_PS(Tangent0, T0, vResult);
vResult = XM_FMADD_PS(Position1, P1, vResult);
vResult = XM_FMADD_PS(Tangent1, T1, vResult);
return vResult;
#endif
}
//------------------------------------------------------------------------------
inline XMVECTOR XM_CALLCONV XMVectorHermiteV
(
FXMVECTOR Position0,
FXMVECTOR Tangent0,
FXMVECTOR Position1,
GXMVECTOR Tangent1,
HXMVECTOR T
) noexcept
{
// Result = (2 * t^3 - 3 * t^2 + 1) * Position0 +
// (t^3 - 2 * t^2 + t) * Tangent0 +
// (-2 * t^3 + 3 * t^2) * Position1 +
// (t^3 - t^2) * Tangent1
#if defined(_XM_NO_INTRINSICS_)
XMVECTOR T2 = XMVectorMultiply(T, T);
XMVECTOR T3 = XMVectorMultiply(T, T2);
XMVECTOR P0 = XMVectorReplicate(2.0f * T3.vector4_f32[0] - 3.0f * T2.vector4_f32[0] + 1.0f);
XMVECTOR T0 = XMVectorReplicate(T3.vector4_f32[1] - 2.0f * T2.vector4_f32[1] + T.vector4_f32[1]);
XMVECTOR P1 = XMVectorReplicate(-2.0f * T3.vector4_f32[2] + 3.0f * T2.vector4_f32[2]);
XMVECTOR T1 = XMVectorReplicate(T3.vector4_f32[3] - T2.vector4_f32[3]);
XMVECTOR Result = XMVectorMultiply(P0, Position0);
Result = XMVectorMultiplyAdd(T0, Tangent0, Result);
Result = XMVectorMultiplyAdd(P1, Position1, Result);
Result = XMVectorMultiplyAdd(T1, Tangent1, Result);
return Result;
#elif defined(_XM_ARM_NEON_INTRINSICS_)
static const XMVECTORF32 CatMulT2 = { { { -3.0f, -2.0f, 3.0f, -1.0f } } };
static const XMVECTORF32 CatMulT3 = { { { 2.0f, 1.0f, -2.0f, 1.0f } } };
XMVECTOR T2 = vmulq_f32(T, T);
XMVECTOR T3 = vmulq_f32(T, T2);
// Mul by the constants against t^2
T2 = vmulq_f32(T2, CatMulT2);
// Mul by the constants against t^3
T3 = vmlaq_f32(T2, T3, CatMulT3);
// T3 now has the pre-result.
// I need to add t.y only
T2 = vreinterpretq_f32_u32(vandq_u32(vreinterpretq_u32_f32(T), g_XMMaskY));
T3 = vaddq_f32(T3, T2);
// Add 1.0f to x
T3 = vaddq_f32(T3, g_XMIdentityR0);
// Now, I have the constants created
// Mul the x constant to Position0
XMVECTOR vResult = vmulq_lane_f32(Position0, vget_low_f32(T3), 0); // T3[0]
// Mul the y constant to Tangent0
vResult = vmlaq_lane_f32(vResult, Tangent0, vget_low_f32(T3), 1); // T3[1]
// Mul the z constant to Position1
vResult = vmlaq_lane_f32(vResult, Position1, vget_high_f32(T3), 0); // T3[2]
// Mul the w constant to Tangent1
vResult = vmlaq_lane_f32(vResult, Tangent1, vget_high_f32(T3), 1); // T3[3]
return vResult;
#elif defined(_XM_SSE_INTRINSICS_)
static const XMVECTORF32 CatMulT2 = { { { -3.0f, -2.0f, 3.0f, -1.0f } } };
static const XMVECTORF32 CatMulT3 = { { { 2.0f, 1.0f, -2.0f, 1.0f } } };
XMVECTOR T2 = _mm_mul_ps(T, T);
XMVECTOR T3 = _mm_mul_ps(T, T2);
// Mul by the constants against t^2
T2 = _mm_mul_ps(T2, CatMulT2);
// Mul by the constants against t^3
T3 = XM_FMADD_PS(T3, CatMulT3, T2);
// T3 now has the pre-result.
// I need to add t.y only
T2 = _mm_and_ps(T, g_XMMaskY);
T3 = _mm_add_ps(T3, T2);
// Add 1.0f to x
T3 = _mm_add_ps(T3, g_XMIdentityR0);
// Now, I have the constants created
// Mul the x constant to Position0
XMVECTOR vResult = XM_PERMUTE_PS(T3, _MM_SHUFFLE(0, 0, 0, 0));
vResult = _mm_mul_ps(vResult, Position0);
// Mul the y constant to Tangent0
T2 = XM_PERMUTE_PS(T3, _MM_SHUFFLE(1, 1, 1, 1));
vResult = XM_FMADD_PS(T2, Tangent0, vResult);
// Mul the z constant to Position1
T2 = XM_PERMUTE_PS(T3, _MM_SHUFFLE(2, 2, 2, 2));
vResult = XM_FMADD_PS(T2, Position1, vResult);
// Mul the w constant to Tangent1
T3 = XM_PERMUTE_PS(T3, _MM_SHUFFLE(3, 3, 3, 3));
vResult = XM_FMADD_PS(T3, Tangent1, vResult);
return vResult;
#endif
}
//------------------------------------------------------------------------------
inline XMVECTOR XM_CALLCONV XMVectorCatmullRom
(
FXMVECTOR Position0,
FXMVECTOR Position1,
FXMVECTOR Position2,
GXMVECTOR Position3,
float t
) noexcept
{
// Result = ((-t^3 + 2 * t^2 - t) * Position0 +
// (3 * t^3 - 5 * t^2 + 2) * Position1 +
// (-3 * t^3 + 4 * t^2 + t) * Position2 +
// (t^3 - t^2) * Position3) * 0.5
#if defined(_XM_NO_INTRINSICS_)
float t2 = t * t;
float t3 = t * t2;
XMVECTOR P0 = XMVectorReplicate((-t3 + 2.0f * t2 - t) * 0.5f);
XMVECTOR P1 = XMVectorReplicate((3.0f * t3 - 5.0f * t2 + 2.0f) * 0.5f);
XMVECTOR P2 = XMVectorReplicate((-3.0f * t3 + 4.0f * t2 + t) * 0.5f);
XMVECTOR P3 = XMVectorReplicate((t3 - t2) * 0.5f);
XMVECTOR Result = XMVectorMultiply(P0, Position0);
Result = XMVectorMultiplyAdd(P1, Position1, Result);
Result = XMVectorMultiplyAdd(P2, Position2, Result);
Result = XMVectorMultiplyAdd(P3, Position3, Result);
return Result;
#elif defined(_XM_ARM_NEON_INTRINSICS_)
float t2 = t * t;
float t3 = t * t2;
float p0 = (-t3 + 2.0f * t2 - t) * 0.5f;
float p1 = (3.0f * t3 - 5.0f * t2 + 2.0f) * 0.5f;
float p2 = (-3.0f * t3 + 4.0f * t2 + t) * 0.5f;
float p3 = (t3 - t2) * 0.5f;
XMVECTOR P1 = vmulq_n_f32(Position1, p1);
XMVECTOR P0 = vmlaq_n_f32(P1, Position0, p0);
XMVECTOR P3 = vmulq_n_f32(Position3, p3);
XMVECTOR P2 = vmlaq_n_f32(P3, Position2, p2);
P0 = vaddq_f32(P0, P2);
return P0;
#elif defined(_XM_SSE_INTRINSICS_)
float t2 = t * t;
float t3 = t * t2;
XMVECTOR P0 = _mm_set_ps1((-t3 + 2.0f * t2 - t) * 0.5f);
XMVECTOR P1 = _mm_set_ps1((3.0f * t3 - 5.0f * t2 + 2.0f) * 0.5f);
XMVECTOR P2 = _mm_set_ps1((-3.0f * t3 + 4.0f * t2 + t) * 0.5f);
XMVECTOR P3 = _mm_set_ps1((t3 - t2) * 0.5f);
P1 = _mm_mul_ps(Position1, P1);
P0 = XM_FMADD_PS(Position0, P0, P1);
P3 = _mm_mul_ps(Position3, P3);
P2 = XM_FMADD_PS(Position2, P2, P3);
P0 = _mm_add_ps(P0, P2);
return P0;
#endif
}
//------------------------------------------------------------------------------
inline XMVECTOR XM_CALLCONV XMVectorCatmullRomV
(
FXMVECTOR Position0,
FXMVECTOR Position1,
FXMVECTOR Position2,
GXMVECTOR Position3,
HXMVECTOR T
) noexcept
{
#if defined(_XM_NO_INTRINSICS_)
float fx = T.vector4_f32[0];
float fy = T.vector4_f32[1];
float fz = T.vector4_f32[2];
float fw = T.vector4_f32[3];
XMVECTORF32 vResult = { { {
0.5f * ((-fx * fx * fx + 2 * fx * fx - fx) * Position0.vector4_f32[0]
+ (3 * fx * fx * fx - 5 * fx * fx + 2) * Position1.vector4_f32[0]
+ (-3 * fx * fx * fx + 4 * fx * fx + fx) * Position2.vector4_f32[0]
+ (fx * fx * fx - fx * fx) * Position3.vector4_f32[0]),
0.5f * ((-fy * fy * fy + 2 * fy * fy - fy) * Position0.vector4_f32[1]
+ (3 * fy * fy * fy - 5 * fy * fy + 2) * Position1.vector4_f32[1]
+ (-3 * fy * fy * fy + 4 * fy * fy + fy) * Position2.vector4_f32[1]
+ (fy * fy * fy - fy * fy) * Position3.vector4_f32[1]),
0.5f * ((-fz * fz * fz + 2 * fz * fz - fz) * Position0.vector4_f32[2]
+ (3 * fz * fz * fz - 5 * fz * fz + 2) * Position1.vector4_f32[2]
+ (-3 * fz * fz * fz + 4 * fz * fz + fz) * Position2.vector4_f32[2]
+ (fz * fz * fz - fz * fz) * Position3.vector4_f32[2]),
0.5f * ((-fw * fw * fw + 2 * fw * fw - fw) * Position0.vector4_f32[3]
+ (3 * fw * fw * fw - 5 * fw * fw + 2) * Position1.vector4_f32[3]
+ (-3 * fw * fw * fw + 4 * fw * fw + fw) * Position2.vector4_f32[3]
+ (fw * fw * fw - fw * fw) * Position3.vector4_f32[3])
} } };
return vResult.v;
#elif defined(_XM_ARM_NEON_INTRINSICS_)
static const XMVECTORF32 Catmul2 = { { { 2.0f, 2.0f, 2.0f, 2.0f } } };
static const XMVECTORF32 Catmul3 = { { { 3.0f, 3.0f, 3.0f, 3.0f } } };
static const XMVECTORF32 Catmul4 = { { { 4.0f, 4.0f, 4.0f, 4.0f } } };
static const XMVECTORF32 Catmul5 = { { { 5.0f, 5.0f, 5.0f, 5.0f } } };
// Cache T^2 and T^3
XMVECTOR T2 = vmulq_f32(T, T);
XMVECTOR T3 = vmulq_f32(T, T2);
// Perform the Position0 term
XMVECTOR vResult = vaddq_f32(T2, T2);
vResult = vsubq_f32(vResult, T);
vResult = vsubq_f32(vResult, T3);
vResult = vmulq_f32(vResult, Position0);
// Perform the Position1 term and add
XMVECTOR vTemp = vmulq_f32(T3, Catmul3);
vTemp = vmlsq_f32(vTemp, T2, Catmul5);
vTemp = vaddq_f32(vTemp, Catmul2);
vResult = vmlaq_f32(vResult, vTemp, Position1);
// Perform the Position2 term and add
vTemp = vmulq_f32(T2, Catmul4);
vTemp = vmlsq_f32(vTemp, T3, Catmul3);
vTemp = vaddq_f32(vTemp, T);
vResult = vmlaq_f32(vResult, vTemp, Position2);
// Position3 is the last term
T3 = vsubq_f32(T3, T2);
vResult = vmlaq_f32(vResult, T3, Position3);
// Multiply by 0.5f and exit
vResult = vmulq_f32(vResult, g_XMOneHalf);
return vResult;
#elif defined(_XM_SSE_INTRINSICS_)
static const XMVECTORF32 Catmul2 = { { { 2.0f, 2.0f, 2.0f, 2.0f } } };
static const XMVECTORF32 Catmul3 = { { { 3.0f, 3.0f, 3.0f, 3.0f } } };
static const XMVECTORF32 Catmul4 = { { { 4.0f, 4.0f, 4.0f, 4.0f } } };
static const XMVECTORF32 Catmul5 = { { { 5.0f, 5.0f, 5.0f, 5.0f } } };
// Cache T^2 and T^3
XMVECTOR T2 = _mm_mul_ps(T, T);
XMVECTOR T3 = _mm_mul_ps(T, T2);
// Perform the Position0 term
XMVECTOR vResult = _mm_add_ps(T2, T2);
vResult = _mm_sub_ps(vResult, T);
vResult = _mm_sub_ps(vResult, T3);
vResult = _mm_mul_ps(vResult, Position0);
// Perform the Position1 term and add
XMVECTOR vTemp = _mm_mul_ps(T3, Catmul3);
vTemp = XM_FNMADD_PS(T2, Catmul5, vTemp);
vTemp = _mm_add_ps(vTemp, Catmul2);
vResult = XM_FMADD_PS(vTemp, Position1, vResult);
// Perform the Position2 term and add
vTemp = _mm_mul_ps(T2, Catmul4);
vTemp = XM_FNMADD_PS(T3, Catmul3, vTemp);
vTemp = _mm_add_ps(vTemp, T);
vResult = XM_FMADD_PS(vTemp, Position2, vResult);
// Position3 is the last term
T3 = _mm_sub_ps(T3, T2);
vResult = XM_FMADD_PS(T3, Position3, vResult);
// Multiply by 0.5f and exit
vResult = _mm_mul_ps(vResult, g_XMOneHalf);
return vResult;
#endif
}
//------------------------------------------------------------------------------
inline XMVECTOR XM_CALLCONV XMVectorBaryCentric
(
FXMVECTOR Position0,
FXMVECTOR Position1,
FXMVECTOR Position2,
float f,
float g
) noexcept
{
// Result = Position0 + f * (Position1 - Position0) + g * (Position2 - Position0)
#if defined(_XM_NO_INTRINSICS_)
XMVECTOR P10 = XMVectorSubtract(Position1, Position0);
XMVECTOR ScaleF = XMVectorReplicate(f);
XMVECTOR P20 = XMVectorSubtract(Position2, Position0);
XMVECTOR ScaleG = XMVectorReplicate(g);
XMVECTOR Result = XMVectorMultiplyAdd(P10, ScaleF, Position0);
Result = XMVectorMultiplyAdd(P20, ScaleG, Result);
return Result;
#elif defined(_XM_ARM_NEON_INTRINSICS_)
XMVECTOR R1 = vsubq_f32(Position1, Position0);
XMVECTOR R2 = vsubq_f32(Position2, Position0);
R1 = vmlaq_n_f32(Position0, R1, f);
return vmlaq_n_f32(R1, R2, g);
#elif defined(_XM_SSE_INTRINSICS_)
XMVECTOR R1 = _mm_sub_ps(Position1, Position0);
XMVECTOR R2 = _mm_sub_ps(Position2, Position0);
XMVECTOR SF = _mm_set_ps1(f);
R1 = XM_FMADD_PS(R1, SF, Position0);
XMVECTOR SG = _mm_set_ps1(g);
return XM_FMADD_PS(R2, SG, R1);
#endif
}
//------------------------------------------------------------------------------
inline XMVECTOR XM_CALLCONV XMVectorBaryCentricV
(
FXMVECTOR Position0,
FXMVECTOR Position1,
FXMVECTOR Position2,
GXMVECTOR F,
HXMVECTOR G
) noexcept
{
// Result = Position0 + f * (Position1 - Position0) + g * (Position2 - Position0)
#if defined(_XM_NO_INTRINSICS_)
XMVECTOR P10 = XMVectorSubtract(Position1, Position0);
XMVECTOR P20 = XMVectorSubtract(Position2, Position0);
XMVECTOR Result = XMVectorMultiplyAdd(P10, F, Position0);
Result = XMVectorMultiplyAdd(P20, G, Result);
return Result;
#elif defined(_XM_ARM_NEON_INTRINSICS_)
XMVECTOR R1 = vsubq_f32(Position1, Position0);
XMVECTOR R2 = vsubq_f32(Position2, Position0);
R1 = vmlaq_f32(Position0, R1, F);
return vmlaq_f32(R1, R2, G);
#elif defined(_XM_SSE_INTRINSICS_)
XMVECTOR R1 = _mm_sub_ps(Position1, Position0);
XMVECTOR R2 = _mm_sub_ps(Position2, Position0);
R1 = XM_FMADD_PS(R1, F, Position0);
return XM_FMADD_PS(R2, G, R1);
#endif
}
/****************************************************************************
*
* 2D Vector
*
****************************************************************************/
//------------------------------------------------------------------------------
// Comparison operations
//------------------------------------------------------------------------------
//------------------------------------------------------------------------------
inline bool XM_CALLCONV XMVector2Equal
(
FXMVECTOR V1,
FXMVECTOR V2
) noexcept
{
#if defined(_XM_NO_INTRINSICS_)
return (((V1.vector4_f32[0] == V2.vector4_f32[0]) && (V1.vector4_f32[1] == V2.vector4_f32[1])) != 0);
#elif defined(_XM_ARM_NEON_INTRINSICS_)
uint32x2_t vTemp = vceq_f32(vget_low_f32(V1), vget_low_f32(V2));
return (vget_lane_u64(vreinterpret_u64_u32(vTemp), 0) == 0xFFFFFFFFFFFFFFFFU);
#elif defined(_XM_SSE_INTRINSICS_)
XMVECTOR vTemp = _mm_cmpeq_ps(V1, V2);
// z and w are don't care
return (((_mm_movemask_ps(vTemp) & 3) == 3) != 0);
#endif
}
//------------------------------------------------------------------------------
inline uint32_t XM_CALLCONV XMVector2EqualR
(
FXMVECTOR V1,
FXMVECTOR V2
) noexcept
{
#if defined(_XM_NO_INTRINSICS_)
uint32_t CR = 0;
if ((V1.vector4_f32[0] == V2.vector4_f32[0]) &&
(V1.vector4_f32[1] == V2.vector4_f32[1]))
{
CR = XM_CRMASK_CR6TRUE;
}
else if ((V1.vector4_f32[0] != V2.vector4_f32[0]) &&
(V1.vector4_f32[1] != V2.vector4_f32[1]))
{
CR = XM_CRMASK_CR6FALSE;
}
return CR;
#elif defined(_XM_ARM_NEON_INTRINSICS_)
uint32x2_t vTemp = vceq_f32(vget_low_f32(V1), vget_low_f32(V2));
uint64_t r = vget_lane_u64(vreinterpret_u64_u32(vTemp), 0);
uint32_t CR = 0;
if (r == 0xFFFFFFFFFFFFFFFFU)
{
CR = XM_CRMASK_CR6TRUE;
}
else if (!r)
{
CR = XM_CRMASK_CR6FALSE;
}
return CR;
#elif defined(_XM_SSE_INTRINSICS_)
XMVECTOR vTemp = _mm_cmpeq_ps(V1, V2);
// z and w are don't care
int iTest = _mm_movemask_ps(vTemp) & 3;
uint32_t CR = 0;
if (iTest == 3)
{
CR = XM_CRMASK_CR6TRUE;
}
else if (!iTest)
{
CR = XM_CRMASK_CR6FALSE;
}
return CR;
#endif
}
//------------------------------------------------------------------------------
inline bool XM_CALLCONV XMVector2EqualInt
(
FXMVECTOR V1,
FXMVECTOR V2
) noexcept
{
#if defined(_XM_NO_INTRINSICS_)
return (((V1.vector4_u32[0] == V2.vector4_u32[0]) && (V1.vector4_u32[1] == V2.vector4_u32[1])) != 0);
#elif defined(_XM_ARM_NEON_INTRINSICS_)
uint32x2_t vTemp = vceq_u32(vget_low_u32(vreinterpretq_u32_f32(V1)), vget_low_u32(vreinterpretq_u32_f32(V2)));
return (vget_lane_u64(vreinterpret_u64_u32(vTemp), 0) == 0xFFFFFFFFFFFFFFFFU);
#elif defined(_XM_SSE_INTRINSICS_)
__m128i vTemp = _mm_cmpeq_epi32(_mm_castps_si128(V1), _mm_castps_si128(V2));
return (((_mm_movemask_ps(_mm_castsi128_ps(vTemp)) & 3) == 3) != 0);
#endif
}
//------------------------------------------------------------------------------
inline uint32_t XM_CALLCONV XMVector2EqualIntR
(
FXMVECTOR V1,
FXMVECTOR V2
) noexcept
{
#if defined(_XM_NO_INTRINSICS_)
uint32_t CR = 0;
if ((V1.vector4_u32[0] == V2.vector4_u32[0]) &&
(V1.vector4_u32[1] == V2.vector4_u32[1]))
{
CR = XM_CRMASK_CR6TRUE;
}
else if ((V1.vector4_u32[0] != V2.vector4_u32[0]) &&
(V1.vector4_u32[1] != V2.vector4_u32[1]))
{
CR = XM_CRMASK_CR6FALSE;
}
return CR;
#elif defined(_XM_ARM_NEON_INTRINSICS_)
uint32x2_t vTemp = vceq_u32(vget_low_u32(vreinterpretq_u32_f32(V1)), vget_low_u32(vreinterpretq_u32_f32(V2)));
uint64_t r = vget_lane_u64(vreinterpret_u64_u32(vTemp), 0);
uint32_t CR = 0;
if (r == 0xFFFFFFFFFFFFFFFFU)
{
CR = XM_CRMASK_CR6TRUE;
}
else if (!r)
{
CR = XM_CRMASK_CR6FALSE;
}
return CR;
#elif defined(_XM_SSE_INTRINSICS_)
__m128i vTemp = _mm_cmpeq_epi32(_mm_castps_si128(V1), _mm_castps_si128(V2));
int iTest = _mm_movemask_ps(_mm_castsi128_ps(vTemp)) & 3;
uint32_t CR = 0;
if (iTest == 3)
{
CR = XM_CRMASK_CR6TRUE;
}
else if (!iTest)
{
CR = XM_CRMASK_CR6FALSE;
}
return CR;
#endif
}
//------------------------------------------------------------------------------
inline bool XM_CALLCONV XMVector2NearEqual
(
FXMVECTOR V1,
FXMVECTOR V2,
FXMVECTOR Epsilon
) noexcept
{
#if defined(_XM_NO_INTRINSICS_)
float dx = fabsf(V1.vector4_f32[0] - V2.vector4_f32[0]);
float dy = fabsf(V1.vector4_f32[1] - V2.vector4_f32[1]);
return ((dx <= Epsilon.vector4_f32[0]) &&
(dy <= Epsilon.vector4_f32[1]));
#elif defined(_XM_ARM_NEON_INTRINSICS_)
float32x2_t vDelta = vsub_f32(vget_low_f32(V1), vget_low_f32(V2));
#ifdef _MSC_VER
uint32x2_t vTemp = vacle_f32(vDelta, vget_low_u32(Epsilon));
#else
uint32x2_t vTemp = vcle_f32(vabs_f32(vDelta), vget_low_f32(Epsilon));
#endif
uint64_t r = vget_lane_u64(vreinterpret_u64_u32(vTemp), 0);
return (r == 0xFFFFFFFFFFFFFFFFU);
#elif defined(_XM_SSE_INTRINSICS_)
// Get the difference
XMVECTOR vDelta = _mm_sub_ps(V1, V2);
// Get the absolute value of the difference
XMVECTOR vTemp = _mm_setzero_ps();
vTemp = _mm_sub_ps(vTemp, vDelta);
vTemp = _mm_max_ps(vTemp, vDelta);
vTemp = _mm_cmple_ps(vTemp, Epsilon);
// z and w are don't care
return (((_mm_movemask_ps(vTemp) & 3) == 0x3) != 0);
#endif
}
//------------------------------------------------------------------------------
inline bool XM_CALLCONV XMVector2NotEqual
(
FXMVECTOR V1,
FXMVECTOR V2
) noexcept
{
#if defined(_XM_NO_INTRINSICS_)
return (((V1.vector4_f32[0] != V2.vector4_f32[0]) || (V1.vector4_f32[1] != V2.vector4_f32[1])) != 0);
#elif defined(_XM_ARM_NEON_INTRINSICS_)
uint32x2_t vTemp = vceq_f32(vget_low_f32(V1), vget_low_f32(V2));
return (vget_lane_u64(vreinterpret_u64_u32(vTemp), 0) != 0xFFFFFFFFFFFFFFFFU);
#elif defined(_XM_SSE_INTRINSICS_)
XMVECTOR vTemp = _mm_cmpeq_ps(V1, V2);
// z and w are don't care
return (((_mm_movemask_ps(vTemp) & 3) != 3) != 0);
#endif
}
//------------------------------------------------------------------------------
inline bool XM_CALLCONV XMVector2NotEqualInt
(
FXMVECTOR V1,
FXMVECTOR V2
) noexcept
{
#if defined(_XM_NO_INTRINSICS_)
return (((V1.vector4_u32[0] != V2.vector4_u32[0]) || (V1.vector4_u32[1] != V2.vector4_u32[1])) != 0);
#elif defined(_XM_ARM_NEON_INTRINSICS_)
uint32x2_t vTemp = vceq_u32(vget_low_u32(vreinterpretq_u32_f32(V1)), vget_low_u32(vreinterpretq_u32_f32(V2)));
return (vget_lane_u64(vreinterpret_u64_u32(vTemp), 0) != 0xFFFFFFFFFFFFFFFFU);
#elif defined(_XM_SSE_INTRINSICS_)
__m128i vTemp = _mm_cmpeq_epi32(_mm_castps_si128(V1), _mm_castps_si128(V2));
return (((_mm_movemask_ps(_mm_castsi128_ps(vTemp)) & 3) != 3) != 0);
#endif
}
//------------------------------------------------------------------------------
inline bool XM_CALLCONV XMVector2Greater
(
FXMVECTOR V1,
FXMVECTOR V2
) noexcept
{
#if defined(_XM_NO_INTRINSICS_)
return (((V1.vector4_f32[0] > V2.vector4_f32[0]) && (V1.vector4_f32[1] > V2.vector4_f32[1])) != 0);
#elif defined(_XM_ARM_NEON_INTRINSICS_)
uint32x2_t vTemp = vcgt_f32(vget_low_f32(V1), vget_low_f32(V2));
return (vget_lane_u64(vreinterpret_u64_u32(vTemp), 0) == 0xFFFFFFFFFFFFFFFFU);
#elif defined(_XM_SSE_INTRINSICS_)
XMVECTOR vTemp = _mm_cmpgt_ps(V1, V2);
// z and w are don't care
return (((_mm_movemask_ps(vTemp) & 3) == 3) != 0);
#endif
}
//------------------------------------------------------------------------------
inline uint32_t XM_CALLCONV XMVector2GreaterR
(
FXMVECTOR V1,
FXMVECTOR V2
) noexcept
{
#if defined(_XM_NO_INTRINSICS_)
uint32_t CR = 0;
if ((V1.vector4_f32[0] > V2.vector4_f32[0]) &&
(V1.vector4_f32[1] > V2.vector4_f32[1]))
{
CR = XM_CRMASK_CR6TRUE;
}
else if ((V1.vector4_f32[0] <= V2.vector4_f32[0]) &&
(V1.vector4_f32[1] <= V2.vector4_f32[1]))
{
CR = XM_CRMASK_CR6FALSE;
}
return CR;
#elif defined(_XM_ARM_NEON_INTRINSICS_)
uint32x2_t vTemp = vcgt_f32(vget_low_f32(V1), vget_low_f32(V2));
uint64_t r = vget_lane_u64(vreinterpret_u64_u32(vTemp), 0);
uint32_t CR = 0;
if (r == 0xFFFFFFFFFFFFFFFFU)
{
CR = XM_CRMASK_CR6TRUE;
}
else if (!r)
{
CR = XM_CRMASK_CR6FALSE;
}
return CR;
#elif defined(_XM_SSE_INTRINSICS_)
XMVECTOR vTemp = _mm_cmpgt_ps(V1, V2);
int iTest = _mm_movemask_ps(vTemp) & 3;
uint32_t CR = 0;
if (iTest == 3)
{
CR = XM_CRMASK_CR6TRUE;
}
else if (!iTest)
{
CR = XM_CRMASK_CR6FALSE;
}
return CR;
#endif
}
//------------------------------------------------------------------------------
inline bool XM_CALLCONV XMVector2GreaterOrEqual
(
FXMVECTOR V1,
FXMVECTOR V2
) noexcept
{
#if defined(_XM_NO_INTRINSICS_)
return (((V1.vector4_f32[0] >= V2.vector4_f32[0]) && (V1.vector4_f32[1] >= V2.vector4_f32[1])) != 0);
#elif defined(_XM_ARM_NEON_INTRINSICS_)
uint32x2_t vTemp = vcge_f32(vget_low_f32(V1), vget_low_f32(V2));
return (vget_lane_u64(vreinterpret_u64_u32(vTemp), 0) == 0xFFFFFFFFFFFFFFFFU);
#elif defined(_XM_SSE_INTRINSICS_)
XMVECTOR vTemp = _mm_cmpge_ps(V1, V2);
return (((_mm_movemask_ps(vTemp) & 3) == 3) != 0);
#endif
}
//------------------------------------------------------------------------------
inline uint32_t XM_CALLCONV XMVector2GreaterOrEqualR
(
FXMVECTOR V1,
FXMVECTOR V2
) noexcept
{
#if defined(_XM_NO_INTRINSICS_)
uint32_t CR = 0;
if ((V1.vector4_f32[0] >= V2.vector4_f32[0]) &&
(V1.vector4_f32[1] >= V2.vector4_f32[1]))
{
CR = XM_CRMASK_CR6TRUE;
}
else if ((V1.vector4_f32[0] < V2.vector4_f32[0]) &&
(V1.vector4_f32[1] < V2.vector4_f32[1]))
{
CR = XM_CRMASK_CR6FALSE;
}
return CR;
#elif defined(_XM_ARM_NEON_INTRINSICS_)
uint32x2_t vTemp = vcge_f32(vget_low_f32(V1), vget_low_f32(V2));
uint64_t r = vget_lane_u64(vreinterpret_u64_u32(vTemp), 0);
uint32_t CR = 0;
if (r == 0xFFFFFFFFFFFFFFFFU)
{
CR = XM_CRMASK_CR6TRUE;
}
else if (!r)
{
CR = XM_CRMASK_CR6FALSE;
}
return CR;
#elif defined(_XM_SSE_INTRINSICS_)
XMVECTOR vTemp = _mm_cmpge_ps(V1, V2);
int iTest = _mm_movemask_ps(vTemp) & 3;
uint32_t CR = 0;
if (iTest == 3)
{
CR = XM_CRMASK_CR6TRUE;
}
else if (!iTest)
{
CR = XM_CRMASK_CR6FALSE;
}
return CR;
#endif
}
//------------------------------------------------------------------------------
inline bool XM_CALLCONV XMVector2Less
(
FXMVECTOR V1,
FXMVECTOR V2
) noexcept
{
#if defined(_XM_NO_INTRINSICS_)
return (((V1.vector4_f32[0] < V2.vector4_f32[0]) && (V1.vector4_f32[1] < V2.vector4_f32[1])) != 0);
#elif defined(_XM_ARM_NEON_INTRINSICS_)
uint32x2_t vTemp = vclt_f32(vget_low_f32(V1), vget_low_f32(V2));
return (vget_lane_u64(vreinterpret_u64_u32(vTemp), 0) == 0xFFFFFFFFFFFFFFFFU);
#elif defined(_XM_SSE_INTRINSICS_)
XMVECTOR vTemp = _mm_cmplt_ps(V1, V2);
return (((_mm_movemask_ps(vTemp) & 3) == 3) != 0);
#endif
}
//------------------------------------------------------------------------------
inline bool XM_CALLCONV XMVector2LessOrEqual
(
FXMVECTOR V1,
FXMVECTOR V2
) noexcept
{
#if defined(_XM_NO_INTRINSICS_)
return (((V1.vector4_f32[0] <= V2.vector4_f32[0]) && (V1.vector4_f32[1] <= V2.vector4_f32[1])) != 0);
#elif defined(_XM_ARM_NEON_INTRINSICS_)
uint32x2_t vTemp = vcle_f32(vget_low_f32(V1), vget_low_f32(V2));
return (vget_lane_u64(vreinterpret_u64_u32(vTemp), 0) == 0xFFFFFFFFFFFFFFFFU);
#elif defined(_XM_SSE_INTRINSICS_)
XMVECTOR vTemp = _mm_cmple_ps(V1, V2);
return (((_mm_movemask_ps(vTemp) & 3) == 3) != 0);
#endif
}
//------------------------------------------------------------------------------
inline bool XM_CALLCONV XMVector2InBounds
(
FXMVECTOR V,
FXMVECTOR Bounds
) noexcept
{
#if defined(_XM_NO_INTRINSICS_)
return (((V.vector4_f32[0] <= Bounds.vector4_f32[0] && V.vector4_f32[0] >= -Bounds.vector4_f32[0]) &&
(V.vector4_f32[1] <= Bounds.vector4_f32[1] && V.vector4_f32[1] >= -Bounds.vector4_f32[1])) != 0);
#elif defined(_XM_ARM_NEON_INTRINSICS_)
float32x2_t VL = vget_low_f32(V);
float32x2_t B = vget_low_f32(Bounds);
// Test if less than or equal
uint32x2_t ivTemp1 = vcle_f32(VL, B);
// Negate the bounds
float32x2_t vTemp2 = vneg_f32(B);
// Test if greater or equal (Reversed)
uint32x2_t ivTemp2 = vcle_f32(vTemp2, VL);
// Blend answers
ivTemp1 = vand_u32(ivTemp1, ivTemp2);
// x and y in bounds?
return (vget_lane_u64(vreinterpret_u64_u32(ivTemp1), 0) == 0xFFFFFFFFFFFFFFFFU);
#elif defined(_XM_SSE_INTRINSICS_)
// Test if less than or equal
XMVECTOR vTemp1 = _mm_cmple_ps(V, Bounds);
// Negate the bounds
XMVECTOR vTemp2 = _mm_mul_ps(Bounds, g_XMNegativeOne);
// Test if greater or equal (Reversed)
vTemp2 = _mm_cmple_ps(vTemp2, V);
// Blend answers
vTemp1 = _mm_and_ps(vTemp1, vTemp2);
// x and y in bounds? (z and w are don't care)
return (((_mm_movemask_ps(vTemp1) & 0x3) == 0x3) != 0);
#endif
}
//------------------------------------------------------------------------------
#if !defined(_XM_NO_INTRINSICS_) && defined(_MSC_VER) && !defined(__clang__) && !defined(__INTEL_COMPILER)
#pragma float_control(push)
#pragma float_control(precise, on)
#endif
inline bool XM_CALLCONV XMVector2IsNaN(FXMVECTOR V) noexcept
{
#if defined(_XM_NO_INTRINSICS_)
return (XMISNAN(V.vector4_f32[0]) ||
XMISNAN(V.vector4_f32[1]));
#elif defined(_XM_ARM_NEON_INTRINSICS_)
float32x2_t VL = vget_low_f32(V);
// Test against itself. NaN is always not equal
uint32x2_t vTempNan = vceq_f32(VL, VL);
// If x or y are NaN, the mask is zero
return (vget_lane_u64(vreinterpret_u64_u32(vTempNan), 0) != 0xFFFFFFFFFFFFFFFFU);
#elif defined(_XM_SSE_INTRINSICS_)
// Test against itself. NaN is always not equal
XMVECTOR vTempNan = _mm_cmpneq_ps(V, V);
// If x or y are NaN, the mask is non-zero
return ((_mm_movemask_ps(vTempNan) & 3) != 0);
#endif
}
#if !defined(_XM_NO_INTRINSICS_) && defined(_MSC_VER) && !defined(__clang__) && !defined(__INTEL_COMPILER)
#pragma float_control(pop)
#endif
//------------------------------------------------------------------------------
inline bool XM_CALLCONV XMVector2IsInfinite(FXMVECTOR V) noexcept
{
#if defined(_XM_NO_INTRINSICS_)
return (XMISINF(V.vector4_f32[0]) ||
XMISINF(V.vector4_f32[1]));
#elif defined(_XM_ARM_NEON_INTRINSICS_)
// Mask off the sign bit
uint32x2_t vTemp = vand_u32(vget_low_u32(vreinterpretq_u32_f32(V)), vget_low_u32(g_XMAbsMask));
// Compare to infinity
vTemp = vceq_f32(vreinterpret_f32_u32(vTemp), vget_low_f32(g_XMInfinity));
// If any are infinity, the signs are true.
return vget_lane_u64(vreinterpret_u64_u32(vTemp), 0) != 0;
#elif defined(_XM_SSE_INTRINSICS_)
// Mask off the sign bit
__m128 vTemp = _mm_and_ps(V, g_XMAbsMask);
// Compare to infinity
vTemp = _mm_cmpeq_ps(vTemp, g_XMInfinity);
// If x or z are infinity, the signs are true.
return ((_mm_movemask_ps(vTemp) & 3) != 0);
#endif
}
//------------------------------------------------------------------------------
// Computation operations
//------------------------------------------------------------------------------
//------------------------------------------------------------------------------
inline XMVECTOR XM_CALLCONV XMVector2Dot
(
FXMVECTOR V1,
FXMVECTOR V2
) noexcept
{
#if defined(_XM_NO_INTRINSICS_)
XMVECTORF32 Result;
Result.f[0] =
Result.f[1] =
Result.f[2] =
Result.f[3] = V1.vector4_f32[0] * V2.vector4_f32[0] + V1.vector4_f32[1] * V2.vector4_f32[1];
return Result.v;
#elif defined(_XM_ARM_NEON_INTRINSICS_)
// Perform the dot product on x and y
float32x2_t vTemp = vmul_f32(vget_low_f32(V1), vget_low_f32(V2));
vTemp = vpadd_f32(vTemp, vTemp);
return vcombine_f32(vTemp, vTemp);
#elif defined(_XM_SSE4_INTRINSICS_)
return _mm_dp_ps(V1, V2, 0x3f);
#elif defined(_XM_SSE3_INTRINSICS_)
XMVECTOR vDot = _mm_mul_ps(V1, V2);
vDot = _mm_hadd_ps(vDot, vDot);
vDot = _mm_moveldup_ps(vDot);
return vDot;
#elif defined(_XM_SSE_INTRINSICS_)
// Perform the dot product on x and y
XMVECTOR vLengthSq = _mm_mul_ps(V1, V2);
// vTemp has y splatted
XMVECTOR vTemp = XM_PERMUTE_PS(vLengthSq, _MM_SHUFFLE(1, 1, 1, 1));
// x+y
vLengthSq = _mm_add_ss(vLengthSq, vTemp);
vLengthSq = XM_PERMUTE_PS(vLengthSq, _MM_SHUFFLE(0, 0, 0, 0));
return vLengthSq;
#endif
}
//------------------------------------------------------------------------------
inline XMVECTOR XM_CALLCONV XMVector2Cross
(
FXMVECTOR V1,
FXMVECTOR V2
) noexcept
{
// [ V1.x*V2.y - V1.y*V2.x, V1.x*V2.y - V1.y*V2.x ]
#if defined(_XM_NO_INTRINSICS_)
float fCross = (V1.vector4_f32[0] * V2.vector4_f32[1]) - (V1.vector4_f32[1] * V2.vector4_f32[0]);
XMVECTORF32 vResult;
vResult.f[0] =
vResult.f[1] =
vResult.f[2] =
vResult.f[3] = fCross;
return vResult.v;
#elif defined(_XM_ARM_NEON_INTRINSICS_)
static const XMVECTORF32 Negate = { { { 1.f, -1.f, 0, 0 } } };
float32x2_t vTemp = vmul_f32(vget_low_f32(V1), vrev64_f32(vget_low_f32(V2)));
vTemp = vmul_f32(vTemp, vget_low_f32(Negate));
vTemp = vpadd_f32(vTemp, vTemp);
return vcombine_f32(vTemp, vTemp);
#elif defined(_XM_SSE_INTRINSICS_)
// Swap x and y
XMVECTOR vResult = XM_PERMUTE_PS(V2, _MM_SHUFFLE(0, 1, 0, 1));
// Perform the muls
vResult = _mm_mul_ps(vResult, V1);
// Splat y
XMVECTOR vTemp = XM_PERMUTE_PS(vResult, _MM_SHUFFLE(1, 1, 1, 1));
// Sub the values
vResult = _mm_sub_ss(vResult, vTemp);
// Splat the cross product
vResult = XM_PERMUTE_PS(vResult, _MM_SHUFFLE(0, 0, 0, 0));
return vResult;
#endif
}
//------------------------------------------------------------------------------
inline XMVECTOR XM_CALLCONV XMVector2LengthSq(FXMVECTOR V) noexcept
{
return XMVector2Dot(V, V);
}
//------------------------------------------------------------------------------
inline XMVECTOR XM_CALLCONV XMVector2ReciprocalLengthEst(FXMVECTOR V) noexcept
{
#if defined(_XM_NO_INTRINSICS_)
XMVECTOR Result;
Result = XMVector2LengthSq(V);
Result = XMVectorReciprocalSqrtEst(Result);
return Result;
#elif defined(_XM_ARM_NEON_INTRINSICS_)
float32x2_t VL = vget_low_f32(V);
// Dot2
float32x2_t vTemp = vmul_f32(VL, VL);
vTemp = vpadd_f32(vTemp, vTemp);
// Reciprocal sqrt (estimate)
vTemp = vrsqrte_f32(vTemp);
return vcombine_f32(vTemp, vTemp);
#elif defined(_XM_SSE4_INTRINSICS_)
XMVECTOR vTemp = _mm_dp_ps(V, V, 0x3f);
return _mm_rsqrt_ps(vTemp);
#elif defined(_XM_SSE3_INTRINSICS_)
XMVECTOR vLengthSq = _mm_mul_ps(V, V);
XMVECTOR vTemp = _mm_hadd_ps(vLengthSq, vLengthSq);
vLengthSq = _mm_rsqrt_ss(vTemp);
vLengthSq = XM_PERMUTE_PS(vLengthSq, _MM_SHUFFLE(0, 0, 0, 0));
return vLengthSq;
#elif defined(_XM_SSE_INTRINSICS_)
// Perform the dot product on x and y
XMVECTOR vLengthSq = _mm_mul_ps(V, V);
// vTemp has y splatted
XMVECTOR vTemp = XM_PERMUTE_PS(vLengthSq, _MM_SHUFFLE(1, 1, 1, 1));
// x+y
vLengthSq = _mm_add_ss(vLengthSq, vTemp);
vLengthSq = _mm_rsqrt_ss(vLengthSq);
vLengthSq = XM_PERMUTE_PS(vLengthSq, _MM_SHUFFLE(0, 0, 0, 0));
return vLengthSq;
#endif
}
//------------------------------------------------------------------------------
inline XMVECTOR XM_CALLCONV XMVector2ReciprocalLength(FXMVECTOR V) noexcept
{
#if defined(_XM_NO_INTRINSICS_)
XMVECTOR Result;
Result = XMVector2LengthSq(V);
Result = XMVectorReciprocalSqrt(Result);
return Result;
#elif defined(_XM_ARM_NEON_INTRINSICS_)
float32x2_t VL = vget_low_f32(V);
// Dot2
float32x2_t vTemp = vmul_f32(VL, VL);
vTemp = vpadd_f32(vTemp, vTemp);
// Reciprocal sqrt
float32x2_t S0 = vrsqrte_f32(vTemp);
float32x2_t P0 = vmul_f32(vTemp, S0);
float32x2_t R0 = vrsqrts_f32(P0, S0);
float32x2_t S1 = vmul_f32(S0, R0);
float32x2_t P1 = vmul_f32(vTemp, S1);
float32x2_t R1 = vrsqrts_f32(P1, S1);
float32x2_t Result = vmul_f32(S1, R1);
return vcombine_f32(Result, Result);
#elif defined(_XM_SSE4_INTRINSICS_)
XMVECTOR vTemp = _mm_dp_ps(V, V, 0x3f);
XMVECTOR vLengthSq = _mm_sqrt_ps(vTemp);
return _mm_div_ps(g_XMOne, vLengthSq);
#elif defined(_XM_SSE3_INTRINSICS_)
XMVECTOR vLengthSq = _mm_mul_ps(V, V);
XMVECTOR vTemp = _mm_hadd_ps(vLengthSq, vLengthSq);
vLengthSq = _mm_sqrt_ss(vTemp);
vLengthSq = _mm_div_ss(g_XMOne, vLengthSq);
vLengthSq = XM_PERMUTE_PS(vLengthSq, _MM_SHUFFLE(0, 0, 0, 0));
return vLengthSq;
#elif defined(_XM_SSE_INTRINSICS_)
// Perform the dot product on x and y
XMVECTOR vLengthSq = _mm_mul_ps(V, V);
// vTemp has y splatted
XMVECTOR vTemp = XM_PERMUTE_PS(vLengthSq, _MM_SHUFFLE(1, 1, 1, 1));
// x+y
vLengthSq = _mm_add_ss(vLengthSq, vTemp);
vLengthSq = _mm_sqrt_ss(vLengthSq);
vLengthSq = _mm_div_ss(g_XMOne, vLengthSq);
vLengthSq = XM_PERMUTE_PS(vLengthSq, _MM_SHUFFLE(0, 0, 0, 0));
return vLengthSq;
#endif
}
//------------------------------------------------------------------------------
inline XMVECTOR XM_CALLCONV XMVector2LengthEst(FXMVECTOR V) noexcept
{
#if defined(_XM_NO_INTRINSICS_)
XMVECTOR Result;
Result = XMVector2LengthSq(V);
Result = XMVectorSqrtEst(Result);
return Result;
#elif defined(_XM_ARM_NEON_INTRINSICS_)
float32x2_t VL = vget_low_f32(V);
// Dot2
float32x2_t vTemp = vmul_f32(VL, VL);
vTemp = vpadd_f32(vTemp, vTemp);
const float32x2_t zero = vdup_n_f32(0);
uint32x2_t VEqualsZero = vceq_f32(vTemp, zero);
// Sqrt (estimate)
float32x2_t Result = vrsqrte_f32(vTemp);
Result = vmul_f32(vTemp, Result);
Result = vbsl_f32(VEqualsZero, zero, Result);
return vcombine_f32(Result, Result);
#elif defined(_XM_SSE4_INTRINSICS_)
XMVECTOR vTemp = _mm_dp_ps(V, V, 0x3f);
return _mm_sqrt_ps(vTemp);
#elif defined(_XM_SSE3_INTRINSICS_)
XMVECTOR vLengthSq = _mm_mul_ps(V, V);
XMVECTOR vTemp = _mm_hadd_ps(vLengthSq, vLengthSq);
vLengthSq = _mm_sqrt_ss(vTemp);
vLengthSq = XM_PERMUTE_PS(vLengthSq, _MM_SHUFFLE(0, 0, 0, 0));
return vLengthSq;
#elif defined(_XM_SSE_INTRINSICS_)
// Perform the dot product on x and y
XMVECTOR vLengthSq = _mm_mul_ps(V, V);
// vTemp has y splatted
XMVECTOR vTemp = XM_PERMUTE_PS(vLengthSq, _MM_SHUFFLE(1, 1, 1, 1));
// x+y
vLengthSq = _mm_add_ss(vLengthSq, vTemp);
vLengthSq = _mm_sqrt_ss(vLengthSq);
vLengthSq = XM_PERMUTE_PS(vLengthSq, _MM_SHUFFLE(0, 0, 0, 0));
return vLengthSq;
#endif
}
//------------------------------------------------------------------------------
inline XMVECTOR XM_CALLCONV XMVector2Length(FXMVECTOR V) noexcept
{
#if defined(_XM_NO_INTRINSICS_)
XMVECTOR Result;
Result = XMVector2LengthSq(V);
Result = XMVectorSqrt(Result);
return Result;
#elif defined(_XM_ARM_NEON_INTRINSICS_)
float32x2_t VL = vget_low_f32(V);
// Dot2
float32x2_t vTemp = vmul_f32(VL, VL);
vTemp = vpadd_f32(vTemp, vTemp);
const float32x2_t zero = vdup_n_f32(0);
uint32x2_t VEqualsZero = vceq_f32(vTemp, zero);
// Sqrt
float32x2_t S0 = vrsqrte_f32(vTemp);
float32x2_t P0 = vmul_f32(vTemp, S0);
float32x2_t R0 = vrsqrts_f32(P0, S0);
float32x2_t S1 = vmul_f32(S0, R0);
float32x2_t P1 = vmul_f32(vTemp, S1);
float32x2_t R1 = vrsqrts_f32(P1, S1);
float32x2_t Result = vmul_f32(S1, R1);
Result = vmul_f32(vTemp, Result);
Result = vbsl_f32(VEqualsZero, zero, Result);
return vcombine_f32(Result, Result);
#elif defined(_XM_SSE4_INTRINSICS_)
XMVECTOR vTemp = _mm_dp_ps(V, V, 0x3f);
return _mm_sqrt_ps(vTemp);
#elif defined(_XM_SSE3_INTRINSICS_)
XMVECTOR vLengthSq = _mm_mul_ps(V, V);
XMVECTOR vTemp = _mm_hadd_ps(vLengthSq, vLengthSq);
vLengthSq = _mm_sqrt_ss(vTemp);
vLengthSq = XM_PERMUTE_PS(vLengthSq, _MM_SHUFFLE(0, 0, 0, 0));
return vLengthSq;
#elif defined(_XM_SSE_INTRINSICS_)
// Perform the dot product on x and y
XMVECTOR vLengthSq = _mm_mul_ps(V, V);
// vTemp has y splatted
XMVECTOR vTemp = XM_PERMUTE_PS(vLengthSq, _MM_SHUFFLE(1, 1, 1, 1));
// x+y
vLengthSq = _mm_add_ss(vLengthSq, vTemp);
vLengthSq = XM_PERMUTE_PS(vLengthSq, _MM_SHUFFLE(0, 0, 0, 0));
vLengthSq = _mm_sqrt_ps(vLengthSq);
return vLengthSq;
#endif
}
//------------------------------------------------------------------------------
// XMVector2NormalizeEst uses a reciprocal estimate and
// returns QNaN on zero and infinite vectors.
inline XMVECTOR XM_CALLCONV XMVector2NormalizeEst(FXMVECTOR V) noexcept
{
#if defined(_XM_NO_INTRINSICS_)
XMVECTOR Result;
Result = XMVector2ReciprocalLength(V);
Result = XMVectorMultiply(V, Result);
return Result;
#elif defined(_XM_ARM_NEON_INTRINSICS_)
float32x2_t VL = vget_low_f32(V);
// Dot2
float32x2_t vTemp = vmul_f32(VL, VL);
vTemp = vpadd_f32(vTemp, vTemp);
// Reciprocal sqrt (estimate)
vTemp = vrsqrte_f32(vTemp);
// Normalize
float32x2_t Result = vmul_f32(VL, vTemp);
return vcombine_f32(Result, Result);
#elif defined(_XM_SSE4_INTRINSICS_)
XMVECTOR vTemp = _mm_dp_ps(V, V, 0x3f);
XMVECTOR vResult = _mm_rsqrt_ps(vTemp);
return _mm_mul_ps(vResult, V);
#elif defined(_XM_SSE3_INTRINSICS_)
XMVECTOR vLengthSq = _mm_mul_ps(V, V);
vLengthSq = _mm_hadd_ps(vLengthSq, vLengthSq);
vLengthSq = _mm_rsqrt_ss(vLengthSq);
vLengthSq = XM_PERMUTE_PS(vLengthSq, _MM_SHUFFLE(0, 0, 0, 0));
vLengthSq = _mm_mul_ps(vLengthSq, V);
return vLengthSq;
#elif defined(_XM_SSE_INTRINSICS_)
// Perform the dot product on x and y
XMVECTOR vLengthSq = _mm_mul_ps(V, V);
// vTemp has y splatted
XMVECTOR vTemp = XM_PERMUTE_PS(vLengthSq, _MM_SHUFFLE(1, 1, 1, 1));
// x+y
vLengthSq = _mm_add_ss(vLengthSq, vTemp);
vLengthSq = _mm_rsqrt_ss(vLengthSq);
vLengthSq = XM_PERMUTE_PS(vLengthSq, _MM_SHUFFLE(0, 0, 0, 0));
vLengthSq = _mm_mul_ps(vLengthSq, V);
return vLengthSq;
#endif
}
//------------------------------------------------------------------------------
inline XMVECTOR XM_CALLCONV XMVector2Normalize(FXMVECTOR V) noexcept
{
#if defined(_XM_NO_INTRINSICS_)
XMVECTOR vResult = XMVector2Length(V);
float fLength = vResult.vector4_f32[0];
// Prevent divide by zero
if (fLength > 0)
{
fLength = 1.0f / fLength;
}
vResult.vector4_f32[0] = V.vector4_f32[0] * fLength;
vResult.vector4_f32[1] = V.vector4_f32[1] * fLength;
vResult.vector4_f32[2] = V.vector4_f32[2] * fLength;
vResult.vector4_f32[3] = V.vector4_f32[3] * fLength;
return vResult;
#elif defined(_XM_ARM_NEON_INTRINSICS_)
float32x2_t VL = vget_low_f32(V);
// Dot2
float32x2_t vTemp = vmul_f32(VL, VL);
vTemp = vpadd_f32(vTemp, vTemp);
uint32x2_t VEqualsZero = vceq_f32(vTemp, vdup_n_f32(0));
uint32x2_t VEqualsInf = vceq_f32(vTemp, vget_low_f32(g_XMInfinity));
// Reciprocal sqrt (2 iterations of Newton-Raphson)
float32x2_t S0 = vrsqrte_f32(vTemp);
float32x2_t P0 = vmul_f32(vTemp, S0);
float32x2_t R0 = vrsqrts_f32(P0, S0);
float32x2_t S1 = vmul_f32(S0, R0);
float32x2_t P1 = vmul_f32(vTemp, S1);
float32x2_t R1 = vrsqrts_f32(P1, S1);
vTemp = vmul_f32(S1, R1);
// Normalize
float32x2_t Result = vmul_f32(VL, vTemp);
Result = vbsl_f32(VEqualsZero, vdup_n_f32(0), Result);
Result = vbsl_f32(VEqualsInf, vget_low_f32(g_XMQNaN), Result);
return vcombine_f32(Result, Result);
#elif defined(_XM_SSE4_INTRINSICS_)
XMVECTOR vLengthSq = _mm_dp_ps(V, V, 0x3f);
// Prepare for the division
XMVECTOR vResult = _mm_sqrt_ps(vLengthSq);
// Create zero with a single instruction
XMVECTOR vZeroMask = _mm_setzero_ps();
// Test for a divide by zero (Must be FP to detect -0.0)
vZeroMask = _mm_cmpneq_ps(vZeroMask, vResult);
// Failsafe on zero (Or epsilon) length planes
// If the length is infinity, set the elements to zero
vLengthSq = _mm_cmpneq_ps(vLengthSq, g_XMInfinity);
// Reciprocal mul to perform the normalization
vResult = _mm_div_ps(V, vResult);
// Any that are infinity, set to zero
vResult = _mm_and_ps(vResult, vZeroMask);
// Select qnan or result based on infinite length
XMVECTOR vTemp1 = _mm_andnot_ps(vLengthSq, g_XMQNaN);
XMVECTOR vTemp2 = _mm_and_ps(vResult, vLengthSq);
vResult = _mm_or_ps(vTemp1, vTemp2);
return vResult;
#elif defined(_XM_SSE3_INTRINSICS_)
// Perform the dot product on x and y only
XMVECTOR vLengthSq = _mm_mul_ps(V, V);
vLengthSq = _mm_hadd_ps(vLengthSq, vLengthSq);
vLengthSq = _mm_moveldup_ps(vLengthSq);
// Prepare for the division
XMVECTOR vResult = _mm_sqrt_ps(vLengthSq);
// Create zero with a single instruction
XMVECTOR vZeroMask = _mm_setzero_ps();
// Test for a divide by zero (Must be FP to detect -0.0)
vZeroMask = _mm_cmpneq_ps(vZeroMask, vResult);
// Failsafe on zero (Or epsilon) length planes
// If the length is infinity, set the elements to zero
vLengthSq = _mm_cmpneq_ps(vLengthSq, g_XMInfinity);
// Reciprocal mul to perform the normalization
vResult = _mm_div_ps(V, vResult);
// Any that are infinity, set to zero
vResult = _mm_and_ps(vResult, vZeroMask);
// Select qnan or result based on infinite length
XMVECTOR vTemp1 = _mm_andnot_ps(vLengthSq, g_XMQNaN);
XMVECTOR vTemp2 = _mm_and_ps(vResult, vLengthSq);
vResult = _mm_or_ps(vTemp1, vTemp2);
return vResult;
#elif defined(_XM_SSE_INTRINSICS_)
// Perform the dot product on x and y only
XMVECTOR vLengthSq = _mm_mul_ps(V, V);
XMVECTOR vTemp = XM_PERMUTE_PS(vLengthSq, _MM_SHUFFLE(1, 1, 1, 1));
vLengthSq = _mm_add_ss(vLengthSq, vTemp);
vLengthSq = XM_PERMUTE_PS(vLengthSq, _MM_SHUFFLE(0, 0, 0, 0));
// Prepare for the division
XMVECTOR vResult = _mm_sqrt_ps(vLengthSq);
// Create zero with a single instruction
XMVECTOR vZeroMask = _mm_setzero_ps();
// Test for a divide by zero (Must be FP to detect -0.0)
vZeroMask = _mm_cmpneq_ps(vZeroMask, vResult);
// Failsafe on zero (Or epsilon) length planes
// If the length is infinity, set the elements to zero
vLengthSq = _mm_cmpneq_ps(vLengthSq, g_XMInfinity);
// Reciprocal mul to perform the normalization
vResult = _mm_div_ps(V, vResult);
// Any that are infinity, set to zero
vResult = _mm_and_ps(vResult, vZeroMask);
// Select qnan or result based on infinite length
XMVECTOR vTemp1 = _mm_andnot_ps(vLengthSq, g_XMQNaN);
XMVECTOR vTemp2 = _mm_and_ps(vResult, vLengthSq);
vResult = _mm_or_ps(vTemp1, vTemp2);
return vResult;
#endif
}
//------------------------------------------------------------------------------
inline XMVECTOR XM_CALLCONV XMVector2ClampLength
(
FXMVECTOR V,
float LengthMin,
float LengthMax
) noexcept
{
XMVECTOR ClampMax = XMVectorReplicate(LengthMax);
XMVECTOR ClampMin = XMVectorReplicate(LengthMin);
return XMVector2ClampLengthV(V, ClampMin, ClampMax);
}
//------------------------------------------------------------------------------
inline XMVECTOR XM_CALLCONV XMVector2ClampLengthV
(
FXMVECTOR V,
FXMVECTOR LengthMin,
FXMVECTOR LengthMax
) noexcept
{
assert((XMVectorGetY(LengthMin) == XMVectorGetX(LengthMin)));
assert((XMVectorGetY(LengthMax) == XMVectorGetX(LengthMax)));
assert(XMVector2GreaterOrEqual(LengthMin, g_XMZero));
assert(XMVector2GreaterOrEqual(LengthMax, g_XMZero));
assert(XMVector2GreaterOrEqual(LengthMax, LengthMin));
XMVECTOR LengthSq = XMVector2LengthSq(V);
const XMVECTOR Zero = XMVectorZero();
XMVECTOR RcpLength = XMVectorReciprocalSqrt(LengthSq);
XMVECTOR InfiniteLength = XMVectorEqualInt(LengthSq, g_XMInfinity.v);
XMVECTOR ZeroLength = XMVectorEqual(LengthSq, Zero);
XMVECTOR Length = XMVectorMultiply(LengthSq, RcpLength);
XMVECTOR Normal = XMVectorMultiply(V, RcpLength);
XMVECTOR Select = XMVectorEqualInt(InfiniteLength, ZeroLength);
Length = XMVectorSelect(LengthSq, Length, Select);
Normal = XMVectorSelect(LengthSq, Normal, Select);
XMVECTOR ControlMax = XMVectorGreater(Length, LengthMax);
XMVECTOR ControlMin = XMVectorLess(Length, LengthMin);
XMVECTOR ClampLength = XMVectorSelect(Length, LengthMax, ControlMax);
ClampLength = XMVectorSelect(ClampLength, LengthMin, ControlMin);
XMVECTOR Result = XMVectorMultiply(Normal, ClampLength);
// Preserve the original vector (with no precision loss) if the length falls within the given range
XMVECTOR Control = XMVectorEqualInt(ControlMax, ControlMin);
Result = XMVectorSelect(Result, V, Control);
return Result;
}
//------------------------------------------------------------------------------
inline XMVECTOR XM_CALLCONV XMVector2Reflect
(
FXMVECTOR Incident,
FXMVECTOR Normal
) noexcept
{
// Result = Incident - (2 * dot(Incident, Normal)) * Normal
XMVECTOR Result;
Result = XMVector2Dot(Incident, Normal);
Result = XMVectorAdd(Result, Result);
Result = XMVectorNegativeMultiplySubtract(Result, Normal, Incident);
return Result;
}
//------------------------------------------------------------------------------
inline XMVECTOR XM_CALLCONV XMVector2Refract
(
FXMVECTOR Incident,
FXMVECTOR Normal,
float RefractionIndex
) noexcept
{
XMVECTOR Index = XMVectorReplicate(RefractionIndex);
return XMVector2RefractV(Incident, Normal, Index);
}
//------------------------------------------------------------------------------
// Return the refraction of a 2D vector
inline XMVECTOR XM_CALLCONV XMVector2RefractV
(
FXMVECTOR Incident,
FXMVECTOR Normal,
FXMVECTOR RefractionIndex
) noexcept
{
// Result = RefractionIndex * Incident - Normal * (RefractionIndex * dot(Incident, Normal) +
// sqrt(1 - RefractionIndex * RefractionIndex * (1 - dot(Incident, Normal) * dot(Incident, Normal))))
#if defined(_XM_NO_INTRINSICS_)
float IDotN = (Incident.vector4_f32[0] * Normal.vector4_f32[0]) + (Incident.vector4_f32[1] * Normal.vector4_f32[1]);
// R = 1.0f - RefractionIndex * RefractionIndex * (1.0f - IDotN * IDotN)
float RY = 1.0f - (IDotN * IDotN);
float RX = 1.0f - (RY * RefractionIndex.vector4_f32[0] * RefractionIndex.vector4_f32[0]);
RY = 1.0f - (RY * RefractionIndex.vector4_f32[1] * RefractionIndex.vector4_f32[1]);
if (RX >= 0.0f)
{
RX = (RefractionIndex.vector4_f32[0] * Incident.vector4_f32[0]) - (Normal.vector4_f32[0] * ((RefractionIndex.vector4_f32[0] * IDotN) + sqrtf(RX)));
}
else
{
RX = 0.0f;
}
if (RY >= 0.0f)
{
RY = (RefractionIndex.vector4_f32[1] * Incident.vector4_f32[1]) - (Normal.vector4_f32[1] * ((RefractionIndex.vector4_f32[1] * IDotN) + sqrtf(RY)));
}
else
{
RY = 0.0f;
}
XMVECTOR vResult;
vResult.vector4_f32[0] = RX;
vResult.vector4_f32[1] = RY;
vResult.vector4_f32[2] = 0.0f;
vResult.vector4_f32[3] = 0.0f;
return vResult;
#elif defined(_XM_ARM_NEON_INTRINSICS_)
float32x2_t IL = vget_low_f32(Incident);
float32x2_t NL = vget_low_f32(Normal);
float32x2_t RIL = vget_low_f32(RefractionIndex);
// Get the 2D Dot product of Incident-Normal
float32x2_t vTemp = vmul_f32(IL, NL);
float32x2_t IDotN = vpadd_f32(vTemp, vTemp);
// vTemp = 1.0f - RefractionIndex * RefractionIndex * (1.0f - IDotN * IDotN)
vTemp = vmls_f32(vget_low_f32(g_XMOne), IDotN, IDotN);
vTemp = vmul_f32(vTemp, RIL);
vTemp = vmls_f32(vget_low_f32(g_XMOne), vTemp, RIL);
// If any terms are <=0, sqrt() will fail, punt to zero
uint32x2_t vMask = vcgt_f32(vTemp, vget_low_f32(g_XMZero));
// Sqrt(vTemp)
float32x2_t S0 = vrsqrte_f32(vTemp);
float32x2_t P0 = vmul_f32(vTemp, S0);
float32x2_t R0 = vrsqrts_f32(P0, S0);
float32x2_t S1 = vmul_f32(S0, R0);
float32x2_t P1 = vmul_f32(vTemp, S1);
float32x2_t R1 = vrsqrts_f32(P1, S1);
float32x2_t S2 = vmul_f32(S1, R1);
vTemp = vmul_f32(vTemp, S2);
// R = RefractionIndex * IDotN + sqrt(R)
vTemp = vmla_f32(vTemp, RIL, IDotN);
// Result = RefractionIndex * Incident - Normal * R
float32x2_t vResult = vmul_f32(RIL, IL);
vResult = vmls_f32(vResult, vTemp, NL);
vResult = vreinterpret_f32_u32(vand_u32(vreinterpret_u32_f32(vResult), vMask));
return vcombine_f32(vResult, vResult);
#elif defined(_XM_SSE_INTRINSICS_)
// Result = RefractionIndex * Incident - Normal * (RefractionIndex * dot(Incident, Normal) +
// sqrt(1 - RefractionIndex * RefractionIndex * (1 - dot(Incident, Normal) * dot(Incident, Normal))))
// Get the 2D Dot product of Incident-Normal
XMVECTOR IDotN = XMVector2Dot(Incident, Normal);
// vTemp = 1.0f - RefractionIndex * RefractionIndex * (1.0f - IDotN * IDotN)
XMVECTOR vTemp = XM_FNMADD_PS(IDotN, IDotN, g_XMOne);
vTemp = _mm_mul_ps(vTemp, RefractionIndex);
vTemp = XM_FNMADD_PS(vTemp, RefractionIndex, g_XMOne);
// If any terms are <=0, sqrt() will fail, punt to zero
XMVECTOR vMask = _mm_cmpgt_ps(vTemp, g_XMZero);
// R = RefractionIndex * IDotN + sqrt(R)
vTemp = _mm_sqrt_ps(vTemp);
vTemp = XM_FMADD_PS(RefractionIndex, IDotN, vTemp);
// Result = RefractionIndex * Incident - Normal * R
XMVECTOR vResult = _mm_mul_ps(RefractionIndex, Incident);
vResult = XM_FNMADD_PS(vTemp, Normal, vResult);
vResult = _mm_and_ps(vResult, vMask);
return vResult;
#endif
}
//------------------------------------------------------------------------------
inline XMVECTOR XM_CALLCONV XMVector2Orthogonal(FXMVECTOR V) noexcept
{
#if defined(_XM_NO_INTRINSICS_)
XMVECTORF32 Result = { { {
-V.vector4_f32[1],
V.vector4_f32[0],
0.f,
0.f
} } };
return Result.v;
#elif defined(_XM_ARM_NEON_INTRINSICS_)
static const XMVECTORF32 Negate = { { { -1.f, 1.f, 0, 0 } } };
const float32x2_t zero = vdup_n_f32(0);
float32x2_t VL = vget_low_f32(V);
float32x2_t Result = vmul_f32(vrev64_f32(VL), vget_low_f32(Negate));
return vcombine_f32(Result, zero);
#elif defined(_XM_SSE_INTRINSICS_)
XMVECTOR vResult = XM_PERMUTE_PS(V, _MM_SHUFFLE(3, 2, 0, 1));
vResult = _mm_mul_ps(vResult, g_XMNegateX);
return vResult;
#endif
}
//------------------------------------------------------------------------------
inline XMVECTOR XM_CALLCONV XMVector2AngleBetweenNormalsEst
(
FXMVECTOR N1,
FXMVECTOR N2
) noexcept
{
XMVECTOR Result = XMVector2Dot(N1, N2);
Result = XMVectorClamp(Result, g_XMNegativeOne.v, g_XMOne.v);
Result = XMVectorACosEst(Result);
return Result;
}
//------------------------------------------------------------------------------
inline XMVECTOR XM_CALLCONV XMVector2AngleBetweenNormals
(
FXMVECTOR N1,
FXMVECTOR N2
) noexcept
{
XMVECTOR Result = XMVector2Dot(N1, N2);
Result = XMVectorClamp(Result, g_XMNegativeOne, g_XMOne);
Result = XMVectorACos(Result);
return Result;
}
//------------------------------------------------------------------------------
inline XMVECTOR XM_CALLCONV XMVector2AngleBetweenVectors
(
FXMVECTOR V1,
FXMVECTOR V2
) noexcept
{
XMVECTOR L1 = XMVector2ReciprocalLength(V1);
XMVECTOR L2 = XMVector2ReciprocalLength(V2);
XMVECTOR Dot = XMVector2Dot(V1, V2);
L1 = XMVectorMultiply(L1, L2);
XMVECTOR CosAngle = XMVectorMultiply(Dot, L1);
CosAngle = XMVectorClamp(CosAngle, g_XMNegativeOne.v, g_XMOne.v);
return XMVectorACos(CosAngle);
}
//------------------------------------------------------------------------------
inline XMVECTOR XM_CALLCONV XMVector2LinePointDistance
(
FXMVECTOR LinePoint1,
FXMVECTOR LinePoint2,
FXMVECTOR Point
) noexcept
{
// Given a vector PointVector from LinePoint1 to Point and a vector
// LineVector from LinePoint1 to LinePoint2, the scaled distance
// PointProjectionScale from LinePoint1 to the perpendicular projection
// of PointVector onto the line is defined as:
//
// PointProjectionScale = dot(PointVector, LineVector) / LengthSq(LineVector)
XMVECTOR PointVector = XMVectorSubtract(Point, LinePoint1);
XMVECTOR LineVector = XMVectorSubtract(LinePoint2, LinePoint1);
XMVECTOR LengthSq = XMVector2LengthSq(LineVector);
XMVECTOR PointProjectionScale = XMVector2Dot(PointVector, LineVector);
PointProjectionScale = XMVectorDivide(PointProjectionScale, LengthSq);
XMVECTOR DistanceVector = XMVectorMultiply(LineVector, PointProjectionScale);
DistanceVector = XMVectorSubtract(PointVector, DistanceVector);
return XMVector2Length(DistanceVector);
}
//------------------------------------------------------------------------------
inline XMVECTOR XM_CALLCONV XMVector2IntersectLine
(
FXMVECTOR Line1Point1,
FXMVECTOR Line1Point2,
FXMVECTOR Line2Point1,
GXMVECTOR Line2Point2
) noexcept
{
#if defined(_XM_NO_INTRINSICS_) || defined(_XM_ARM_NEON_INTRINSICS_)
XMVECTOR V1 = XMVectorSubtract(Line1Point2, Line1Point1);
XMVECTOR V2 = XMVectorSubtract(Line2Point2, Line2Point1);
XMVECTOR V3 = XMVectorSubtract(Line1Point1, Line2Point1);
XMVECTOR C1 = XMVector2Cross(V1, V2);
XMVECTOR C2 = XMVector2Cross(V2, V3);
XMVECTOR Result;
const XMVECTOR Zero = XMVectorZero();
if (XMVector2NearEqual(C1, Zero, g_XMEpsilon.v))
{
if (XMVector2NearEqual(C2, Zero, g_XMEpsilon.v))
{
// Coincident
Result = g_XMInfinity.v;
}
else
{
// Parallel
Result = g_XMQNaN.v;
}
}
else
{
// Intersection point = Line1Point1 + V1 * (C2 / C1)
XMVECTOR Scale = XMVectorReciprocal(C1);
Scale = XMVectorMultiply(C2, Scale);
Result = XMVectorMultiplyAdd(V1, Scale, Line1Point1);
}
return Result;
#elif defined(_XM_SSE_INTRINSICS_)
XMVECTOR V1 = _mm_sub_ps(Line1Point2, Line1Point1);
XMVECTOR V2 = _mm_sub_ps(Line2Point2, Line2Point1);
XMVECTOR V3 = _mm_sub_ps(Line1Point1, Line2Point1);
// Generate the cross products
XMVECTOR C1 = XMVector2Cross(V1, V2);
XMVECTOR C2 = XMVector2Cross(V2, V3);
// If C1 is not close to epsilon, use the calculated value
XMVECTOR vResultMask = _mm_setzero_ps();
vResultMask = _mm_sub_ps(vResultMask, C1);
vResultMask = _mm_max_ps(vResultMask, C1);
// 0xFFFFFFFF if the calculated value is to be used
vResultMask = _mm_cmpgt_ps(vResultMask, g_XMEpsilon);
// If C1 is close to epsilon, which fail type is it? INFINITY or NAN?
XMVECTOR vFailMask = _mm_setzero_ps();
vFailMask = _mm_sub_ps(vFailMask, C2);
vFailMask = _mm_max_ps(vFailMask, C2);
vFailMask = _mm_cmple_ps(vFailMask, g_XMEpsilon);
XMVECTOR vFail = _mm_and_ps(vFailMask, g_XMInfinity);
vFailMask = _mm_andnot_ps(vFailMask, g_XMQNaN);
// vFail is NAN or INF
vFail = _mm_or_ps(vFail, vFailMask);
// Intersection point = Line1Point1 + V1 * (C2 / C1)
XMVECTOR vResult = _mm_div_ps(C2, C1);
vResult = XM_FMADD_PS(vResult, V1, Line1Point1);
// Use result, or failure value
vResult = _mm_and_ps(vResult, vResultMask);
vResultMask = _mm_andnot_ps(vResultMask, vFail);
vResult = _mm_or_ps(vResult, vResultMask);
return vResult;
#endif
}
//------------------------------------------------------------------------------
inline XMVECTOR XM_CALLCONV XMVector2Transform
(
FXMVECTOR V,
FXMMATRIX M
) noexcept
{
#if defined(_XM_NO_INTRINSICS_)
XMVECTOR Y = XMVectorSplatY(V);
XMVECTOR X = XMVectorSplatX(V);
XMVECTOR Result = XMVectorMultiplyAdd(Y, M.r[1], M.r[3]);
Result = XMVectorMultiplyAdd(X, M.r[0], Result);
return Result;
#elif defined(_XM_ARM_NEON_INTRINSICS_)
float32x2_t VL = vget_low_f32(V);
float32x4_t Result = vmlaq_lane_f32(M.r[3], M.r[1], VL, 1); // Y
return vmlaq_lane_f32(Result, M.r[0], VL, 0); // X
#elif defined(_XM_SSE_INTRINSICS_)
XMVECTOR vResult = XM_PERMUTE_PS(V, _MM_SHUFFLE(1, 1, 1, 1)); // Y
vResult = XM_FMADD_PS(vResult, M.r[1], M.r[3]);
XMVECTOR vTemp = XM_PERMUTE_PS(V, _MM_SHUFFLE(0, 0, 0, 0)); // X
vResult = XM_FMADD_PS(vTemp, M.r[0], vResult);
return vResult;
#endif
}
//------------------------------------------------------------------------------
_Use_decl_annotations_
inline XMFLOAT4* XM_CALLCONV XMVector2TransformStream
(
XMFLOAT4* pOutputStream,
size_t OutputStride,
const XMFLOAT2* pInputStream,
size_t InputStride,
size_t VectorCount,
FXMMATRIX M
) noexcept
{
assert(pOutputStream != nullptr);
assert(pInputStream != nullptr);
assert(InputStride >= sizeof(XMFLOAT2));
_Analysis_assume_(InputStride >= sizeof(XMFLOAT2));
assert(OutputStride >= sizeof(XMFLOAT4));
_Analysis_assume_(OutputStride >= sizeof(XMFLOAT4));
#if defined(_XM_NO_INTRINSICS_)
auto pInputVector = reinterpret_cast<const uint8_t*>(pInputStream);
auto pOutputVector = reinterpret_cast<uint8_t*>(pOutputStream);
const XMVECTOR row0 = M.r[0];
const XMVECTOR row1 = M.r[1];
const XMVECTOR row3 = M.r[3];
for (size_t i = 0; i < VectorCount; i++)
{
XMVECTOR V = XMLoadFloat2(reinterpret_cast<const XMFLOAT2*>(pInputVector));
XMVECTOR Y = XMVectorSplatY(V);
XMVECTOR X = XMVectorSplatX(V);
XMVECTOR Result = XMVectorMultiplyAdd(Y, row1, row3);
Result = XMVectorMultiplyAdd(X, row0, Result);
#ifdef _PREFAST_
#pragma prefast(push)
#pragma prefast(disable : 26015, "PREfast noise: Esp:1307" )
#endif
XMStoreFloat4(reinterpret_cast<XMFLOAT4*>(pOutputVector), Result);
#ifdef _PREFAST_
#pragma prefast(pop)
#endif
pInputVector += InputStride;
pOutputVector += OutputStride;
}
return pOutputStream;
#elif defined(_XM_ARM_NEON_INTRINSICS_)
auto pInputVector = reinterpret_cast<const uint8_t*>(pInputStream);
auto pOutputVector = reinterpret_cast<uint8_t*>(pOutputStream);
const XMVECTOR row0 = M.r[0];
const XMVECTOR row1 = M.r[1];
const XMVECTOR row3 = M.r[3];
size_t i = 0;
size_t four = VectorCount >> 2;
if (four > 0)
{
if ((InputStride == sizeof(XMFLOAT2)) && (OutputStride == sizeof(XMFLOAT4)))
{
for (size_t j = 0; j < four; ++j)
{
float32x4x2_t V = vld2q_f32(reinterpret_cast<const float*>(pInputVector));
pInputVector += sizeof(XMFLOAT2) * 4;
float32x2_t r3 = vget_low_f32(row3);
float32x2_t r = vget_low_f32(row0);
XMVECTOR vResult0 = vmlaq_lane_f32(vdupq_lane_f32(r3, 0), V.val[0], r, 0); // Ax+M
XMVECTOR vResult1 = vmlaq_lane_f32(vdupq_lane_f32(r3, 1), V.val[0], r, 1); // Bx+N
XM_PREFETCH(pInputVector);
r3 = vget_high_f32(row3);
r = vget_high_f32(row0);
XMVECTOR vResult2 = vmlaq_lane_f32(vdupq_lane_f32(r3, 0), V.val[0], r, 0); // Cx+O
XMVECTOR vResult3 = vmlaq_lane_f32(vdupq_lane_f32(r3, 1), V.val[0], r, 1); // Dx+P
XM_PREFETCH(pInputVector + XM_CACHE_LINE_SIZE);
r = vget_low_f32(row1);
vResult0 = vmlaq_lane_f32(vResult0, V.val[1], r, 0); // Ax+Ey+M
vResult1 = vmlaq_lane_f32(vResult1, V.val[1], r, 1); // Bx+Fy+N
XM_PREFETCH(pInputVector + (XM_CACHE_LINE_SIZE * 2));
r = vget_high_f32(row1);
vResult2 = vmlaq_lane_f32(vResult2, V.val[1], r, 0); // Cx+Gy+O
vResult3 = vmlaq_lane_f32(vResult3, V.val[1], r, 1); // Dx+Hy+P
XM_PREFETCH(pInputVector + (XM_CACHE_LINE_SIZE * 3));
float32x4x4_t R;
R.val[0] = vResult0;
R.val[1] = vResult1;
R.val[2] = vResult2;
R.val[3] = vResult3;
vst4q_f32(reinterpret_cast<float*>(pOutputVector), R);
pOutputVector += sizeof(XMFLOAT4) * 4;
i += 4;
}
}
}
for (; i < VectorCount; i++)
{
float32x2_t V = vld1_f32(reinterpret_cast<const float*>(pInputVector));
pInputVector += InputStride;
XMVECTOR vResult = vmlaq_lane_f32(row3, row0, V, 0); // X
vResult = vmlaq_lane_f32(vResult, row1, V, 1); // Y
vst1q_f32(reinterpret_cast<float*>(pOutputVector), vResult);
pOutputVector += OutputStride;
}
return pOutputStream;
#elif defined(_XM_AVX2_INTRINSICS_)
auto pInputVector = reinterpret_cast<const uint8_t*>(pInputStream);
auto pOutputVector = reinterpret_cast<uint8_t*>(pOutputStream);
size_t i = 0;
size_t four = VectorCount >> 2;
if (four > 0)
{
__m256 row0 = _mm256_broadcast_ps(&M.r[0]);
__m256 row1 = _mm256_broadcast_ps(&M.r[1]);
__m256 row3 = _mm256_broadcast_ps(&M.r[3]);
if (InputStride == sizeof(XMFLOAT2))
{
if (OutputStride == sizeof(XMFLOAT4))
{
if (!(reinterpret_cast<uintptr_t>(pOutputStream) & 0x1F))
{
// Packed input, aligned & packed output
for (size_t j = 0; j < four; ++j)
{
__m256 VV = _mm256_loadu_ps(reinterpret_cast<const float*>(pInputVector));
pInputVector += sizeof(XMFLOAT2) * 4;
__m256 Y2 = _mm256_shuffle_ps(VV, VV, _MM_SHUFFLE(3, 3, 3, 3));
__m256 X2 = _mm256_shuffle_ps(VV, VV, _MM_SHUFFLE(2, 2, 2, 2));
__m256 Y1 = _mm256_shuffle_ps(VV, VV, _MM_SHUFFLE(1, 1, 1, 1));
__m256 X1 = _mm256_shuffle_ps(VV, VV, _MM_SHUFFLE(0, 0, 0, 0));
__m256 vTempB = _mm256_fmadd_ps(Y1, row1, row3);
__m256 vTempB2 = _mm256_fmadd_ps(Y2, row1, row3);
__m256 vTempA = _mm256_mul_ps(X1, row0);
__m256 vTempA2 = _mm256_mul_ps(X2, row0);
vTempA = _mm256_add_ps(vTempA, vTempB);
vTempA2 = _mm256_add_ps(vTempA2, vTempB2);
X1 = _mm256_insertf128_ps(vTempA, _mm256_castps256_ps128(vTempA2), 1);
XM256_STREAM_PS(reinterpret_cast<float*>(pOutputVector), X1);
pOutputVector += sizeof(XMFLOAT4) * 2;
X2 = _mm256_insertf128_ps(vTempA2, _mm256_extractf128_ps(vTempA, 1), 0);
XM256_STREAM_PS(reinterpret_cast<float*>(pOutputVector), X2);
pOutputVector += sizeof(XMFLOAT4) * 2;
i += 4;
}
}
else
{
// Packed input, packed output
for (size_t j = 0; j < four; ++j)
{
__m256 VV = _mm256_loadu_ps(reinterpret_cast<const float*>(pInputVector));
pInputVector += sizeof(XMFLOAT2) * 4;
__m256 Y2 = _mm256_shuffle_ps(VV, VV, _MM_SHUFFLE(3, 3, 3, 3));
__m256 X2 = _mm256_shuffle_ps(VV, VV, _MM_SHUFFLE(2, 2, 2, 2));
__m256 Y1 = _mm256_shuffle_ps(VV, VV, _MM_SHUFFLE(1, 1, 1, 1));
__m256 X1 = _mm256_shuffle_ps(VV, VV, _MM_SHUFFLE(0, 0, 0, 0));
__m256 vTempB = _mm256_fmadd_ps(Y1, row1, row3);
__m256 vTempB2 = _mm256_fmadd_ps(Y2, row1, row3);
__m256 vTempA = _mm256_mul_ps(X1, row0);
__m256 vTempA2 = _mm256_mul_ps(X2, row0);
vTempA = _mm256_add_ps(vTempA, vTempB);
vTempA2 = _mm256_add_ps(vTempA2, vTempB2);
X1 = _mm256_insertf128_ps(vTempA, _mm256_castps256_ps128(vTempA2), 1);
_mm256_storeu_ps(reinterpret_cast<float*>(pOutputVector), X1);
pOutputVector += sizeof(XMFLOAT4) * 2;
X2 = _mm256_insertf128_ps(vTempA2, _mm256_extractf128_ps(vTempA, 1), 0);
_mm256_storeu_ps(reinterpret_cast<float*>(pOutputVector), X2);
pOutputVector += sizeof(XMFLOAT4) * 2;
i += 4;
}
}
}
else
{
// Packed input, unpacked output
for (size_t j = 0; j < four; ++j)
{
__m256 VV = _mm256_loadu_ps(reinterpret_cast<const float*>(pInputVector));
pInputVector += sizeof(XMFLOAT2) * 4;
__m256 Y2 = _mm256_shuffle_ps(VV, VV, _MM_SHUFFLE(3, 3, 3, 3));
__m256 X2 = _mm256_shuffle_ps(VV, VV, _MM_SHUFFLE(2, 2, 2, 2));
__m256 Y1 = _mm256_shuffle_ps(VV, VV, _MM_SHUFFLE(1, 1, 1, 1));
__m256 X1 = _mm256_shuffle_ps(VV, VV, _MM_SHUFFLE(0, 0, 0, 0));
__m256 vTempB = _mm256_fmadd_ps(Y1, row1, row3);
__m256 vTempB2 = _mm256_fmadd_ps(Y2, row1, row3);
__m256 vTempA = _mm256_mul_ps(X1, row0);
__m256 vTempA2 = _mm256_mul_ps(X2, row0);
vTempA = _mm256_add_ps(vTempA, vTempB);
vTempA2 = _mm256_add_ps(vTempA2, vTempB2);
_mm_storeu_ps(reinterpret_cast<float*>(pOutputVector), _mm256_castps256_ps128(vTempA));
pOutputVector += OutputStride;
_mm_storeu_ps(reinterpret_cast<float*>(pOutputVector), _mm256_castps256_ps128(vTempA2));
pOutputVector += OutputStride;
_mm_storeu_ps(reinterpret_cast<float*>(pOutputVector), _mm256_extractf128_ps(vTempA, 1));
pOutputVector += OutputStride;
_mm_storeu_ps(reinterpret_cast<float*>(pOutputVector), _mm256_extractf128_ps(vTempA2, 1));
pOutputVector += OutputStride;
i += 4;
}
}
}
}
if (i < VectorCount)
{
const XMVECTOR row0 = M.r[0];
const XMVECTOR row1 = M.r[1];
const XMVECTOR row3 = M.r[3];
for (; i < VectorCount; i++)
{
__m128 xy = _mm_castpd_ps(_mm_load_sd(reinterpret_cast<const double*>(pInputVector)));
pInputVector += InputStride;
XMVECTOR Y = XM_PERMUTE_PS(xy, _MM_SHUFFLE(1, 1, 1, 1));
XMVECTOR X = XM_PERMUTE_PS(xy, _MM_SHUFFLE(0, 0, 0, 0));
XMVECTOR vTemp = XM_FMADD_PS(Y, row1, row3);
XMVECTOR vTemp2 = _mm_mul_ps(X, row0);
vTemp = _mm_add_ps(vTemp, vTemp2);
_mm_storeu_ps(reinterpret_cast<float*>(pOutputVector), vTemp);
pOutputVector += OutputStride;
}
}
XM_SFENCE();
return pOutputStream;
#elif defined(_XM_SSE_INTRINSICS_)
auto pInputVector = reinterpret_cast<const uint8_t*>(pInputStream);
auto pOutputVector = reinterpret_cast<uint8_t*>(pOutputStream);
const XMVECTOR row0 = M.r[0];
const XMVECTOR row1 = M.r[1];
const XMVECTOR row3 = M.r[3];
size_t i = 0;
size_t two = VectorCount >> 1;
if (two > 0)
{
if (InputStride == sizeof(XMFLOAT2))
{
if (!(reinterpret_cast<uintptr_t>(pOutputStream) & 0xF) && !(OutputStride & 0xF))
{
// Packed input, aligned output
for (size_t j = 0; j < two; ++j)
{
XMVECTOR V = _mm_loadu_ps(reinterpret_cast<const float*>(pInputVector));
pInputVector += sizeof(XMFLOAT2) * 2;
XMVECTOR Y = XM_PERMUTE_PS(V, _MM_SHUFFLE(1, 1, 1, 1));
XMVECTOR X = XM_PERMUTE_PS(V, _MM_SHUFFLE(0, 0, 0, 0));
XMVECTOR vTemp = XM_FMADD_PS(Y, row1, row3);
XMVECTOR vTemp2 = _mm_mul_ps(X, row0);
vTemp = _mm_add_ps(vTemp, vTemp2);
XM_STREAM_PS(reinterpret_cast<float*>(pOutputVector), vTemp);
pOutputVector += OutputStride;
Y = XM_PERMUTE_PS(V, _MM_SHUFFLE(3, 3, 3, 3));
X = XM_PERMUTE_PS(V, _MM_SHUFFLE(2, 2, 2, 2));
vTemp = XM_FMADD_PS(Y, row1, row3);
vTemp2 = _mm_mul_ps(X, row0);
vTemp = _mm_add_ps(vTemp, vTemp2);
XM_STREAM_PS(reinterpret_cast<float*>(pOutputVector), vTemp);
pOutputVector += OutputStride;
i += 2;
}
}
else
{
// Packed input, unaligned output
for (size_t j = 0; j < two; ++j)
{
XMVECTOR V = _mm_loadu_ps(reinterpret_cast<const float*>(pInputVector));
pInputVector += sizeof(XMFLOAT2) * 2;
XMVECTOR Y = XM_PERMUTE_PS(V, _MM_SHUFFLE(1, 1, 1, 1));
XMVECTOR X = XM_PERMUTE_PS(V, _MM_SHUFFLE(0, 0, 0, 0));
XMVECTOR vTemp = XM_FMADD_PS(Y, row1, row3);
XMVECTOR vTemp2 = _mm_mul_ps(X, row0);
vTemp = _mm_add_ps(vTemp, vTemp2);
_mm_storeu_ps(reinterpret_cast<float*>(pOutputVector), vTemp);
pOutputVector += OutputStride;
Y = XM_PERMUTE_PS(V, _MM_SHUFFLE(3, 3, 3, 3));
X = XM_PERMUTE_PS(V, _MM_SHUFFLE(2, 2, 2, 2));
vTemp = XM_FMADD_PS(Y, row1, row3);
vTemp2 = _mm_mul_ps(X, row0);
vTemp = _mm_add_ps(vTemp, vTemp2);
_mm_storeu_ps(reinterpret_cast<float*>(pOutputVector), vTemp);
pOutputVector += OutputStride;
i += 2;
}
}
}
}
if (!(reinterpret_cast<uintptr_t>(pInputVector) & 0xF) && !(InputStride & 0xF))
{
if (!(reinterpret_cast<uintptr_t>(pOutputStream) & 0xF) && !(OutputStride & 0xF))
{
// Aligned input, aligned output
for (; i < VectorCount; i++)
{
XMVECTOR V = _mm_castsi128_ps(_mm_loadl_epi64(reinterpret_cast<const __m128i*>(pInputVector)));
pInputVector += InputStride;
XMVECTOR Y = XM_PERMUTE_PS(V, _MM_SHUFFLE(1, 1, 1, 1));
XMVECTOR X = XM_PERMUTE_PS(V, _MM_SHUFFLE(0, 0, 0, 0));
XMVECTOR vTemp = XM_FMADD_PS(Y, row1, row3);
XMVECTOR vTemp2 = _mm_mul_ps(X, row0);
vTemp = _mm_add_ps(vTemp, vTemp2);
XM_STREAM_PS(reinterpret_cast<float*>(pOutputVector), vTemp);
pOutputVector += OutputStride;
}
}
else
{
// Aligned input, unaligned output
for (; i < VectorCount; i++)
{
XMVECTOR V = _mm_castsi128_ps(_mm_loadl_epi64(reinterpret_cast<const __m128i*>(pInputVector)));
pInputVector += InputStride;
XMVECTOR Y = XM_PERMUTE_PS(V, _MM_SHUFFLE(1, 1, 1, 1));
XMVECTOR X = XM_PERMUTE_PS(V, _MM_SHUFFLE(0, 0, 0, 0));
XMVECTOR vTemp = XM_FMADD_PS(Y, row1, row3);
XMVECTOR vTemp2 = _mm_mul_ps(X, row0);
vTemp = _mm_add_ps(vTemp, vTemp2);
_mm_storeu_ps(reinterpret_cast<float*>(pOutputVector), vTemp);
pOutputVector += OutputStride;
}
}
}
else
{
// Unaligned input
for (; i < VectorCount; i++)
{
__m128 xy = _mm_castpd_ps(_mm_load_sd(reinterpret_cast<const double*>(pInputVector)));
pInputVector += InputStride;
XMVECTOR Y = XM_PERMUTE_PS(xy, _MM_SHUFFLE(1, 1, 1, 1));
XMVECTOR X = XM_PERMUTE_PS(xy, _MM_SHUFFLE(0, 0, 0, 0));
XMVECTOR vTemp = XM_FMADD_PS(Y, row1, row3);
XMVECTOR vTemp2 = _mm_mul_ps(X, row0);
vTemp = _mm_add_ps(vTemp, vTemp2);
_mm_storeu_ps(reinterpret_cast<float*>(pOutputVector), vTemp);
pOutputVector += OutputStride;
}
}
XM_SFENCE();
return pOutputStream;
#endif
}
//------------------------------------------------------------------------------
inline XMVECTOR XM_CALLCONV XMVector2TransformCoord
(
FXMVECTOR V,
FXMMATRIX M
) noexcept
{
XMVECTOR Y = XMVectorSplatY(V);
XMVECTOR X = XMVectorSplatX(V);
XMVECTOR Result = XMVectorMultiplyAdd(Y, M.r[1], M.r[3]);
Result = XMVectorMultiplyAdd(X, M.r[0], Result);
XMVECTOR W = XMVectorSplatW(Result);
return XMVectorDivide(Result, W);
}
//------------------------------------------------------------------------------
_Use_decl_annotations_
inline XMFLOAT2* XM_CALLCONV XMVector2TransformCoordStream
(
XMFLOAT2* pOutputStream,
size_t OutputStride,
const XMFLOAT2* pInputStream,
size_t InputStride,
size_t VectorCount,
FXMMATRIX M
) noexcept
{
assert(pOutputStream != nullptr);
assert(pInputStream != nullptr);
assert(InputStride >= sizeof(XMFLOAT2));
_Analysis_assume_(InputStride >= sizeof(XMFLOAT2));
assert(OutputStride >= sizeof(XMFLOAT2));
_Analysis_assume_(OutputStride >= sizeof(XMFLOAT2));
#if defined(_XM_NO_INTRINSICS_)
auto pInputVector = reinterpret_cast<const uint8_t*>(pInputStream);
auto pOutputVector = reinterpret_cast<uint8_t*>(pOutputStream);
const XMVECTOR row0 = M.r[0];
const XMVECTOR row1 = M.r[1];
const XMVECTOR row3 = M.r[3];
for (size_t i = 0; i < VectorCount; i++)
{
XMVECTOR V = XMLoadFloat2(reinterpret_cast<const XMFLOAT2*>(pInputVector));
XMVECTOR Y = XMVectorSplatY(V);
XMVECTOR X = XMVectorSplatX(V);
XMVECTOR Result = XMVectorMultiplyAdd(Y, row1, row3);
Result = XMVectorMultiplyAdd(X, row0, Result);
XMVECTOR W = XMVectorSplatW(Result);
Result = XMVectorDivide(Result, W);
#ifdef _PREFAST_
#pragma prefast(push)
#pragma prefast(disable : 26015, "PREfast noise: Esp:1307" )
#endif
XMStoreFloat2(reinterpret_cast<XMFLOAT2*>(pOutputVector), Result);
#ifdef _PREFAST_
#pragma prefast(pop)
#endif
pInputVector += InputStride;
pOutputVector += OutputStride;
}
return pOutputStream;
#elif defined(_XM_ARM_NEON_INTRINSICS_)
auto pInputVector = reinterpret_cast<const uint8_t*>(pInputStream);
auto pOutputVector = reinterpret_cast<uint8_t*>(pOutputStream);
const XMVECTOR row0 = M.r[0];
const XMVECTOR row1 = M.r[1];
const XMVECTOR row3 = M.r[3];
size_t i = 0;
size_t four = VectorCount >> 2;
if (four > 0)
{
if ((InputStride == sizeof(XMFLOAT2)) && (OutputStride == sizeof(XMFLOAT2)))
{
for (size_t j = 0; j < four; ++j)
{
float32x4x2_t V = vld2q_f32(reinterpret_cast<const float*>(pInputVector));
pInputVector += sizeof(XMFLOAT2) * 4;
float32x2_t r3 = vget_low_f32(row3);
float32x2_t r = vget_low_f32(row0);
XMVECTOR vResult0 = vmlaq_lane_f32(vdupq_lane_f32(r3, 0), V.val[0], r, 0); // Ax+M
XMVECTOR vResult1 = vmlaq_lane_f32(vdupq_lane_f32(r3, 1), V.val[0], r, 1); // Bx+N
XM_PREFETCH(pInputVector);
r3 = vget_high_f32(row3);
r = vget_high_f32(row0);
XMVECTOR W = vmlaq_lane_f32(vdupq_lane_f32(r3, 1), V.val[0], r, 1); // Dx+P
XM_PREFETCH(pInputVector + XM_CACHE_LINE_SIZE);
r = vget_low_f32(row1);
vResult0 = vmlaq_lane_f32(vResult0, V.val[1], r, 0); // Ax+Ey+M
vResult1 = vmlaq_lane_f32(vResult1, V.val[1], r, 1); // Bx+Fy+N
XM_PREFETCH(pInputVector + (XM_CACHE_LINE_SIZE * 2));
r = vget_high_f32(row1);
W = vmlaq_lane_f32(W, V.val[1], r, 1); // Dx+Hy+P
XM_PREFETCH(pInputVector + (XM_CACHE_LINE_SIZE * 3));
#if defined(_M_ARM64) || defined(_M_HYBRID_X86_ARM64) || __aarch64__
V.val[0] = vdivq_f32(vResult0, W);
V.val[1] = vdivq_f32(vResult1, W);
#else
// 2 iterations of Newton-Raphson refinement of reciprocal
float32x4_t Reciprocal = vrecpeq_f32(W);
float32x4_t S = vrecpsq_f32(Reciprocal, W);
Reciprocal = vmulq_f32(S, Reciprocal);
S = vrecpsq_f32(Reciprocal, W);
Reciprocal = vmulq_f32(S, Reciprocal);
V.val[0] = vmulq_f32(vResult0, Reciprocal);
V.val[1] = vmulq_f32(vResult1, Reciprocal);
#endif
vst2q_f32(reinterpret_cast<float*>(pOutputVector), V);
pOutputVector += sizeof(XMFLOAT2) * 4;
i += 4;
}
}
}
for (; i < VectorCount; i++)
{
float32x2_t V = vld1_f32(reinterpret_cast<const float*>(pInputVector));
pInputVector += InputStride;
XMVECTOR vResult = vmlaq_lane_f32(row3, row0, V, 0); // X
vResult = vmlaq_lane_f32(vResult, row1, V, 1); // Y
V = vget_high_f32(vResult);
float32x2_t W = vdup_lane_f32(V, 1);
#if defined(_M_ARM64) || defined(_M_HYBRID_X86_ARM64) || __aarch64__
V = vget_low_f32(vResult);
V = vdiv_f32(V, W);
#else
// 2 iterations of Newton-Raphson refinement of reciprocal for W
float32x2_t Reciprocal = vrecpe_f32(W);
float32x2_t S = vrecps_f32(Reciprocal, W);
Reciprocal = vmul_f32(S, Reciprocal);
S = vrecps_f32(Reciprocal, W);
Reciprocal = vmul_f32(S, Reciprocal);
V = vget_low_f32(vResult);
V = vmul_f32(V, Reciprocal);
#endif
vst1_f32(reinterpret_cast<float*>(pOutputVector), V);
pOutputVector += OutputStride;
}
return pOutputStream;
#elif defined(_XM_AVX2_INTRINSICS_)
auto pInputVector = reinterpret_cast<const uint8_t*>(pInputStream);
auto pOutputVector = reinterpret_cast<uint8_t*>(pOutputStream);
size_t i = 0;
size_t four = VectorCount >> 2;
if (four > 0)
{
__m256 row0 = _mm256_broadcast_ps(&M.r[0]);
__m256 row1 = _mm256_broadcast_ps(&M.r[1]);
__m256 row3 = _mm256_broadcast_ps(&M.r[3]);
if (InputStride == sizeof(XMFLOAT2))
{
if (OutputStride == sizeof(XMFLOAT2))
{
if (!(reinterpret_cast<uintptr_t>(pOutputStream) & 0x1F))
{
// Packed input, aligned & packed output
for (size_t j = 0; j < four; ++j)
{
__m256 VV = _mm256_loadu_ps(reinterpret_cast<const float*>(pInputVector));
pInputVector += sizeof(XMFLOAT2) * 4;
__m256 Y2 = _mm256_shuffle_ps(VV, VV, _MM_SHUFFLE(3, 3, 3, 3));
__m256 X2 = _mm256_shuffle_ps(VV, VV, _MM_SHUFFLE(2, 2, 2, 2));
__m256 Y1 = _mm256_shuffle_ps(VV, VV, _MM_SHUFFLE(1, 1, 1, 1));
__m256 X1 = _mm256_shuffle_ps(VV, VV, _MM_SHUFFLE(0, 0, 0, 0));
__m256 vTempB = _mm256_fmadd_ps(Y1, row1, row3);
__m256 vTempB2 = _mm256_fmadd_ps(Y2, row1, row3);
__m256 vTempA = _mm256_mul_ps(X1, row0);
__m256 vTempA2 = _mm256_mul_ps(X2, row0);
vTempA = _mm256_add_ps(vTempA, vTempB);
vTempA2 = _mm256_add_ps(vTempA2, vTempB2);
__m256 W = _mm256_shuffle_ps(vTempA, vTempA, _MM_SHUFFLE(3, 3, 3, 3));
vTempA = _mm256_div_ps(vTempA, W);
W = _mm256_shuffle_ps(vTempA2, vTempA2, _MM_SHUFFLE(3, 3, 3, 3));
vTempA2 = _mm256_div_ps(vTempA2, W);
X1 = _mm256_shuffle_ps(vTempA, vTempA2, 0x44);
XM256_STREAM_PS(reinterpret_cast<float*>(pOutputVector), X1);
pOutputVector += sizeof(XMFLOAT2) * 4;
i += 4;
}
}
else
{
// Packed input, packed output
for (size_t j = 0; j < four; ++j)
{
__m256 VV = _mm256_loadu_ps(reinterpret_cast<const float*>(pInputVector));
pInputVector += sizeof(XMFLOAT2) * 4;
__m256 Y2 = _mm256_shuffle_ps(VV, VV, _MM_SHUFFLE(3, 3, 3, 3));
__m256 X2 = _mm256_shuffle_ps(VV, VV, _MM_SHUFFLE(2, 2, 2, 2));
__m256 Y1 = _mm256_shuffle_ps(VV, VV, _MM_SHUFFLE(1, 1, 1, 1));
__m256 X1 = _mm256_shuffle_ps(VV, VV, _MM_SHUFFLE(0, 0, 0, 0));
__m256 vTempB = _mm256_fmadd_ps(Y1, row1, row3);
__m256 vTempB2 = _mm256_fmadd_ps(Y2, row1, row3);
__m256 vTempA = _mm256_mul_ps(X1, row0);
__m256 vTempA2 = _mm256_mul_ps(X2, row0);
vTempA = _mm256_add_ps(vTempA, vTempB);
vTempA2 = _mm256_add_ps(vTempA2, vTempB2);
__m256 W = _mm256_shuffle_ps(vTempA, vTempA, _MM_SHUFFLE(3, 3, 3, 3));
vTempA = _mm256_div_ps(vTempA, W);
W = _mm256_shuffle_ps(vTempA2, vTempA2, _MM_SHUFFLE(3, 3, 3, 3));
vTempA2 = _mm256_div_ps(vTempA2, W);
X1 = _mm256_shuffle_ps(vTempA, vTempA2, 0x44);
_mm256_storeu_ps(reinterpret_cast<float*>(pOutputVector), X1);
pOutputVector += sizeof(XMFLOAT2) * 4;
i += 4;
}
}
}
else
{
// Packed input, unpacked output
for (size_t j = 0; j < four; ++j)
{
__m256 VV = _mm256_loadu_ps(reinterpret_cast<const float*>(pInputVector));
pInputVector += sizeof(XMFLOAT2) * 4;
__m256 Y2 = _mm256_shuffle_ps(VV, VV, _MM_SHUFFLE(3, 3, 3, 3));
__m256 X2 = _mm256_shuffle_ps(VV, VV, _MM_SHUFFLE(2, 2, 2, 2));
__m256 Y1 = _mm256_shuffle_ps(VV, VV, _MM_SHUFFLE(1, 1, 1, 1));
__m256 X1 = _mm256_shuffle_ps(VV, VV, _MM_SHUFFLE(0, 0, 0, 0));
__m256 vTempB = _mm256_fmadd_ps(Y1, row1, row3);
__m256 vTempB2 = _mm256_fmadd_ps(Y2, row1, row3);
__m256 vTempA = _mm256_mul_ps(X1, row0);
__m256 vTempA2 = _mm256_mul_ps(X2, row0);
vTempA = _mm256_add_ps(vTempA, vTempB);
vTempA2 = _mm256_add_ps(vTempA2, vTempB2);
__m256 W = _mm256_shuffle_ps(vTempA, vTempA, _MM_SHUFFLE(3, 3, 3, 3));
vTempA = _mm256_div_ps(vTempA, W);
W = _mm256_shuffle_ps(vTempA2, vTempA2, _MM_SHUFFLE(3, 3, 3, 3));
vTempA2 = _mm256_div_ps(vTempA2, W);
_mm_store_sd(reinterpret_cast<double*>(pOutputVector),
_mm_castps_pd(_mm256_castps256_ps128(vTempA)));
pOutputVector += OutputStride;
_mm_store_sd(reinterpret_cast<double*>(pOutputVector),
_mm_castps_pd(_mm256_castps256_ps128(vTempA2)));
pOutputVector += OutputStride;
_mm_store_sd(reinterpret_cast<double*>(pOutputVector),
_mm_castps_pd(_mm256_extractf128_ps(vTempA, 1)));
pOutputVector += OutputStride;
_mm_store_sd(reinterpret_cast<double*>(pOutputVector),
_mm_castps_pd(_mm256_extractf128_ps(vTempA2, 1)));
pOutputVector += OutputStride;
i += 4;
}
}
}
}
if (i < VectorCount)
{
const XMVECTOR row0 = M.r[0];
const XMVECTOR row1 = M.r[1];
const XMVECTOR row3 = M.r[3];
for (; i < VectorCount; i++)
{
__m128 xy = _mm_castpd_ps(_mm_load_sd(reinterpret_cast<const double*>(pInputVector)));
pInputVector += InputStride;
XMVECTOR Y = XM_PERMUTE_PS(xy, _MM_SHUFFLE(1, 1, 1, 1));
XMVECTOR X = XM_PERMUTE_PS(xy, _MM_SHUFFLE(0, 0, 0, 0));
XMVECTOR vTemp = XM_FMADD_PS(Y, row1, row3);
XMVECTOR vTemp2 = _mm_mul_ps(X, row0);
vTemp = _mm_add_ps(vTemp, vTemp2);
XMVECTOR W = XM_PERMUTE_PS(vTemp, _MM_SHUFFLE(3, 3, 3, 3));
vTemp = _mm_div_ps(vTemp, W);
_mm_store_sd(reinterpret_cast<double*>(pOutputVector), _mm_castps_pd(vTemp));
pOutputVector += OutputStride;
}
}
XM_SFENCE();
return pOutputStream;
#elif defined(_XM_SSE_INTRINSICS_)
auto pInputVector = reinterpret_cast<const uint8_t*>(pInputStream);
auto pOutputVector = reinterpret_cast<uint8_t*>(pOutputStream);
const XMVECTOR row0 = M.r[0];
const XMVECTOR row1 = M.r[1];
const XMVECTOR row3 = M.r[3];
size_t i = 0;
size_t two = VectorCount >> 1;
if (two > 0)
{
if (InputStride == sizeof(XMFLOAT2))
{
if (OutputStride == sizeof(XMFLOAT2))
{
if (!(reinterpret_cast<uintptr_t>(pOutputStream) & 0xF))
{
// Packed input, aligned & packed output
for (size_t j = 0; j < two; ++j)
{
XMVECTOR V = _mm_loadu_ps(reinterpret_cast<const float*>(pInputVector));
pInputVector += sizeof(XMFLOAT2) * 2;
// Result 1
XMVECTOR Y = XM_PERMUTE_PS(V, _MM_SHUFFLE(1, 1, 1, 1));
XMVECTOR X = XM_PERMUTE_PS(V, _MM_SHUFFLE(0, 0, 0, 0));
XMVECTOR vTemp = XM_FMADD_PS(Y, row1, row3);
XMVECTOR vTemp2 = _mm_mul_ps(X, row0);
vTemp = _mm_add_ps(vTemp, vTemp2);
XMVECTOR W = XM_PERMUTE_PS(vTemp, _MM_SHUFFLE(3, 3, 3, 3));
XMVECTOR V1 = _mm_div_ps(vTemp, W);
// Result 2
Y = XM_PERMUTE_PS(V, _MM_SHUFFLE(3, 3, 3, 3));
X = XM_PERMUTE_PS(V, _MM_SHUFFLE(2, 2, 2, 2));
vTemp = XM_FMADD_PS(Y, row1, row3);
vTemp2 = _mm_mul_ps(X, row0);
vTemp = _mm_add_ps(vTemp, vTemp2);
W = XM_PERMUTE_PS(vTemp, _MM_SHUFFLE(3, 3, 3, 3));
XMVECTOR V2 = _mm_div_ps(vTemp, W);
vTemp = _mm_movelh_ps(V1, V2);
XM_STREAM_PS(reinterpret_cast<float*>(pOutputVector), vTemp);
pOutputVector += sizeof(XMFLOAT2) * 2;
i += 2;
}
}
else
{
// Packed input, unaligned & packed output
for (size_t j = 0; j < two; ++j)
{
XMVECTOR V = _mm_loadu_ps(reinterpret_cast<const float*>(pInputVector));
pInputVector += sizeof(XMFLOAT2) * 2;
// Result 1
XMVECTOR Y = XM_PERMUTE_PS(V, _MM_SHUFFLE(1, 1, 1, 1));
XMVECTOR X = XM_PERMUTE_PS(V, _MM_SHUFFLE(0, 0, 0, 0));
XMVECTOR vTemp = XM_FMADD_PS(Y, row1, row3);
XMVECTOR vTemp2 = _mm_mul_ps(X, row0);
vTemp = _mm_add_ps(vTemp, vTemp2);
XMVECTOR W = XM_PERMUTE_PS(vTemp, _MM_SHUFFLE(3, 3, 3, 3));
XMVECTOR V1 = _mm_div_ps(vTemp, W);
// Result 2
Y = XM_PERMUTE_PS(V, _MM_SHUFFLE(3, 3, 3, 3));
X = XM_PERMUTE_PS(V, _MM_SHUFFLE(2, 2, 2, 2));
vTemp = XM_FMADD_PS(Y, row1, row3);
vTemp2 = _mm_mul_ps(X, row0);
vTemp = _mm_add_ps(vTemp, vTemp2);
W = XM_PERMUTE_PS(vTemp, _MM_SHUFFLE(3, 3, 3, 3));
XMVECTOR V2 = _mm_div_ps(vTemp, W);
vTemp = _mm_movelh_ps(V1, V2);
_mm_storeu_ps(reinterpret_cast<float*>(pOutputVector), vTemp);
pOutputVector += sizeof(XMFLOAT2) * 2;
i += 2;
}
}
}
else
{
// Packed input, unpacked output
for (size_t j = 0; j < two; ++j)
{
XMVECTOR V = _mm_loadu_ps(reinterpret_cast<const float*>(pInputVector));
pInputVector += sizeof(XMFLOAT2) * 2;
// Result 1
XMVECTOR Y = XM_PERMUTE_PS(V, _MM_SHUFFLE(1, 1, 1, 1));
XMVECTOR X = XM_PERMUTE_PS(V, _MM_SHUFFLE(0, 0, 0, 0));
XMVECTOR vTemp = XM_FMADD_PS(Y, row1, row3);
XMVECTOR vTemp2 = _mm_mul_ps(X, row0);
vTemp = _mm_add_ps(vTemp, vTemp2);
XMVECTOR W = XM_PERMUTE_PS(vTemp, _MM_SHUFFLE(3, 3, 3, 3));
vTemp = _mm_div_ps(vTemp, W);
_mm_store_sd(reinterpret_cast<double*>(pOutputVector), _mm_castps_pd(vTemp));
pOutputVector += OutputStride;
// Result 2
Y = XM_PERMUTE_PS(V, _MM_SHUFFLE(3, 3, 3, 3));
X = XM_PERMUTE_PS(V, _MM_SHUFFLE(2, 2, 2, 2));
vTemp = XM_FMADD_PS(Y, row1, row3);
vTemp2 = _mm_mul_ps(X, row0);
vTemp = _mm_add_ps(vTemp, vTemp2);
W = XM_PERMUTE_PS(vTemp, _MM_SHUFFLE(3, 3, 3, 3));
vTemp = _mm_div_ps(vTemp, W);
_mm_store_sd(reinterpret_cast<double*>(pOutputVector), _mm_castps_pd(vTemp));
pOutputVector += OutputStride;
i += 2;
}
}
}
}
if (!(reinterpret_cast<uintptr_t>(pInputVector) & 0xF) && !(InputStride & 0xF))
{
// Aligned input
for (; i < VectorCount; i++)
{
XMVECTOR V = _mm_castsi128_ps(_mm_loadl_epi64(reinterpret_cast<const __m128i*>(pInputVector)));
pInputVector += InputStride;
XMVECTOR Y = XM_PERMUTE_PS(V, _MM_SHUFFLE(1, 1, 1, 1));
XMVECTOR X = XM_PERMUTE_PS(V, _MM_SHUFFLE(0, 0, 0, 0));
XMVECTOR vTemp = XM_FMADD_PS(Y, row1, row3);
XMVECTOR vTemp2 = _mm_mul_ps(X, row0);
vTemp = _mm_add_ps(vTemp, vTemp2);
XMVECTOR W = XM_PERMUTE_PS(vTemp, _MM_SHUFFLE(3, 3, 3, 3));
vTemp = _mm_div_ps(vTemp, W);
_mm_store_sd(reinterpret_cast<double*>(pOutputVector), _mm_castps_pd(vTemp));
pOutputVector += OutputStride;
}
}
else
{
// Unaligned input
for (; i < VectorCount; i++)
{
__m128 xy = _mm_castpd_ps(_mm_load_sd(reinterpret_cast<const double*>(pInputVector)));
pInputVector += InputStride;
XMVECTOR Y = XM_PERMUTE_PS(xy, _MM_SHUFFLE(1, 1, 1, 1));
XMVECTOR X = XM_PERMUTE_PS(xy, _MM_SHUFFLE(0, 0, 0, 0));
XMVECTOR vTemp = XM_FMADD_PS(Y, row1, row3);
XMVECTOR vTemp2 = _mm_mul_ps(X, row0);
vTemp = _mm_add_ps(vTemp, vTemp2);
XMVECTOR W = XM_PERMUTE_PS(vTemp, _MM_SHUFFLE(3, 3, 3, 3));
vTemp = _mm_div_ps(vTemp, W);
_mm_store_sd(reinterpret_cast<double*>(pOutputVector), _mm_castps_pd(vTemp));
pOutputVector += OutputStride;
}
}
XM_SFENCE();
return pOutputStream;
#endif
}
//------------------------------------------------------------------------------
inline XMVECTOR XM_CALLCONV XMVector2TransformNormal
(
FXMVECTOR V,
FXMMATRIX M
) noexcept
{
#if defined(_XM_NO_INTRINSICS_)
XMVECTOR Y = XMVectorSplatY(V);
XMVECTOR X = XMVectorSplatX(V);
XMVECTOR Result = XMVectorMultiply(Y, M.r[1]);
Result = XMVectorMultiplyAdd(X, M.r[0], Result);
return Result;
#elif defined(_XM_ARM_NEON_INTRINSICS_)
float32x2_t VL = vget_low_f32(V);
float32x4_t Result = vmulq_lane_f32(M.r[1], VL, 1); // Y
return vmlaq_lane_f32(Result, M.r[0], VL, 0); // X
#elif defined(_XM_SSE_INTRINSICS_)
XMVECTOR vResult = XM_PERMUTE_PS(V, _MM_SHUFFLE(1, 1, 1, 1)); // Y
vResult = _mm_mul_ps(vResult, M.r[1]);
XMVECTOR vTemp = XM_PERMUTE_PS(V, _MM_SHUFFLE(0, 0, 0, 0)); // X
vResult = XM_FMADD_PS(vTemp, M.r[0], vResult);
return vResult;
#endif
}
//------------------------------------------------------------------------------
_Use_decl_annotations_
inline XMFLOAT2* XM_CALLCONV XMVector2TransformNormalStream
(
XMFLOAT2* pOutputStream,
size_t OutputStride,
const XMFLOAT2* pInputStream,
size_t InputStride,
size_t VectorCount,
FXMMATRIX M
) noexcept
{
assert(pOutputStream != nullptr);
assert(pInputStream != nullptr);
assert(InputStride >= sizeof(XMFLOAT2));
_Analysis_assume_(InputStride >= sizeof(XMFLOAT2));
assert(OutputStride >= sizeof(XMFLOAT2));
_Analysis_assume_(OutputStride >= sizeof(XMFLOAT2));
#if defined(_XM_NO_INTRINSICS_)
auto pInputVector = reinterpret_cast<const uint8_t*>(pInputStream);
auto pOutputVector = reinterpret_cast<uint8_t*>(pOutputStream);
const XMVECTOR row0 = M.r[0];
const XMVECTOR row1 = M.r[1];
for (size_t i = 0; i < VectorCount; i++)
{
XMVECTOR V = XMLoadFloat2(reinterpret_cast<const XMFLOAT2*>(pInputVector));
XMVECTOR Y = XMVectorSplatY(V);
XMVECTOR X = XMVectorSplatX(V);
XMVECTOR Result = XMVectorMultiply(Y, row1);
Result = XMVectorMultiplyAdd(X, row0, Result);
#ifdef _PREFAST_
#pragma prefast(push)
#pragma prefast(disable : 26015, "PREfast noise: Esp:1307" )
#endif
XMStoreFloat2(reinterpret_cast<XMFLOAT2*>(pOutputVector), Result);
#ifdef _PREFAST_
#pragma prefast(pop)
#endif
pInputVector += InputStride;
pOutputVector += OutputStride;
}
return pOutputStream;
#elif defined(_XM_ARM_NEON_INTRINSICS_)
auto pInputVector = reinterpret_cast<const uint8_t*>(pInputStream);
auto pOutputVector = reinterpret_cast<uint8_t*>(pOutputStream);
const XMVECTOR row0 = M.r[0];
const XMVECTOR row1 = M.r[1];
size_t i = 0;
size_t four = VectorCount >> 2;
if (four > 0)
{
if ((InputStride == sizeof(XMFLOAT2)) && (OutputStride == sizeof(XMFLOAT2)))
{
for (size_t j = 0; j < four; ++j)
{
float32x4x2_t V = vld2q_f32(reinterpret_cast<const float*>(pInputVector));
pInputVector += sizeof(XMFLOAT2) * 4;
float32x2_t r = vget_low_f32(row0);
XMVECTOR vResult0 = vmulq_lane_f32(V.val[0], r, 0); // Ax
XMVECTOR vResult1 = vmulq_lane_f32(V.val[0], r, 1); // Bx
XM_PREFETCH(pInputVector);
XM_PREFETCH(pInputVector + XM_CACHE_LINE_SIZE);
r = vget_low_f32(row1);
vResult0 = vmlaq_lane_f32(vResult0, V.val[1], r, 0); // Ax+Ey
vResult1 = vmlaq_lane_f32(vResult1, V.val[1], r, 1); // Bx+Fy
XM_PREFETCH(pInputVector + (XM_CACHE_LINE_SIZE * 2));
XM_PREFETCH(pInputVector + (XM_CACHE_LINE_SIZE * 3));
V.val[0] = vResult0;
V.val[1] = vResult1;
vst2q_f32(reinterpret_cast<float*>(pOutputVector), V);
pOutputVector += sizeof(XMFLOAT2) * 4;
i += 4;
}
}
}
for (; i < VectorCount; i++)
{
float32x2_t V = vld1_f32(reinterpret_cast<const float*>(pInputVector));
pInputVector += InputStride;
XMVECTOR vResult = vmulq_lane_f32(row0, V, 0); // X
vResult = vmlaq_lane_f32(vResult, row1, V, 1); // Y
V = vget_low_f32(vResult);
vst1_f32(reinterpret_cast<float*>(pOutputVector), V);
pOutputVector += OutputStride;
}
return pOutputStream;
#elif defined(_XM_AVX2_INTRINSICS_)
auto pInputVector = reinterpret_cast<const uint8_t*>(pInputStream);
auto pOutputVector = reinterpret_cast<uint8_t*>(pOutputStream);
size_t i = 0;
size_t four = VectorCount >> 2;
if (four > 0)
{
__m256 row0 = _mm256_broadcast_ps(&M.r[0]);
__m256 row1 = _mm256_broadcast_ps(&M.r[1]);
if (InputStride == sizeof(XMFLOAT2))
{
if (OutputStride == sizeof(XMFLOAT2))
{
if (!(reinterpret_cast<uintptr_t>(pOutputStream) & 0x1F))
{
// Packed input, aligned & packed output
for (size_t j = 0; j < four; ++j)
{
__m256 VV = _mm256_loadu_ps(reinterpret_cast<const float*>(pInputVector));
pInputVector += sizeof(XMFLOAT2) * 4;
__m256 Y2 = _mm256_shuffle_ps(VV, VV, _MM_SHUFFLE(3, 3, 3, 3));
__m256 X2 = _mm256_shuffle_ps(VV, VV, _MM_SHUFFLE(2, 2, 2, 2));
__m256 Y1 = _mm256_shuffle_ps(VV, VV, _MM_SHUFFLE(1, 1, 1, 1));
__m256 X1 = _mm256_shuffle_ps(VV, VV, _MM_SHUFFLE(0, 0, 0, 0));
__m256 vTempA = _mm256_mul_ps(Y1, row1);
__m256 vTempB = _mm256_mul_ps(Y2, row1);
vTempA = _mm256_fmadd_ps(X1, row0, vTempA);
vTempB = _mm256_fmadd_ps(X2, row0, vTempB);
X1 = _mm256_shuffle_ps(vTempA, vTempB, 0x44);
XM256_STREAM_PS(reinterpret_cast<float*>(pOutputVector), X1);
pOutputVector += sizeof(XMFLOAT2) * 4;
i += 4;
}
}
else
{
// Packed input, packed output
for (size_t j = 0; j < four; ++j)
{
__m256 VV = _mm256_loadu_ps(reinterpret_cast<const float*>(pInputVector));
pInputVector += sizeof(XMFLOAT2) * 4;
__m256 Y2 = _mm256_shuffle_ps(VV, VV, _MM_SHUFFLE(3, 3, 3, 3));
__m256 X2 = _mm256_shuffle_ps(VV, VV, _MM_SHUFFLE(2, 2, 2, 2));
__m256 Y1 = _mm256_shuffle_ps(VV, VV, _MM_SHUFFLE(1, 1, 1, 1));
__m256 X1 = _mm256_shuffle_ps(VV, VV, _MM_SHUFFLE(0, 0, 0, 0));
__m256 vTempA = _mm256_mul_ps(Y1, row1);
__m256 vTempB = _mm256_mul_ps(Y2, row1);
vTempA = _mm256_fmadd_ps(X1, row0, vTempA);
vTempB = _mm256_fmadd_ps(X2, row0, vTempB);
X1 = _mm256_shuffle_ps(vTempA, vTempB, 0x44);
_mm256_storeu_ps(reinterpret_cast<float*>(pOutputVector), X1);
pOutputVector += sizeof(XMFLOAT2) * 4;
i += 4;
}
}
}
else
{
// Packed input, unpacked output
for (size_t j = 0; j < four; ++j)
{
__m256 VV = _mm256_loadu_ps(reinterpret_cast<const float*>(pInputVector));
pInputVector += sizeof(XMFLOAT2) * 4;
__m256 Y2 = _mm256_shuffle_ps(VV, VV, _MM_SHUFFLE(3, 3, 3, 3));
__m256 X2 = _mm256_shuffle_ps(VV, VV, _MM_SHUFFLE(2, 2, 2, 2));
__m256 Y1 = _mm256_shuffle_ps(VV, VV, _MM_SHUFFLE(1, 1, 1, 1));
__m256 X1 = _mm256_shuffle_ps(VV, VV, _MM_SHUFFLE(0, 0, 0, 0));
__m256 vTempA = _mm256_mul_ps(Y1, row1);
__m256 vTempB = _mm256_mul_ps(Y2, row1);
vTempA = _mm256_fmadd_ps(X1, row0, vTempA);
vTempB = _mm256_fmadd_ps(X2, row0, vTempB);
_mm_store_sd(reinterpret_cast<double*>(pOutputVector),
_mm_castps_pd(_mm256_castps256_ps128(vTempA)));
pOutputVector += OutputStride;
_mm_store_sd(reinterpret_cast<double*>(pOutputVector),
_mm_castps_pd(_mm256_castps256_ps128(vTempB)));
pOutputVector += OutputStride;
_mm_store_sd(reinterpret_cast<double*>(pOutputVector),
_mm_castps_pd(_mm256_extractf128_ps(vTempA, 1)));
pOutputVector += OutputStride;
_mm_store_sd(reinterpret_cast<double*>(pOutputVector),
_mm_castps_pd(_mm256_extractf128_ps(vTempB, 1)));
pOutputVector += OutputStride;
i += 4;
}
}
}
}
if (i < VectorCount)
{
const XMVECTOR row0 = M.r[0];
const XMVECTOR row1 = M.r[1];
for (; i < VectorCount; i++)
{
__m128 xy = _mm_castpd_ps(_mm_load_sd(reinterpret_cast<const double*>(pInputVector)));
pInputVector += InputStride;
XMVECTOR Y = XM_PERMUTE_PS(xy, _MM_SHUFFLE(1, 1, 1, 1));
XMVECTOR X = XM_PERMUTE_PS(xy, _MM_SHUFFLE(0, 0, 0, 0));
XMVECTOR vTemp = _mm_mul_ps(Y, row1);
vTemp = XM_FMADD_PS(X, row0, vTemp);
_mm_store_sd(reinterpret_cast<double*>(pOutputVector), _mm_castps_pd(vTemp));
pOutputVector += OutputStride;
}
}
XM_SFENCE();
return pOutputStream;
#elif defined(_XM_SSE_INTRINSICS_)
auto pInputVector = reinterpret_cast<const uint8_t*>(pInputStream);
auto pOutputVector = reinterpret_cast<uint8_t*>(pOutputStream);
const XMVECTOR row0 = M.r[0];
const XMVECTOR row1 = M.r[1];
size_t i = 0;
size_t two = VectorCount >> 1;
if (two > 0)
{
if (InputStride == sizeof(XMFLOAT2))
{
if (OutputStride == sizeof(XMFLOAT2))
{
if (!(reinterpret_cast<uintptr_t>(pOutputStream) & 0xF))
{
// Packed input, aligned & packed output
for (size_t j = 0; j < two; ++j)
{
XMVECTOR V = _mm_loadu_ps(reinterpret_cast<const float*>(pInputVector));
pInputVector += sizeof(XMFLOAT2) * 2;
// Result 1
XMVECTOR Y = XM_PERMUTE_PS(V, _MM_SHUFFLE(1, 1, 1, 1));
XMVECTOR X = XM_PERMUTE_PS(V, _MM_SHUFFLE(0, 0, 0, 0));
XMVECTOR vTemp = _mm_mul_ps(Y, row1);
XMVECTOR V1 = XM_FMADD_PS(X, row0, vTemp);
// Result 2
Y = XM_PERMUTE_PS(V, _MM_SHUFFLE(3, 3, 3, 3));
X = XM_PERMUTE_PS(V, _MM_SHUFFLE(2, 2, 2, 2));
vTemp = _mm_mul_ps(Y, row1);
XMVECTOR V2 = XM_FMADD_PS(X, row0, vTemp);
vTemp = _mm_movelh_ps(V1, V2);
XM_STREAM_PS(reinterpret_cast<float*>(pOutputVector), vTemp);
pOutputVector += sizeof(XMFLOAT2) * 2;
i += 2;
}
}
else
{
// Packed input, unaligned & packed output
for (size_t j = 0; j < two; ++j)
{
XMVECTOR V = _mm_loadu_ps(reinterpret_cast<const float*>(pInputVector));
pInputVector += sizeof(XMFLOAT2) * 2;
// Result 1
XMVECTOR Y = XM_PERMUTE_PS(V, _MM_SHUFFLE(1, 1, 1, 1));
XMVECTOR X = XM_PERMUTE_PS(V, _MM_SHUFFLE(0, 0, 0, 0));
XMVECTOR vTemp = _mm_mul_ps(Y, row1);
XMVECTOR V1 = XM_FMADD_PS(X, row0, vTemp);
// Result 2
Y = XM_PERMUTE_PS(V, _MM_SHUFFLE(3, 3, 3, 3));
X = XM_PERMUTE_PS(V, _MM_SHUFFLE(2, 2, 2, 2));
vTemp = _mm_mul_ps(Y, row1);
XMVECTOR V2 = XM_FMADD_PS(X, row0, vTemp);
vTemp = _mm_movelh_ps(V1, V2);
_mm_storeu_ps(reinterpret_cast<float*>(pOutputVector), vTemp);
pOutputVector += sizeof(XMFLOAT2) * 2;
i += 2;
}
}
}
else
{
// Packed input, unpacked output
for (size_t j = 0; j < two; ++j)
{
XMVECTOR V = _mm_loadu_ps(reinterpret_cast<const float*>(pInputVector));
pInputVector += sizeof(XMFLOAT2) * 2;
// Result 1
XMVECTOR Y = XM_PERMUTE_PS(V, _MM_SHUFFLE(1, 1, 1, 1));
XMVECTOR X = XM_PERMUTE_PS(V, _MM_SHUFFLE(0, 0, 0, 0));
XMVECTOR vTemp = _mm_mul_ps(Y, row1);
vTemp = XM_FMADD_PS(X, row0, vTemp);
_mm_store_sd(reinterpret_cast<double*>(pOutputVector), _mm_castps_pd(vTemp));
pOutputVector += OutputStride;
// Result 2
Y = XM_PERMUTE_PS(V, _MM_SHUFFLE(3, 3, 3, 3));
X = XM_PERMUTE_PS(V, _MM_SHUFFLE(2, 2, 2, 2));
vTemp = _mm_mul_ps(Y, row1);
vTemp = XM_FMADD_PS(X, row0, vTemp);
_mm_store_sd(reinterpret_cast<double*>(pOutputVector), _mm_castps_pd(vTemp));
pOutputVector += OutputStride;
i += 2;
}
}
}
}
if (!(reinterpret_cast<uintptr_t>(pInputVector) & 0xF) && !(InputStride & 0xF))
{
// Aligned input
for (; i < VectorCount; i++)
{
XMVECTOR V = _mm_castsi128_ps(_mm_loadl_epi64(reinterpret_cast<const __m128i*>(pInputVector)));
pInputVector += InputStride;
XMVECTOR Y = XM_PERMUTE_PS(V, _MM_SHUFFLE(1, 1, 1, 1));
XMVECTOR X = XM_PERMUTE_PS(V, _MM_SHUFFLE(0, 0, 0, 0));
XMVECTOR vTemp = _mm_mul_ps(Y, row1);
vTemp = XM_FMADD_PS(X, row0, vTemp);
_mm_store_sd(reinterpret_cast<double*>(pOutputVector), _mm_castps_pd(vTemp));
pOutputVector += OutputStride;
}
}
else
{
// Unaligned input
for (; i < VectorCount; i++)
{
__m128 xy = _mm_castpd_ps(_mm_load_sd(reinterpret_cast<const double*>(pInputVector)));
pInputVector += InputStride;
XMVECTOR Y = XM_PERMUTE_PS(xy, _MM_SHUFFLE(1, 1, 1, 1));
XMVECTOR X = XM_PERMUTE_PS(xy, _MM_SHUFFLE(0, 0, 0, 0));
XMVECTOR vTemp = _mm_mul_ps(Y, row1);
vTemp = XM_FMADD_PS(X, row0, vTemp);
_mm_store_sd(reinterpret_cast<double*>(pOutputVector), _mm_castps_pd(vTemp));
pOutputVector += OutputStride;
}
}
XM_SFENCE();
return pOutputStream;
#endif
}
/****************************************************************************
*
* 3D Vector
*
****************************************************************************/
//------------------------------------------------------------------------------
// Comparison operations
//------------------------------------------------------------------------------
//------------------------------------------------------------------------------
inline bool XM_CALLCONV XMVector3Equal
(
FXMVECTOR V1,
FXMVECTOR V2
) noexcept
{
#if defined(_XM_NO_INTRINSICS_)
return (((V1.vector4_f32[0] == V2.vector4_f32[0]) && (V1.vector4_f32[1] == V2.vector4_f32[1]) && (V1.vector4_f32[2] == V2.vector4_f32[2])) != 0);
#elif defined(_XM_ARM_NEON_INTRINSICS_)
uint32x4_t vResult = vceqq_f32(V1, V2);
uint8x8x2_t vTemp = vzip_u8(vget_low_u8(vreinterpretq_u8_u32(vResult)), vget_high_u8(vreinterpretq_u8_u32(vResult)));
uint16x4x2_t vTemp2 = vzip_u16(vreinterpret_u16_u8(vTemp.val[0]), vreinterpret_u16_u8(vTemp.val[1]));
return ((vget_lane_u32(vreinterpret_u32_u16(vTemp2.val[1]), 1) & 0xFFFFFFU) == 0xFFFFFFU);
#elif defined(_XM_SSE_INTRINSICS_)
XMVECTOR vTemp = _mm_cmpeq_ps(V1, V2);
return (((_mm_movemask_ps(vTemp) & 7) == 7) != 0);
#endif
}
//------------------------------------------------------------------------------
inline uint32_t XM_CALLCONV XMVector3EqualR
(
FXMVECTOR V1,
FXMVECTOR V2
) noexcept
{
#if defined(_XM_NO_INTRINSICS_)
uint32_t CR = 0;
if ((V1.vector4_f32[0] == V2.vector4_f32[0]) &&
(V1.vector4_f32[1] == V2.vector4_f32[1]) &&
(V1.vector4_f32[2] == V2.vector4_f32[2]))
{
CR = XM_CRMASK_CR6TRUE;
}
else if ((V1.vector4_f32[0] != V2.vector4_f32[0]) &&
(V1.vector4_f32[1] != V2.vector4_f32[1]) &&
(V1.vector4_f32[2] != V2.vector4_f32[2]))
{
CR = XM_CRMASK_CR6FALSE;
}
return CR;
#elif defined(_XM_ARM_NEON_INTRINSICS_)
uint32x4_t vResult = vceqq_f32(V1, V2);
uint8x8x2_t vTemp = vzip_u8(vget_low_u8(vreinterpretq_u8_u32(vResult)), vget_high_u8(vreinterpretq_u8_u32(vResult)));
uint16x4x2_t vTemp2 = vzip_u16(vreinterpret_u16_u8(vTemp.val[0]), vreinterpret_u16_u8(vTemp.val[1]));
uint32_t r = vget_lane_u32(vreinterpret_u32_u16(vTemp2.val[1]), 1) & 0xFFFFFFU;
uint32_t CR = 0;
if (r == 0xFFFFFFU)
{
CR = XM_CRMASK_CR6TRUE;
}
else if (!r)
{
CR = XM_CRMASK_CR6FALSE;
}
return CR;
#elif defined(_XM_SSE_INTRINSICS_)
XMVECTOR vTemp = _mm_cmpeq_ps(V1, V2);
int iTest = _mm_movemask_ps(vTemp) & 7;
uint32_t CR = 0;
if (iTest == 7)
{
CR = XM_CRMASK_CR6TRUE;
}
else if (!iTest)
{
CR = XM_CRMASK_CR6FALSE;
}
return CR;
#endif
}
//------------------------------------------------------------------------------
inline bool XM_CALLCONV XMVector3EqualInt
(
FXMVECTOR V1,
FXMVECTOR V2
) noexcept
{
#if defined(_XM_NO_INTRINSICS_)
return (((V1.vector4_u32[0] == V2.vector4_u32[0]) && (V1.vector4_u32[1] == V2.vector4_u32[1]) && (V1.vector4_u32[2] == V2.vector4_u32[2])) != 0);
#elif defined(_XM_ARM_NEON_INTRINSICS_)
uint32x4_t vResult = vceqq_u32(vreinterpretq_u32_f32(V1), vreinterpretq_u32_f32(V2));
uint8x8x2_t vTemp = vzip_u8(vget_low_u8(vreinterpretq_u8_u32(vResult)), vget_high_u8(vreinterpretq_u8_u32(vResult)));
uint16x4x2_t vTemp2 = vzip_u16(vreinterpret_u16_u8(vTemp.val[0]), vreinterpret_u16_u8(vTemp.val[1]));
return ((vget_lane_u32(vreinterpret_u32_u16(vTemp2.val[1]), 1) & 0xFFFFFFU) == 0xFFFFFFU);
#elif defined(_XM_SSE_INTRINSICS_)
__m128i vTemp = _mm_cmpeq_epi32(_mm_castps_si128(V1), _mm_castps_si128(V2));
return (((_mm_movemask_ps(_mm_castsi128_ps(vTemp)) & 7) == 7) != 0);
#endif
}
//------------------------------------------------------------------------------
inline uint32_t XM_CALLCONV XMVector3EqualIntR
(
FXMVECTOR V1,
FXMVECTOR V2
) noexcept
{
#if defined(_XM_NO_INTRINSICS_)
uint32_t CR = 0;
if ((V1.vector4_u32[0] == V2.vector4_u32[0]) &&
(V1.vector4_u32[1] == V2.vector4_u32[1]) &&
(V1.vector4_u32[2] == V2.vector4_u32[2]))
{
CR = XM_CRMASK_CR6TRUE;
}
else if ((V1.vector4_u32[0] != V2.vector4_u32[0]) &&
(V1.vector4_u32[1] != V2.vector4_u32[1]) &&
(V1.vector4_u32[2] != V2.vector4_u32[2]))
{
CR = XM_CRMASK_CR6FALSE;
}
return CR;
#elif defined(_XM_ARM_NEON_INTRINSICS_)
uint32x4_t vResult = vceqq_u32(vreinterpretq_u32_f32(V1), vreinterpretq_u32_f32(V2));
uint8x8x2_t vTemp = vzip_u8(vget_low_u8(vreinterpretq_u8_u32(vResult)), vget_high_u8(vreinterpretq_u8_u32(vResult)));
uint16x4x2_t vTemp2 = vzip_u16(vreinterpret_u16_u8(vTemp.val[0]), vreinterpret_u16_u8(vTemp.val[1]));
uint32_t r = vget_lane_u32(vreinterpret_u32_u16(vTemp2.val[1]), 1) & 0xFFFFFFU;
uint32_t CR = 0;
if (r == 0xFFFFFFU)
{
CR = XM_CRMASK_CR6TRUE;
}
else if (!r)
{
CR = XM_CRMASK_CR6FALSE;
}
return CR;
#elif defined(_XM_SSE_INTRINSICS_)
__m128i vTemp = _mm_cmpeq_epi32(_mm_castps_si128(V1), _mm_castps_si128(V2));
int iTemp = _mm_movemask_ps(_mm_castsi128_ps(vTemp)) & 7;
uint32_t CR = 0;
if (iTemp == 7)
{
CR = XM_CRMASK_CR6TRUE;
}
else if (!iTemp)
{
CR = XM_CRMASK_CR6FALSE;
}
return CR;
#endif
}
//------------------------------------------------------------------------------
inline bool XM_CALLCONV XMVector3NearEqual
(
FXMVECTOR V1,
FXMVECTOR V2,
FXMVECTOR Epsilon
) noexcept
{
#if defined(_XM_NO_INTRINSICS_)
float dx, dy, dz;
dx = fabsf(V1.vector4_f32[0] - V2.vector4_f32[0]);
dy = fabsf(V1.vector4_f32[1] - V2.vector4_f32[1]);
dz = fabsf(V1.vector4_f32[2] - V2.vector4_f32[2]);
return (((dx <= Epsilon.vector4_f32[0]) &&
(dy <= Epsilon.vector4_f32[1]) &&
(dz <= Epsilon.vector4_f32[2])) != 0);
#elif defined(_XM_ARM_NEON_INTRINSICS_)
float32x4_t vDelta = vsubq_f32(V1, V2);
#ifdef _MSC_VER
uint32x4_t vResult = vacleq_f32(vDelta, Epsilon);
#else
uint32x4_t vResult = vcleq_f32(vabsq_f32(vDelta), Epsilon);
#endif
uint8x8x2_t vTemp = vzip_u8(vget_low_u8(vreinterpretq_u8_u32(vResult)), vget_high_u8(vreinterpretq_u8_u32(vResult)));
uint16x4x2_t vTemp2 = vzip_u16(vreinterpret_u16_u8(vTemp.val[0]), vreinterpret_u16_u8(vTemp.val[1]));
return ((vget_lane_u32(vreinterpret_u32_u16(vTemp2.val[1]), 1) & 0xFFFFFFU) == 0xFFFFFFU);
#elif defined(_XM_SSE_INTRINSICS_)
// Get the difference
XMVECTOR vDelta = _mm_sub_ps(V1, V2);
// Get the absolute value of the difference
XMVECTOR vTemp = _mm_setzero_ps();
vTemp = _mm_sub_ps(vTemp, vDelta);
vTemp = _mm_max_ps(vTemp, vDelta);
vTemp = _mm_cmple_ps(vTemp, Epsilon);
// w is don't care
return (((_mm_movemask_ps(vTemp) & 7) == 0x7) != 0);
#endif
}
//------------------------------------------------------------------------------
inline bool XM_CALLCONV XMVector3NotEqual
(
FXMVECTOR V1,
FXMVECTOR V2
) noexcept
{
#if defined(_XM_NO_INTRINSICS_)
return (((V1.vector4_f32[0] != V2.vector4_f32[0]) || (V1.vector4_f32[1] != V2.vector4_f32[1]) || (V1.vector4_f32[2] != V2.vector4_f32[2])) != 0);
#elif defined(_XM_ARM_NEON_INTRINSICS_)
uint32x4_t vResult = vceqq_f32(V1, V2);
uint8x8x2_t vTemp = vzip_u8(vget_low_u8(vreinterpretq_u8_u32(vResult)), vget_high_u8(vreinterpretq_u8_u32(vResult)));
uint16x4x2_t vTemp2 = vzip_u16(vreinterpret_u16_u8(vTemp.val[0]), vreinterpret_u16_u8(vTemp.val[1]));
return ((vget_lane_u32(vreinterpret_u32_u16(vTemp2.val[1]), 1) & 0xFFFFFFU) != 0xFFFFFFU);
#elif defined(_XM_SSE_INTRINSICS_)
XMVECTOR vTemp = _mm_cmpeq_ps(V1, V2);
return (((_mm_movemask_ps(vTemp) & 7) != 7) != 0);
#endif
}
//------------------------------------------------------------------------------
inline bool XM_CALLCONV XMVector3NotEqualInt
(
FXMVECTOR V1,
FXMVECTOR V2
) noexcept
{
#if defined(_XM_NO_INTRINSICS_)
return (((V1.vector4_u32[0] != V2.vector4_u32[0]) || (V1.vector4_u32[1] != V2.vector4_u32[1]) || (V1.vector4_u32[2] != V2.vector4_u32[2])) != 0);
#elif defined(_XM_ARM_NEON_INTRINSICS_)
uint32x4_t vResult = vceqq_u32(vreinterpretq_u32_f32(V1), vreinterpretq_u32_f32(V2));
uint8x8x2_t vTemp = vzip_u8(vget_low_u8(vreinterpretq_u8_u32(vResult)), vget_high_u8(vreinterpretq_u8_u32(vResult)));
uint16x4x2_t vTemp2 = vzip_u16(vreinterpret_u16_u8(vTemp.val[0]), vreinterpret_u16_u8(vTemp.val[1]));
return ((vget_lane_u32(vreinterpret_u32_u16(vTemp2.val[1]), 1) & 0xFFFFFFU) != 0xFFFFFFU);
#elif defined(_XM_SSE_INTRINSICS_)
__m128i vTemp = _mm_cmpeq_epi32(_mm_castps_si128(V1), _mm_castps_si128(V2));
return (((_mm_movemask_ps(_mm_castsi128_ps(vTemp)) & 7) != 7) != 0);
#endif
}
//------------------------------------------------------------------------------
inline bool XM_CALLCONV XMVector3Greater
(
FXMVECTOR V1,
FXMVECTOR V2
) noexcept
{
#if defined(_XM_NO_INTRINSICS_)
return (((V1.vector4_f32[0] > V2.vector4_f32[0]) && (V1.vector4_f32[1] > V2.vector4_f32[1]) && (V1.vector4_f32[2] > V2.vector4_f32[2])) != 0);
#elif defined(_XM_ARM_NEON_INTRINSICS_)
uint32x4_t vResult = vcgtq_f32(V1, V2);
uint8x8x2_t vTemp = vzip_u8(vget_low_u8(vreinterpretq_u8_u32(vResult)), vget_high_u8(vreinterpretq_u8_u32(vResult)));
uint16x4x2_t vTemp2 = vzip_u16(vreinterpret_u16_u8(vTemp.val[0]), vreinterpret_u16_u8(vTemp.val[1]));
return ((vget_lane_u32(vreinterpret_u32_u16(vTemp2.val[1]), 1) & 0xFFFFFFU) == 0xFFFFFFU);
#elif defined(_XM_SSE_INTRINSICS_)
XMVECTOR vTemp = _mm_cmpgt_ps(V1, V2);
return (((_mm_movemask_ps(vTemp) & 7) == 7) != 0);
#endif
}
//------------------------------------------------------------------------------
inline uint32_t XM_CALLCONV XMVector3GreaterR
(
FXMVECTOR V1,
FXMVECTOR V2
) noexcept
{
#if defined(_XM_NO_INTRINSICS_)
uint32_t CR = 0;
if ((V1.vector4_f32[0] > V2.vector4_f32[0]) &&
(V1.vector4_f32[1] > V2.vector4_f32[1]) &&
(V1.vector4_f32[2] > V2.vector4_f32[2]))
{
CR = XM_CRMASK_CR6TRUE;
}
else if ((V1.vector4_f32[0] <= V2.vector4_f32[0]) &&
(V1.vector4_f32[1] <= V2.vector4_f32[1]) &&
(V1.vector4_f32[2] <= V2.vector4_f32[2]))
{
CR = XM_CRMASK_CR6FALSE;
}
return CR;
#elif defined(_XM_ARM_NEON_INTRINSICS_)
uint32x4_t vResult = vcgtq_f32(V1, V2);
uint8x8x2_t vTemp = vzip_u8(vget_low_u8(vreinterpretq_u8_u32(vResult)), vget_high_u8(vreinterpretq_u8_u32(vResult)));
uint16x4x2_t vTemp2 = vzip_u16(vreinterpret_u16_u8(vTemp.val[0]), vreinterpret_u16_u8(vTemp.val[1]));
uint32_t r = vget_lane_u32(vreinterpret_u32_u16(vTemp2.val[1]), 1) & 0xFFFFFFU;
uint32_t CR = 0;
if (r == 0xFFFFFFU)
{
CR = XM_CRMASK_CR6TRUE;
}
else if (!r)
{
CR = XM_CRMASK_CR6FALSE;
}
return CR;
#elif defined(_XM_SSE_INTRINSICS_)
XMVECTOR vTemp = _mm_cmpgt_ps(V1, V2);
uint32_t CR = 0;
int iTest = _mm_movemask_ps(vTemp) & 7;
if (iTest == 7)
{
CR = XM_CRMASK_CR6TRUE;
}
else if (!iTest)
{
CR = XM_CRMASK_CR6FALSE;
}
return CR;
#endif
}
//------------------------------------------------------------------------------
inline bool XM_CALLCONV XMVector3GreaterOrEqual
(
FXMVECTOR V1,
FXMVECTOR V2
) noexcept
{
#if defined(_XM_NO_INTRINSICS_)
return (((V1.vector4_f32[0] >= V2.vector4_f32[0]) && (V1.vector4_f32[1] >= V2.vector4_f32[1]) && (V1.vector4_f32[2] >= V2.vector4_f32[2])) != 0);
#elif defined(_XM_ARM_NEON_INTRINSICS_)
uint32x4_t vResult = vcgeq_f32(V1, V2);
uint8x8x2_t vTemp = vzip_u8(vget_low_u8(vreinterpretq_u8_u32(vResult)), vget_high_u8(vreinterpretq_u8_u32(vResult)));
uint16x4x2_t vTemp2 = vzip_u16(vreinterpret_u16_u8(vTemp.val[0]), vreinterpret_u16_u8(vTemp.val[1]));
return ((vget_lane_u32(vreinterpret_u32_u16(vTemp2.val[1]), 1) & 0xFFFFFFU) == 0xFFFFFFU);
#elif defined(_XM_SSE_INTRINSICS_)
XMVECTOR vTemp = _mm_cmpge_ps(V1, V2);
return (((_mm_movemask_ps(vTemp) & 7) == 7) != 0);
#endif
}
//------------------------------------------------------------------------------
inline uint32_t XM_CALLCONV XMVector3GreaterOrEqualR
(
FXMVECTOR V1,
FXMVECTOR V2
) noexcept
{
#if defined(_XM_NO_INTRINSICS_)
uint32_t CR = 0;
if ((V1.vector4_f32[0] >= V2.vector4_f32[0]) &&
(V1.vector4_f32[1] >= V2.vector4_f32[1]) &&
(V1.vector4_f32[2] >= V2.vector4_f32[2]))
{
CR = XM_CRMASK_CR6TRUE;
}
else if ((V1.vector4_f32[0] < V2.vector4_f32[0]) &&
(V1.vector4_f32[1] < V2.vector4_f32[1]) &&
(V1.vector4_f32[2] < V2.vector4_f32[2]))
{
CR = XM_CRMASK_CR6FALSE;
}
return CR;
#elif defined(_XM_ARM_NEON_INTRINSICS_)
uint32x4_t vResult = vcgeq_f32(V1, V2);
uint8x8x2_t vTemp = vzip_u8(vget_low_u8(vreinterpretq_u8_u32(vResult)), vget_high_u8(vreinterpretq_u8_u32(vResult)));
uint16x4x2_t vTemp2 = vzip_u16(vreinterpret_u16_u8(vTemp.val[0]), vreinterpret_u16_u8(vTemp.val[1]));
uint32_t r = vget_lane_u32(vreinterpret_u32_u16(vTemp2.val[1]), 1) & 0xFFFFFFU;
uint32_t CR = 0;
if (r == 0xFFFFFFU)
{
CR = XM_CRMASK_CR6TRUE;
}
else if (!r)
{
CR = XM_CRMASK_CR6FALSE;
}
return CR;
#elif defined(_XM_SSE_INTRINSICS_)
XMVECTOR vTemp = _mm_cmpge_ps(V1, V2);
uint32_t CR = 0;
int iTest = _mm_movemask_ps(vTemp) & 7;
if (iTest == 7)
{
CR = XM_CRMASK_CR6TRUE;
}
else if (!iTest)
{
CR = XM_CRMASK_CR6FALSE;
}
return CR;
#endif
}
//------------------------------------------------------------------------------
inline bool XM_CALLCONV XMVector3Less
(
FXMVECTOR V1,
FXMVECTOR V2
) noexcept
{
#if defined(_XM_NO_INTRINSICS_)
return (((V1.vector4_f32[0] < V2.vector4_f32[0]) && (V1.vector4_f32[1] < V2.vector4_f32[1]) && (V1.vector4_f32[2] < V2.vector4_f32[2])) != 0);
#elif defined(_XM_ARM_NEON_INTRINSICS_)
uint32x4_t vResult = vcltq_f32(V1, V2);
uint8x8x2_t vTemp = vzip_u8(vget_low_u8(vreinterpretq_u8_u32(vResult)), vget_high_u8(vreinterpretq_u8_u32(vResult)));
uint16x4x2_t vTemp2 = vzip_u16(vreinterpret_u16_u8(vTemp.val[0]), vreinterpret_u16_u8(vTemp.val[1]));
return ((vget_lane_u32(vreinterpret_u32_u16(vTemp2.val[1]), 1) & 0xFFFFFFU) == 0xFFFFFFU);
#elif defined(_XM_SSE_INTRINSICS_)
XMVECTOR vTemp = _mm_cmplt_ps(V1, V2);
return (((_mm_movemask_ps(vTemp) & 7) == 7) != 0);
#endif
}
//------------------------------------------------------------------------------
inline bool XM_CALLCONV XMVector3LessOrEqual
(
FXMVECTOR V1,
FXMVECTOR V2
) noexcept
{
#if defined(_XM_NO_INTRINSICS_)
return (((V1.vector4_f32[0] <= V2.vector4_f32[0]) && (V1.vector4_f32[1] <= V2.vector4_f32[1]) && (V1.vector4_f32[2] <= V2.vector4_f32[2])) != 0);
#elif defined(_XM_ARM_NEON_INTRINSICS_)
uint32x4_t vResult = vcleq_f32(V1, V2);
uint8x8x2_t vTemp = vzip_u8(vget_low_u8(vreinterpretq_u8_u32(vResult)), vget_high_u8(vreinterpretq_u8_u32(vResult)));
uint16x4x2_t vTemp2 = vzip_u16(vreinterpret_u16_u8(vTemp.val[0]), vreinterpret_u16_u8(vTemp.val[1]));
return ((vget_lane_u32(vreinterpret_u32_u16(vTemp2.val[1]), 1) & 0xFFFFFFU) == 0xFFFFFFU);
#elif defined(_XM_SSE_INTRINSICS_)
XMVECTOR vTemp = _mm_cmple_ps(V1, V2);
return (((_mm_movemask_ps(vTemp) & 7) == 7) != 0);
#endif
}
//------------------------------------------------------------------------------
inline bool XM_CALLCONV XMVector3InBounds
(
FXMVECTOR V,
FXMVECTOR Bounds
) noexcept
{
#if defined(_XM_NO_INTRINSICS_)
return (((V.vector4_f32[0] <= Bounds.vector4_f32[0] && V.vector4_f32[0] >= -Bounds.vector4_f32[0]) &&
(V.vector4_f32[1] <= Bounds.vector4_f32[1] && V.vector4_f32[1] >= -Bounds.vector4_f32[1]) &&
(V.vector4_f32[2] <= Bounds.vector4_f32[2] && V.vector4_f32[2] >= -Bounds.vector4_f32[2])) != 0);
#elif defined(_XM_ARM_NEON_INTRINSICS_)
// Test if less than or equal
uint32x4_t ivTemp1 = vcleq_f32(V, Bounds);
// Negate the bounds
float32x4_t vTemp2 = vnegq_f32(Bounds);
// Test if greater or equal (Reversed)
uint32x4_t ivTemp2 = vcleq_f32(vTemp2, V);
// Blend answers
ivTemp1 = vandq_u32(ivTemp1, ivTemp2);
// in bounds?
uint8x8x2_t vTemp = vzip_u8(vget_low_u8(vreinterpretq_u8_u32(ivTemp1)), vget_high_u8(vreinterpretq_u8_u32(ivTemp1)));
uint16x4x2_t vTemp3 = vzip_u16(vreinterpret_u16_u8(vTemp.val[0]), vreinterpret_u16_u8(vTemp.val[1]));
return ((vget_lane_u32(vreinterpret_u32_u16(vTemp3.val[1]), 1) & 0xFFFFFFU) == 0xFFFFFFU);
#elif defined(_XM_SSE_INTRINSICS_)
// Test if less than or equal
XMVECTOR vTemp1 = _mm_cmple_ps(V, Bounds);
// Negate the bounds
XMVECTOR vTemp2 = _mm_mul_ps(Bounds, g_XMNegativeOne);
// Test if greater or equal (Reversed)
vTemp2 = _mm_cmple_ps(vTemp2, V);
// Blend answers
vTemp1 = _mm_and_ps(vTemp1, vTemp2);
// x,y and z in bounds? (w is don't care)
return (((_mm_movemask_ps(vTemp1) & 0x7) == 0x7) != 0);
#else
return XMComparisonAllInBounds(XMVector3InBoundsR(V, Bounds));
#endif
}
//------------------------------------------------------------------------------
#if !defined(_XM_NO_INTRINSICS_) && defined(_MSC_VER) && !defined(__clang__) && !defined(__INTEL_COMPILER)
#pragma float_control(push)
#pragma float_control(precise, on)
#endif
inline bool XM_CALLCONV XMVector3IsNaN(FXMVECTOR V) noexcept
{
#if defined(_XM_NO_INTRINSICS_)
return (XMISNAN(V.vector4_f32[0]) ||
XMISNAN(V.vector4_f32[1]) ||
XMISNAN(V.vector4_f32[2]));
#elif defined(_XM_ARM_NEON_INTRINSICS_)
// Test against itself. NaN is always not equal
uint32x4_t vTempNan = vceqq_f32(V, V);
uint8x8x2_t vTemp = vzip_u8(vget_low_u8(vreinterpretq_u8_u32(vTempNan)), vget_high_u8(vreinterpretq_u8_u32(vTempNan)));
uint16x4x2_t vTemp2 = vzip_u16(vreinterpret_u16_u8(vTemp.val[0]), vreinterpret_u16_u8(vTemp.val[1]));
// If x or y or z are NaN, the mask is zero
return ((vget_lane_u32(vreinterpret_u32_u16(vTemp2.val[1]), 1) & 0xFFFFFFU) != 0xFFFFFFU);
#elif defined(_XM_SSE_INTRINSICS_)
// Test against itself. NaN is always not equal
XMVECTOR vTempNan = _mm_cmpneq_ps(V, V);
// If x or y or z are NaN, the mask is non-zero
return ((_mm_movemask_ps(vTempNan) & 7) != 0);
#endif
}
#if !defined(_XM_NO_INTRINSICS_) && defined(_MSC_VER) && !defined(__clang__) && !defined(__INTEL_COMPILER)
#pragma float_control(pop)
#endif
//------------------------------------------------------------------------------
inline bool XM_CALLCONV XMVector3IsInfinite(FXMVECTOR V) noexcept
{
#if defined(_XM_NO_INTRINSICS_)
return (XMISINF(V.vector4_f32[0]) ||
XMISINF(V.vector4_f32[1]) ||
XMISINF(V.vector4_f32[2]));
#elif defined(_XM_ARM_NEON_INTRINSICS_)
// Mask off the sign bit
uint32x4_t vTempInf = vandq_u32(vreinterpretq_u32_f32(V), g_XMAbsMask);
// Compare to infinity
vTempInf = vceqq_f32(vreinterpretq_f32_u32(vTempInf), g_XMInfinity);
// If any are infinity, the signs are true.
uint8x8x2_t vTemp = vzip_u8(vget_low_u8(vreinterpretq_u8_u32(vTempInf)), vget_high_u8(vreinterpretq_u8_u32(vTempInf)));
uint16x4x2_t vTemp2 = vzip_u16(vreinterpret_u16_u8(vTemp.val[0]), vreinterpret_u16_u8(vTemp.val[1]));
return ((vget_lane_u32(vreinterpret_u32_u16(vTemp2.val[1]), 1) & 0xFFFFFFU) != 0);
#elif defined(_XM_SSE_INTRINSICS_)
// Mask off the sign bit
__m128 vTemp = _mm_and_ps(V, g_XMAbsMask);
// Compare to infinity
vTemp = _mm_cmpeq_ps(vTemp, g_XMInfinity);
// If x,y or z are infinity, the signs are true.
return ((_mm_movemask_ps(vTemp) & 7) != 0);
#endif
}
//------------------------------------------------------------------------------
// Computation operations
//------------------------------------------------------------------------------
//------------------------------------------------------------------------------
inline XMVECTOR XM_CALLCONV XMVector3Dot
(
FXMVECTOR V1,
FXMVECTOR V2
) noexcept
{
#if defined(_XM_NO_INTRINSICS_)
float fValue = V1.vector4_f32[0] * V2.vector4_f32[0] + V1.vector4_f32[1] * V2.vector4_f32[1] + V1.vector4_f32[2] * V2.vector4_f32[2];
XMVECTORF32 vResult;
vResult.f[0] =
vResult.f[1] =
vResult.f[2] =
vResult.f[3] = fValue;
return vResult.v;
#elif defined(_XM_ARM_NEON_INTRINSICS_)
float32x4_t vTemp = vmulq_f32(V1, V2);
float32x2_t v1 = vget_low_f32(vTemp);
float32x2_t v2 = vget_high_f32(vTemp);
v1 = vpadd_f32(v1, v1);
v2 = vdup_lane_f32(v2, 0);
v1 = vadd_f32(v1, v2);
return vcombine_f32(v1, v1);
#elif defined(_XM_SSE4_INTRINSICS_)
return _mm_dp_ps(V1, V2, 0x7f);
#elif defined(_XM_SSE3_INTRINSICS_)
XMVECTOR vTemp = _mm_mul_ps(V1, V2);
vTemp = _mm_and_ps(vTemp, g_XMMask3);
vTemp = _mm_hadd_ps(vTemp, vTemp);
return _mm_hadd_ps(vTemp, vTemp);
#elif defined(_XM_SSE_INTRINSICS_)
// Perform the dot product
XMVECTOR vDot = _mm_mul_ps(V1, V2);
// x=Dot.vector4_f32[1], y=Dot.vector4_f32[2]
XMVECTOR vTemp = XM_PERMUTE_PS(vDot, _MM_SHUFFLE(2, 1, 2, 1));
// Result.vector4_f32[0] = x+y
vDot = _mm_add_ss(vDot, vTemp);
// x=Dot.vector4_f32[2]
vTemp = XM_PERMUTE_PS(vTemp, _MM_SHUFFLE(1, 1, 1, 1));
// Result.vector4_f32[0] = (x+y)+z
vDot = _mm_add_ss(vDot, vTemp);
// Splat x
return XM_PERMUTE_PS(vDot, _MM_SHUFFLE(0, 0, 0, 0));
#endif
}
//------------------------------------------------------------------------------
inline XMVECTOR XM_CALLCONV XMVector3Cross
(
FXMVECTOR V1,
FXMVECTOR V2
) noexcept
{
// [ V1.y*V2.z - V1.z*V2.y, V1.z*V2.x - V1.x*V2.z, V1.x*V2.y - V1.y*V2.x ]
#if defined(_XM_NO_INTRINSICS_)
XMVECTORF32 vResult = { { {
(V1.vector4_f32[1] * V2.vector4_f32[2]) - (V1.vector4_f32[2] * V2.vector4_f32[1]),
(V1.vector4_f32[2] * V2.vector4_f32[0]) - (V1.vector4_f32[0] * V2.vector4_f32[2]),
(V1.vector4_f32[0] * V2.vector4_f32[1]) - (V1.vector4_f32[1] * V2.vector4_f32[0]),
0.0f
} } };
return vResult.v;
#elif defined(_XM_ARM_NEON_INTRINSICS_)
float32x2_t v1xy = vget_low_f32(V1);
float32x2_t v2xy = vget_low_f32(V2);
float32x2_t v1yx = vrev64_f32(v1xy);
float32x2_t v2yx = vrev64_f32(v2xy);
float32x2_t v1zz = vdup_lane_f32(vget_high_f32(V1), 0);
float32x2_t v2zz = vdup_lane_f32(vget_high_f32(V2), 0);
XMVECTOR vResult = vmulq_f32(vcombine_f32(v1yx, v1xy), vcombine_f32(v2zz, v2yx));
vResult = vmlsq_f32(vResult, vcombine_f32(v1zz, v1yx), vcombine_f32(v2yx, v2xy));
vResult = vreinterpretq_f32_u32(veorq_u32(vreinterpretq_u32_f32(vResult), g_XMFlipY));
return vreinterpretq_f32_u32(vandq_u32(vreinterpretq_u32_f32(vResult), g_XMMask3));
#elif defined(_XM_SSE_INTRINSICS_)
// y1,z1,x1,w1
XMVECTOR vTemp1 = XM_PERMUTE_PS(V1, _MM_SHUFFLE(3, 0, 2, 1));
// z2,x2,y2,w2
XMVECTOR vTemp2 = XM_PERMUTE_PS(V2, _MM_SHUFFLE(3, 1, 0, 2));
// Perform the left operation
XMVECTOR vResult = _mm_mul_ps(vTemp1, vTemp2);
// z1,x1,y1,w1
vTemp1 = XM_PERMUTE_PS(vTemp1, _MM_SHUFFLE(3, 0, 2, 1));
// y2,z2,x2,w2
vTemp2 = XM_PERMUTE_PS(vTemp2, _MM_SHUFFLE(3, 1, 0, 2));
// Perform the right operation
vResult = XM_FNMADD_PS(vTemp1, vTemp2, vResult);
// Set w to zero
return _mm_and_ps(vResult, g_XMMask3);
#endif
}
//------------------------------------------------------------------------------
inline XMVECTOR XM_CALLCONV XMVector3LengthSq(FXMVECTOR V) noexcept
{
return XMVector3Dot(V, V);
}
//------------------------------------------------------------------------------
inline XMVECTOR XM_CALLCONV XMVector3ReciprocalLengthEst(FXMVECTOR V) noexcept
{
#if defined(_XM_NO_INTRINSICS_)
XMVECTOR Result;
Result = XMVector3LengthSq(V);
Result = XMVectorReciprocalSqrtEst(Result);
return Result;
#elif defined(_XM_ARM_NEON_INTRINSICS_)
// Dot3
float32x4_t vTemp = vmulq_f32(V, V);
float32x2_t v1 = vget_low_f32(vTemp);
float32x2_t v2 = vget_high_f32(vTemp);
v1 = vpadd_f32(v1, v1);
v2 = vdup_lane_f32(v2, 0);
v1 = vadd_f32(v1, v2);
// Reciprocal sqrt (estimate)
v2 = vrsqrte_f32(v1);
return vcombine_f32(v2, v2);
#elif defined(_XM_SSE4_INTRINSICS_)
XMVECTOR vTemp = _mm_dp_ps(V, V, 0x7f);
return _mm_rsqrt_ps(vTemp);
#elif defined(_XM_SSE3_INTRINSICS_)
XMVECTOR vLengthSq = _mm_mul_ps(V, V);
vLengthSq = _mm_and_ps(vLengthSq, g_XMMask3);
vLengthSq = _mm_hadd_ps(vLengthSq, vLengthSq);
vLengthSq = _mm_hadd_ps(vLengthSq, vLengthSq);
vLengthSq = _mm_rsqrt_ps(vLengthSq);
return vLengthSq;
#elif defined(_XM_SSE_INTRINSICS_)
// Perform the dot product on x,y and z
XMVECTOR vLengthSq = _mm_mul_ps(V, V);
// vTemp has z and y
XMVECTOR vTemp = XM_PERMUTE_PS(vLengthSq, _MM_SHUFFLE(1, 2, 1, 2));
// x+z, y
vLengthSq = _mm_add_ss(vLengthSq, vTemp);
// y,y,y,y
vTemp = XM_PERMUTE_PS(vTemp, _MM_SHUFFLE(1, 1, 1, 1));
// x+z+y,??,??,??
vLengthSq = _mm_add_ss(vLengthSq, vTemp);
// Splat the length squared
vLengthSq = XM_PERMUTE_PS(vLengthSq, _MM_SHUFFLE(0, 0, 0, 0));
// Get the reciprocal
vLengthSq = _mm_rsqrt_ps(vLengthSq);
return vLengthSq;
#endif
}
//------------------------------------------------------------------------------
inline XMVECTOR XM_CALLCONV XMVector3ReciprocalLength(FXMVECTOR V) noexcept
{
#if defined(_XM_NO_INTRINSICS_)
XMVECTOR Result;
Result = XMVector3LengthSq(V);
Result = XMVectorReciprocalSqrt(Result);
return Result;
#elif defined(_XM_ARM_NEON_INTRINSICS_)
// Dot3
float32x4_t vTemp = vmulq_f32(V, V);
float32x2_t v1 = vget_low_f32(vTemp);
float32x2_t v2 = vget_high_f32(vTemp);
v1 = vpadd_f32(v1, v1);
v2 = vdup_lane_f32(v2, 0);
v1 = vadd_f32(v1, v2);
// Reciprocal sqrt
float32x2_t S0 = vrsqrte_f32(v1);
float32x2_t P0 = vmul_f32(v1, S0);
float32x2_t R0 = vrsqrts_f32(P0, S0);
float32x2_t S1 = vmul_f32(S0, R0);
float32x2_t P1 = vmul_f32(v1, S1);
float32x2_t R1 = vrsqrts_f32(P1, S1);
float32x2_t Result = vmul_f32(S1, R1);
return vcombine_f32(Result, Result);
#elif defined(_XM_SSE4_INTRINSICS_)
XMVECTOR vTemp = _mm_dp_ps(V, V, 0x7f);
XMVECTOR vLengthSq = _mm_sqrt_ps(vTemp);
return _mm_div_ps(g_XMOne, vLengthSq);
#elif defined(_XM_SSE3_INTRINSICS_)
XMVECTOR vDot = _mm_mul_ps(V, V);
vDot = _mm_and_ps(vDot, g_XMMask3);
vDot = _mm_hadd_ps(vDot, vDot);
vDot = _mm_hadd_ps(vDot, vDot);
vDot = _mm_sqrt_ps(vDot);
vDot = _mm_div_ps(g_XMOne, vDot);
return vDot;
#elif defined(_XM_SSE_INTRINSICS_)
// Perform the dot product
XMVECTOR vDot = _mm_mul_ps(V, V);
// x=Dot.y, y=Dot.z
XMVECTOR vTemp = XM_PERMUTE_PS(vDot, _MM_SHUFFLE(2, 1, 2, 1));
// Result.x = x+y
vDot = _mm_add_ss(vDot, vTemp);
// x=Dot.z
vTemp = XM_PERMUTE_PS(vTemp, _MM_SHUFFLE(1, 1, 1, 1));
// Result.x = (x+y)+z
vDot = _mm_add_ss(vDot, vTemp);
// Splat x
vDot = XM_PERMUTE_PS(vDot, _MM_SHUFFLE(0, 0, 0, 0));
// Get the reciprocal
vDot = _mm_sqrt_ps(vDot);
// Get the reciprocal
vDot = _mm_div_ps(g_XMOne, vDot);
return vDot;
#endif
}
//------------------------------------------------------------------------------
inline XMVECTOR XM_CALLCONV XMVector3LengthEst(FXMVECTOR V) noexcept
{
#if defined(_XM_NO_INTRINSICS_)
XMVECTOR Result;
Result = XMVector3LengthSq(V);
Result = XMVectorSqrtEst(Result);
return Result;
#elif defined(_XM_ARM_NEON_INTRINSICS_)
// Dot3
float32x4_t vTemp = vmulq_f32(V, V);
float32x2_t v1 = vget_low_f32(vTemp);
float32x2_t v2 = vget_high_f32(vTemp);
v1 = vpadd_f32(v1, v1);
v2 = vdup_lane_f32(v2, 0);
v1 = vadd_f32(v1, v2);
const float32x2_t zero = vdup_n_f32(0);
uint32x2_t VEqualsZero = vceq_f32(v1, zero);
// Sqrt (estimate)
float32x2_t Result = vrsqrte_f32(v1);
Result = vmul_f32(v1, Result);
Result = vbsl_f32(VEqualsZero, zero, Result);
return vcombine_f32(Result, Result);
#elif defined(_XM_SSE4_INTRINSICS_)
XMVECTOR vTemp = _mm_dp_ps(V, V, 0x7f);
return _mm_sqrt_ps(vTemp);
#elif defined(_XM_SSE3_INTRINSICS_)
XMVECTOR vLengthSq = _mm_mul_ps(V, V);
vLengthSq = _mm_and_ps(vLengthSq, g_XMMask3);
vLengthSq = _mm_hadd_ps(vLengthSq, vLengthSq);
vLengthSq = _mm_hadd_ps(vLengthSq, vLengthSq);
vLengthSq = _mm_sqrt_ps(vLengthSq);
return vLengthSq;
#elif defined(_XM_SSE_INTRINSICS_)
// Perform the dot product on x,y and z
XMVECTOR vLengthSq = _mm_mul_ps(V, V);
// vTemp has z and y
XMVECTOR vTemp = XM_PERMUTE_PS(vLengthSq, _MM_SHUFFLE(1, 2, 1, 2));
// x+z, y
vLengthSq = _mm_add_ss(vLengthSq, vTemp);
// y,y,y,y
vTemp = XM_PERMUTE_PS(vTemp, _MM_SHUFFLE(1, 1, 1, 1));
// x+z+y,??,??,??
vLengthSq = _mm_add_ss(vLengthSq, vTemp);
// Splat the length squared
vLengthSq = XM_PERMUTE_PS(vLengthSq, _MM_SHUFFLE(0, 0, 0, 0));
// Get the length
vLengthSq = _mm_sqrt_ps(vLengthSq);
return vLengthSq;
#endif
}
//------------------------------------------------------------------------------
inline XMVECTOR XM_CALLCONV XMVector3Length(FXMVECTOR V) noexcept
{
#if defined(_XM_NO_INTRINSICS_)
XMVECTOR Result;
Result = XMVector3LengthSq(V);
Result = XMVectorSqrt(Result);
return Result;
#elif defined(_XM_ARM_NEON_INTRINSICS_)
// Dot3
float32x4_t vTemp = vmulq_f32(V, V);
float32x2_t v1 = vget_low_f32(vTemp);
float32x2_t v2 = vget_high_f32(vTemp);
v1 = vpadd_f32(v1, v1);
v2 = vdup_lane_f32(v2, 0);
v1 = vadd_f32(v1, v2);
const float32x2_t zero = vdup_n_f32(0);
uint32x2_t VEqualsZero = vceq_f32(v1, zero);
// Sqrt
float32x2_t S0 = vrsqrte_f32(v1);
float32x2_t P0 = vmul_f32(v1, S0);
float32x2_t R0 = vrsqrts_f32(P0, S0);
float32x2_t S1 = vmul_f32(S0, R0);
float32x2_t P1 = vmul_f32(v1, S1);
float32x2_t R1 = vrsqrts_f32(P1, S1);
float32x2_t Result = vmul_f32(S1, R1);
Result = vmul_f32(v1, Result);
Result = vbsl_f32(VEqualsZero, zero, Result);
return vcombine_f32(Result, Result);
#elif defined(_XM_SSE4_INTRINSICS_)
XMVECTOR vTemp = _mm_dp_ps(V, V, 0x7f);
return _mm_sqrt_ps(vTemp);
#elif defined(_XM_SSE3_INTRINSICS_)
XMVECTOR vLengthSq = _mm_mul_ps(V, V);
vLengthSq = _mm_and_ps(vLengthSq, g_XMMask3);
vLengthSq = _mm_hadd_ps(vLengthSq, vLengthSq);
vLengthSq = _mm_hadd_ps(vLengthSq, vLengthSq);
vLengthSq = _mm_sqrt_ps(vLengthSq);
return vLengthSq;
#elif defined(_XM_SSE_INTRINSICS_)
// Perform the dot product on x,y and z
XMVECTOR vLengthSq = _mm_mul_ps(V, V);
// vTemp has z and y
XMVECTOR vTemp = XM_PERMUTE_PS(vLengthSq, _MM_SHUFFLE(1, 2, 1, 2));
// x+z, y
vLengthSq = _mm_add_ss(vLengthSq, vTemp);
// y,y,y,y
vTemp = XM_PERMUTE_PS(vTemp, _MM_SHUFFLE(1, 1, 1, 1));
// x+z+y,??,??,??
vLengthSq = _mm_add_ss(vLengthSq, vTemp);
// Splat the length squared
vLengthSq = XM_PERMUTE_PS(vLengthSq, _MM_SHUFFLE(0, 0, 0, 0));
// Get the length
vLengthSq = _mm_sqrt_ps(vLengthSq);
return vLengthSq;
#endif
}
//------------------------------------------------------------------------------
// XMVector3NormalizeEst uses a reciprocal estimate and
// returns QNaN on zero and infinite vectors.
inline XMVECTOR XM_CALLCONV XMVector3NormalizeEst(FXMVECTOR V) noexcept
{
#if defined(_XM_NO_INTRINSICS_)
XMVECTOR Result;
Result = XMVector3ReciprocalLength(V);
Result = XMVectorMultiply(V, Result);
return Result;
#elif defined(_XM_ARM_NEON_INTRINSICS_)
// Dot3
float32x4_t vTemp = vmulq_f32(V, V);
float32x2_t v1 = vget_low_f32(vTemp);
float32x2_t v2 = vget_high_f32(vTemp);
v1 = vpadd_f32(v1, v1);
v2 = vdup_lane_f32(v2, 0);
v1 = vadd_f32(v1, v2);
// Reciprocal sqrt (estimate)
v2 = vrsqrte_f32(v1);
// Normalize
return vmulq_f32(V, vcombine_f32(v2, v2));
#elif defined(_XM_SSE4_INTRINSICS_)
XMVECTOR vTemp = _mm_dp_ps(V, V, 0x7f);
XMVECTOR vResult = _mm_rsqrt_ps(vTemp);
return _mm_mul_ps(vResult, V);
#elif defined(_XM_SSE3_INTRINSICS_)
XMVECTOR vDot = _mm_mul_ps(V, V);
vDot = _mm_and_ps(vDot, g_XMMask3);
vDot = _mm_hadd_ps(vDot, vDot);
vDot = _mm_hadd_ps(vDot, vDot);
vDot = _mm_rsqrt_ps(vDot);
vDot = _mm_mul_ps(vDot, V);
return vDot;
#elif defined(_XM_SSE_INTRINSICS_)
// Perform the dot product
XMVECTOR vDot = _mm_mul_ps(V, V);
// x=Dot.y, y=Dot.z
XMVECTOR vTemp = XM_PERMUTE_PS(vDot, _MM_SHUFFLE(2, 1, 2, 1));
// Result.x = x+y
vDot = _mm_add_ss(vDot, vTemp);
// x=Dot.z
vTemp = XM_PERMUTE_PS(vTemp, _MM_SHUFFLE(1, 1, 1, 1));
// Result.x = (x+y)+z
vDot = _mm_add_ss(vDot, vTemp);
// Splat x
vDot = XM_PERMUTE_PS(vDot, _MM_SHUFFLE(0, 0, 0, 0));
// Get the reciprocal
vDot = _mm_rsqrt_ps(vDot);
// Perform the normalization
vDot = _mm_mul_ps(vDot, V);
return vDot;
#endif
}
//------------------------------------------------------------------------------
inline XMVECTOR XM_CALLCONV XMVector3Normalize(FXMVECTOR V) noexcept
{
#if defined(_XM_NO_INTRINSICS_)
float fLength;
XMVECTOR vResult;
vResult = XMVector3Length(V);
fLength = vResult.vector4_f32[0];
// Prevent divide by zero
if (fLength > 0)
{
fLength = 1.0f / fLength;
}
vResult.vector4_f32[0] = V.vector4_f32[0] * fLength;
vResult.vector4_f32[1] = V.vector4_f32[1] * fLength;
vResult.vector4_f32[2] = V.vector4_f32[2] * fLength;
vResult.vector4_f32[3] = V.vector4_f32[3] * fLength;
return vResult;
#elif defined(_XM_ARM_NEON_INTRINSICS_)
// Dot3
float32x4_t vTemp = vmulq_f32(V, V);
float32x2_t v1 = vget_low_f32(vTemp);
float32x2_t v2 = vget_high_f32(vTemp);
v1 = vpadd_f32(v1, v1);
v2 = vdup_lane_f32(v2, 0);
v1 = vadd_f32(v1, v2);
uint32x2_t VEqualsZero = vceq_f32(v1, vdup_n_f32(0));
uint32x2_t VEqualsInf = vceq_f32(v1, vget_low_f32(g_XMInfinity));
// Reciprocal sqrt (2 iterations of Newton-Raphson)
float32x2_t S0 = vrsqrte_f32(v1);
float32x2_t P0 = vmul_f32(v1, S0);
float32x2_t R0 = vrsqrts_f32(P0, S0);
float32x2_t S1 = vmul_f32(S0, R0);
float32x2_t P1 = vmul_f32(v1, S1);
float32x2_t R1 = vrsqrts_f32(P1, S1);
v2 = vmul_f32(S1, R1);
// Normalize
XMVECTOR vResult = vmulq_f32(V, vcombine_f32(v2, v2));
vResult = vbslq_f32(vcombine_u32(VEqualsZero, VEqualsZero), vdupq_n_f32(0), vResult);
return vbslq_f32(vcombine_u32(VEqualsInf, VEqualsInf), g_XMQNaN, vResult);
#elif defined(_XM_SSE4_INTRINSICS_)
XMVECTOR vLengthSq = _mm_dp_ps(V, V, 0x7f);
// Prepare for the division
XMVECTOR vResult = _mm_sqrt_ps(vLengthSq);
// Create zero with a single instruction
XMVECTOR vZeroMask = _mm_setzero_ps();
// Test for a divide by zero (Must be FP to detect -0.0)
vZeroMask = _mm_cmpneq_ps(vZeroMask, vResult);
// Failsafe on zero (Or epsilon) length planes
// If the length is infinity, set the elements to zero
vLengthSq = _mm_cmpneq_ps(vLengthSq, g_XMInfinity);
// Divide to perform the normalization
vResult = _mm_div_ps(V, vResult);
// Any that are infinity, set to zero
vResult = _mm_and_ps(vResult, vZeroMask);
// Select qnan or result based on infinite length
XMVECTOR vTemp1 = _mm_andnot_ps(vLengthSq, g_XMQNaN);
XMVECTOR vTemp2 = _mm_and_ps(vResult, vLengthSq);
vResult = _mm_or_ps(vTemp1, vTemp2);
return vResult;
#elif defined(_XM_SSE3_INTRINSICS_)
// Perform the dot product on x,y and z only
XMVECTOR vLengthSq = _mm_mul_ps(V, V);
vLengthSq = _mm_and_ps(vLengthSq, g_XMMask3);
vLengthSq = _mm_hadd_ps(vLengthSq, vLengthSq);
vLengthSq = _mm_hadd_ps(vLengthSq, vLengthSq);
// Prepare for the division
XMVECTOR vResult = _mm_sqrt_ps(vLengthSq);
// Create zero with a single instruction
XMVECTOR vZeroMask = _mm_setzero_ps();
// Test for a divide by zero (Must be FP to detect -0.0)
vZeroMask = _mm_cmpneq_ps(vZeroMask, vResult);
// Failsafe on zero (Or epsilon) length planes
// If the length is infinity, set the elements to zero
vLengthSq = _mm_cmpneq_ps(vLengthSq, g_XMInfinity);
// Divide to perform the normalization
vResult = _mm_div_ps(V, vResult);
// Any that are infinity, set to zero
vResult = _mm_and_ps(vResult, vZeroMask);
// Select qnan or result based on infinite length
XMVECTOR vTemp1 = _mm_andnot_ps(vLengthSq, g_XMQNaN);
XMVECTOR vTemp2 = _mm_and_ps(vResult, vLengthSq);
vResult = _mm_or_ps(vTemp1, vTemp2);
return vResult;
#elif defined(_XM_SSE_INTRINSICS_)
// Perform the dot product on x,y and z only
XMVECTOR vLengthSq = _mm_mul_ps(V, V);
XMVECTOR vTemp = XM_PERMUTE_PS(vLengthSq, _MM_SHUFFLE(2, 1, 2, 1));
vLengthSq = _mm_add_ss(vLengthSq, vTemp);
vTemp = XM_PERMUTE_PS(vTemp, _MM_SHUFFLE(1, 1, 1, 1));
vLengthSq = _mm_add_ss(vLengthSq, vTemp);
vLengthSq = XM_PERMUTE_PS(vLengthSq, _MM_SHUFFLE(0, 0, 0, 0));
// Prepare for the division
XMVECTOR vResult = _mm_sqrt_ps(vLengthSq);
// Create zero with a single instruction
XMVECTOR vZeroMask = _mm_setzero_ps();
// Test for a divide by zero (Must be FP to detect -0.0)
vZeroMask = _mm_cmpneq_ps(vZeroMask, vResult);
// Failsafe on zero (Or epsilon) length planes
// If the length is infinity, set the elements to zero
vLengthSq = _mm_cmpneq_ps(vLengthSq, g_XMInfinity);
// Divide to perform the normalization
vResult = _mm_div_ps(V, vResult);
// Any that are infinity, set to zero
vResult = _mm_and_ps(vResult, vZeroMask);
// Select qnan or result based on infinite length
XMVECTOR vTemp1 = _mm_andnot_ps(vLengthSq, g_XMQNaN);
XMVECTOR vTemp2 = _mm_and_ps(vResult, vLengthSq);
vResult = _mm_or_ps(vTemp1, vTemp2);
return vResult;
#endif
}
//------------------------------------------------------------------------------
inline XMVECTOR XM_CALLCONV XMVector3ClampLength
(
FXMVECTOR V,
float LengthMin,
float LengthMax
) noexcept
{
XMVECTOR ClampMax = XMVectorReplicate(LengthMax);
XMVECTOR ClampMin = XMVectorReplicate(LengthMin);
return XMVector3ClampLengthV(V, ClampMin, ClampMax);
}
//------------------------------------------------------------------------------
inline XMVECTOR XM_CALLCONV XMVector3ClampLengthV
(
FXMVECTOR V,
FXMVECTOR LengthMin,
FXMVECTOR LengthMax
) noexcept
{
assert((XMVectorGetY(LengthMin) == XMVectorGetX(LengthMin)) && (XMVectorGetZ(LengthMin) == XMVectorGetX(LengthMin)));
assert((XMVectorGetY(LengthMax) == XMVectorGetX(LengthMax)) && (XMVectorGetZ(LengthMax) == XMVectorGetX(LengthMax)));
assert(XMVector3GreaterOrEqual(LengthMin, XMVectorZero()));
assert(XMVector3GreaterOrEqual(LengthMax, XMVectorZero()));
assert(XMVector3GreaterOrEqual(LengthMax, LengthMin));
XMVECTOR LengthSq = XMVector3LengthSq(V);
const XMVECTOR Zero = XMVectorZero();
XMVECTOR RcpLength = XMVectorReciprocalSqrt(LengthSq);
XMVECTOR InfiniteLength = XMVectorEqualInt(LengthSq, g_XMInfinity.v);
XMVECTOR ZeroLength = XMVectorEqual(LengthSq, Zero);
XMVECTOR Normal = XMVectorMultiply(V, RcpLength);
XMVECTOR Length = XMVectorMultiply(LengthSq, RcpLength);
XMVECTOR Select = XMVectorEqualInt(InfiniteLength, ZeroLength);
Length = XMVectorSelect(LengthSq, Length, Select);
Normal = XMVectorSelect(LengthSq, Normal, Select);
XMVECTOR ControlMax = XMVectorGreater(Length, LengthMax);
XMVECTOR ControlMin = XMVectorLess(Length, LengthMin);
XMVECTOR ClampLength = XMVectorSelect(Length, LengthMax, ControlMax);
ClampLength = XMVectorSelect(ClampLength, LengthMin, ControlMin);
XMVECTOR Result = XMVectorMultiply(Normal, ClampLength);
// Preserve the original vector (with no precision loss) if the length falls within the given range
XMVECTOR Control = XMVectorEqualInt(ControlMax, ControlMin);
Result = XMVectorSelect(Result, V, Control);
return Result;
}
//------------------------------------------------------------------------------
inline XMVECTOR XM_CALLCONV XMVector3Reflect
(
FXMVECTOR Incident,
FXMVECTOR Normal
) noexcept
{
// Result = Incident - (2 * dot(Incident, Normal)) * Normal
XMVECTOR Result = XMVector3Dot(Incident, Normal);
Result = XMVectorAdd(Result, Result);
Result = XMVectorNegativeMultiplySubtract(Result, Normal, Incident);
return Result;
}
//------------------------------------------------------------------------------
inline XMVECTOR XM_CALLCONV XMVector3Refract
(
FXMVECTOR Incident,
FXMVECTOR Normal,
float RefractionIndex
) noexcept
{
XMVECTOR Index = XMVectorReplicate(RefractionIndex);
return XMVector3RefractV(Incident, Normal, Index);
}
//------------------------------------------------------------------------------
inline XMVECTOR XM_CALLCONV XMVector3RefractV
(
FXMVECTOR Incident,
FXMVECTOR Normal,
FXMVECTOR RefractionIndex
) noexcept
{
// Result = RefractionIndex * Incident - Normal * (RefractionIndex * dot(Incident, Normal) +
// sqrt(1 - RefractionIndex * RefractionIndex * (1 - dot(Incident, Normal) * dot(Incident, Normal))))
#if defined(_XM_NO_INTRINSICS_)
const XMVECTOR Zero = XMVectorZero();
XMVECTOR IDotN = XMVector3Dot(Incident, Normal);
// R = 1.0f - RefractionIndex * RefractionIndex * (1.0f - IDotN * IDotN)
XMVECTOR R = XMVectorNegativeMultiplySubtract(IDotN, IDotN, g_XMOne.v);
R = XMVectorMultiply(R, RefractionIndex);
R = XMVectorNegativeMultiplySubtract(R, RefractionIndex, g_XMOne.v);
if (XMVector4LessOrEqual(R, Zero))
{
// Total internal reflection
return Zero;
}
else
{
// R = RefractionIndex * IDotN + sqrt(R)
R = XMVectorSqrt(R);
R = XMVectorMultiplyAdd(RefractionIndex, IDotN, R);
// Result = RefractionIndex * Incident - Normal * R
XMVECTOR Result = XMVectorMultiply(RefractionIndex, Incident);
Result = XMVectorNegativeMultiplySubtract(Normal, R, Result);
return Result;
}
#elif defined(_XM_ARM_NEON_INTRINSICS_)
XMVECTOR IDotN = XMVector3Dot(Incident, Normal);
// R = 1.0f - RefractionIndex * RefractionIndex * (1.0f - IDotN * IDotN)
float32x4_t R = vmlsq_f32(g_XMOne, IDotN, IDotN);
R = vmulq_f32(R, RefractionIndex);
R = vmlsq_f32(g_XMOne, R, RefractionIndex);
uint32x4_t isrzero = vcleq_f32(R, g_XMZero);
uint8x8x2_t vTemp = vzip_u8(vget_low_u8(vreinterpretq_u8_u32(isrzero)), vget_high_u8(vreinterpretq_u8_u32(isrzero)));
uint16x4x2_t vTemp2 = vzip_u16(vreinterpret_u16_u8(vTemp.val[0]), vreinterpret_u16_u8(vTemp.val[1]));
float32x4_t vResult;
if (vget_lane_u32(vreinterpret_u32_u16(vTemp2.val[1]), 1) == 0xFFFFFFFFU)
{
// Total internal reflection
vResult = g_XMZero;
}
else
{
// Sqrt(R)
float32x4_t S0 = vrsqrteq_f32(R);
float32x4_t P0 = vmulq_f32(R, S0);
float32x4_t R0 = vrsqrtsq_f32(P0, S0);
float32x4_t S1 = vmulq_f32(S0, R0);
float32x4_t P1 = vmulq_f32(R, S1);
float32x4_t R1 = vrsqrtsq_f32(P1, S1);
float32x4_t S2 = vmulq_f32(S1, R1);
R = vmulq_f32(R, S2);
// R = RefractionIndex * IDotN + sqrt(R)
R = vmlaq_f32(R, RefractionIndex, IDotN);
// Result = RefractionIndex * Incident - Normal * R
vResult = vmulq_f32(RefractionIndex, Incident);
vResult = vmlsq_f32(vResult, R, Normal);
}
return vResult;
#elif defined(_XM_SSE_INTRINSICS_)
// Result = RefractionIndex * Incident - Normal * (RefractionIndex * dot(Incident, Normal) +
// sqrt(1 - RefractionIndex * RefractionIndex * (1 - dot(Incident, Normal) * dot(Incident, Normal))))
XMVECTOR IDotN = XMVector3Dot(Incident, Normal);
// R = 1.0f - RefractionIndex * RefractionIndex * (1.0f - IDotN * IDotN)
XMVECTOR R = XM_FNMADD_PS(IDotN, IDotN, g_XMOne);
XMVECTOR R2 = _mm_mul_ps(RefractionIndex, RefractionIndex);
R = XM_FNMADD_PS(R, R2, g_XMOne);
XMVECTOR vResult = _mm_cmple_ps(R, g_XMZero);
if (_mm_movemask_ps(vResult) == 0x0f)
{
// Total internal reflection
vResult = g_XMZero;
}
else
{
// R = RefractionIndex * IDotN + sqrt(R)
R = _mm_sqrt_ps(R);
R = XM_FMADD_PS(RefractionIndex, IDotN, R);
// Result = RefractionIndex * Incident - Normal * R
vResult = _mm_mul_ps(RefractionIndex, Incident);
vResult = XM_FNMADD_PS(R, Normal, vResult);
}
return vResult;
#endif
}
//------------------------------------------------------------------------------
inline XMVECTOR XM_CALLCONV XMVector3Orthogonal(FXMVECTOR V) noexcept
{
XMVECTOR Zero = XMVectorZero();
XMVECTOR Z = XMVectorSplatZ(V);
XMVECTOR YZYY = XMVectorSwizzle<XM_SWIZZLE_Y, XM_SWIZZLE_Z, XM_SWIZZLE_Y, XM_SWIZZLE_Y>(V);
XMVECTOR NegativeV = XMVectorSubtract(Zero, V);
XMVECTOR ZIsNegative = XMVectorLess(Z, Zero);
XMVECTOR YZYYIsNegative = XMVectorLess(YZYY, Zero);
XMVECTOR S = XMVectorAdd(YZYY, Z);
XMVECTOR D = XMVectorSubtract(YZYY, Z);
XMVECTOR Select = XMVectorEqualInt(ZIsNegative, YZYYIsNegative);
XMVECTOR R0 = XMVectorPermute<XM_PERMUTE_1X, XM_PERMUTE_0X, XM_PERMUTE_0X, XM_PERMUTE_0X>(NegativeV, S);
XMVECTOR R1 = XMVectorPermute<XM_PERMUTE_1X, XM_PERMUTE_0X, XM_PERMUTE_0X, XM_PERMUTE_0X>(V, D);
return XMVectorSelect(R1, R0, Select);
}
//------------------------------------------------------------------------------
inline XMVECTOR XM_CALLCONV XMVector3AngleBetweenNormalsEst
(
FXMVECTOR N1,
FXMVECTOR N2
) noexcept
{
XMVECTOR Result = XMVector3Dot(N1, N2);
Result = XMVectorClamp(Result, g_XMNegativeOne.v, g_XMOne.v);
Result = XMVectorACosEst(Result);
return Result;
}
//------------------------------------------------------------------------------
inline XMVECTOR XM_CALLCONV XMVector3AngleBetweenNormals
(
FXMVECTOR N1,
FXMVECTOR N2
) noexcept
{
XMVECTOR Result = XMVector3Dot(N1, N2);
Result = XMVectorClamp(Result, g_XMNegativeOne.v, g_XMOne.v);
Result = XMVectorACos(Result);
return Result;
}
//------------------------------------------------------------------------------
inline XMVECTOR XM_CALLCONV XMVector3AngleBetweenVectors
(
FXMVECTOR V1,
FXMVECTOR V2
) noexcept
{
XMVECTOR L1 = XMVector3ReciprocalLength(V1);
XMVECTOR L2 = XMVector3ReciprocalLength(V2);
XMVECTOR Dot = XMVector3Dot(V1, V2);
L1 = XMVectorMultiply(L1, L2);
XMVECTOR CosAngle = XMVectorMultiply(Dot, L1);
CosAngle = XMVectorClamp(CosAngle, g_XMNegativeOne.v, g_XMOne.v);
return XMVectorACos(CosAngle);
}
//------------------------------------------------------------------------------
inline XMVECTOR XM_CALLCONV XMVector3LinePointDistance
(
FXMVECTOR LinePoint1,
FXMVECTOR LinePoint2,
FXMVECTOR Point
) noexcept
{
// Given a vector PointVector from LinePoint1 to Point and a vector
// LineVector from LinePoint1 to LinePoint2, the scaled distance
// PointProjectionScale from LinePoint1 to the perpendicular projection
// of PointVector onto the line is defined as:
//
// PointProjectionScale = dot(PointVector, LineVector) / LengthSq(LineVector)
XMVECTOR PointVector = XMVectorSubtract(Point, LinePoint1);
XMVECTOR LineVector = XMVectorSubtract(LinePoint2, LinePoint1);
XMVECTOR LengthSq = XMVector3LengthSq(LineVector);
XMVECTOR PointProjectionScale = XMVector3Dot(PointVector, LineVector);
PointProjectionScale = XMVectorDivide(PointProjectionScale, LengthSq);
XMVECTOR DistanceVector = XMVectorMultiply(LineVector, PointProjectionScale);
DistanceVector = XMVectorSubtract(PointVector, DistanceVector);
return XMVector3Length(DistanceVector);
}
//------------------------------------------------------------------------------
_Use_decl_annotations_
inline void XM_CALLCONV XMVector3ComponentsFromNormal
(
XMVECTOR* pParallel,
XMVECTOR* pPerpendicular,
FXMVECTOR V,
FXMVECTOR Normal
) noexcept
{
assert(pParallel != nullptr);
assert(pPerpendicular != nullptr);
XMVECTOR Scale = XMVector3Dot(V, Normal);
XMVECTOR Parallel = XMVectorMultiply(Normal, Scale);
*pParallel = Parallel;
*pPerpendicular = XMVectorSubtract(V, Parallel);
}
//------------------------------------------------------------------------------
// Transform a vector using a rotation expressed as a unit quaternion
inline XMVECTOR XM_CALLCONV XMVector3Rotate
(
FXMVECTOR V,
FXMVECTOR RotationQuaternion
) noexcept
{
XMVECTOR A = XMVectorSelect(g_XMSelect1110.v, V, g_XMSelect1110.v);
XMVECTOR Q = XMQuaternionConjugate(RotationQuaternion);
XMVECTOR Result = XMQuaternionMultiply(Q, A);
return XMQuaternionMultiply(Result, RotationQuaternion);
}
//------------------------------------------------------------------------------
// Transform a vector using the inverse of a rotation expressed as a unit quaternion
inline XMVECTOR XM_CALLCONV XMVector3InverseRotate
(
FXMVECTOR V,
FXMVECTOR RotationQuaternion
) noexcept
{
XMVECTOR A = XMVectorSelect(g_XMSelect1110.v, V, g_XMSelect1110.v);
XMVECTOR Result = XMQuaternionMultiply(RotationQuaternion, A);
XMVECTOR Q = XMQuaternionConjugate(RotationQuaternion);
return XMQuaternionMultiply(Result, Q);
}
//------------------------------------------------------------------------------
inline XMVECTOR XM_CALLCONV XMVector3Transform
(
FXMVECTOR V,
FXMMATRIX M
) noexcept
{
#if defined(_XM_NO_INTRINSICS_)
XMVECTOR Z = XMVectorSplatZ(V);
XMVECTOR Y = XMVectorSplatY(V);
XMVECTOR X = XMVectorSplatX(V);
XMVECTOR Result = XMVectorMultiplyAdd(Z, M.r[2], M.r[3]);
Result = XMVectorMultiplyAdd(Y, M.r[1], Result);
Result = XMVectorMultiplyAdd(X, M.r[0], Result);
return Result;
#elif defined(_XM_ARM_NEON_INTRINSICS_)
float32x2_t VL = vget_low_f32(V);
XMVECTOR vResult = vmlaq_lane_f32(M.r[3], M.r[0], VL, 0); // X
vResult = vmlaq_lane_f32(vResult, M.r[1], VL, 1); // Y
return vmlaq_lane_f32(vResult, M.r[2], vget_high_f32(V), 0); // Z
#elif defined(_XM_SSE_INTRINSICS_)
XMVECTOR vResult = XM_PERMUTE_PS(V, _MM_SHUFFLE(2, 2, 2, 2)); // Z
vResult = XM_FMADD_PS(vResult, M.r[2], M.r[3]);
XMVECTOR vTemp = XM_PERMUTE_PS(V, _MM_SHUFFLE(1, 1, 1, 1)); // Y
vResult = XM_FMADD_PS(vTemp, M.r[1], vResult);
vTemp = XM_PERMUTE_PS(V, _MM_SHUFFLE(0, 0, 0, 0)); // X
vResult = XM_FMADD_PS(vTemp, M.r[0], vResult);
return vResult;
#endif
}
//------------------------------------------------------------------------------
#ifdef _PREFAST_
#pragma prefast(push)
#pragma prefast(disable : 26015 26019, "PREfast noise: Esp:1307" )
#endif
_Use_decl_annotations_
inline XMFLOAT4* XM_CALLCONV XMVector3TransformStream
(
XMFLOAT4* pOutputStream,
size_t OutputStride,
const XMFLOAT3* pInputStream,
size_t InputStride,
size_t VectorCount,
FXMMATRIX M
) noexcept
{
assert(pOutputStream != nullptr);
assert(pInputStream != nullptr);
assert(InputStride >= sizeof(XMFLOAT3));
_Analysis_assume_(InputStride >= sizeof(XMFLOAT3));
assert(OutputStride >= sizeof(XMFLOAT4));
_Analysis_assume_(OutputStride >= sizeof(XMFLOAT4));
#if defined(_XM_NO_INTRINSICS_)
auto pInputVector = reinterpret_cast<const uint8_t*>(pInputStream);
auto pOutputVector = reinterpret_cast<uint8_t*>(pOutputStream);
const XMVECTOR row0 = M.r[0];
const XMVECTOR row1 = M.r[1];
const XMVECTOR row2 = M.r[2];
const XMVECTOR row3 = M.r[3];
for (size_t i = 0; i < VectorCount; i++)
{
XMVECTOR V = XMLoadFloat3(reinterpret_cast<const XMFLOAT3*>(pInputVector));
XMVECTOR Z = XMVectorSplatZ(V);
XMVECTOR Y = XMVectorSplatY(V);
XMVECTOR X = XMVectorSplatX(V);
XMVECTOR Result = XMVectorMultiplyAdd(Z, row2, row3);
Result = XMVectorMultiplyAdd(Y, row1, Result);
Result = XMVectorMultiplyAdd(X, row0, Result);
XMStoreFloat4(reinterpret_cast<XMFLOAT4*>(pOutputVector), Result);
pInputVector += InputStride;
pOutputVector += OutputStride;
}
return pOutputStream;
#elif defined(_XM_ARM_NEON_INTRINSICS_)
auto pInputVector = reinterpret_cast<const uint8_t*>(pInputStream);
auto pOutputVector = reinterpret_cast<uint8_t*>(pOutputStream);
const XMVECTOR row0 = M.r[0];
const XMVECTOR row1 = M.r[1];
const XMVECTOR row2 = M.r[2];
const XMVECTOR row3 = M.r[3];
size_t i = 0;
size_t four = VectorCount >> 2;
if (four > 0)
{
if ((InputStride == sizeof(XMFLOAT3)) && (OutputStride == sizeof(XMFLOAT4)))
{
for (size_t j = 0; j < four; ++j)
{
float32x4x3_t V = vld3q_f32(reinterpret_cast<const float*>(pInputVector));
pInputVector += sizeof(XMFLOAT3) * 4;
float32x2_t r3 = vget_low_f32(row3);
float32x2_t r = vget_low_f32(row0);
XMVECTOR vResult0 = vmlaq_lane_f32(vdupq_lane_f32(r3, 0), V.val[0], r, 0); // Ax+M
XMVECTOR vResult1 = vmlaq_lane_f32(vdupq_lane_f32(r3, 1), V.val[0], r, 1); // Bx+N
XM_PREFETCH(pInputVector);
r3 = vget_high_f32(row3);
r = vget_high_f32(row0);
XMVECTOR vResult2 = vmlaq_lane_f32(vdupq_lane_f32(r3, 0), V.val[0], r, 0); // Cx+O
XMVECTOR vResult3 = vmlaq_lane_f32(vdupq_lane_f32(r3, 1), V.val[0], r, 1); // Dx+P
XM_PREFETCH(pInputVector + XM_CACHE_LINE_SIZE);
r = vget_low_f32(row1);
vResult0 = vmlaq_lane_f32(vResult0, V.val[1], r, 0); // Ax+Ey+M
vResult1 = vmlaq_lane_f32(vResult1, V.val[1], r, 1); // Bx+Fy+N
XM_PREFETCH(pInputVector + (XM_CACHE_LINE_SIZE * 2));
r = vget_high_f32(row1);
vResult2 = vmlaq_lane_f32(vResult2, V.val[1], r, 0); // Cx+Gy+O
vResult3 = vmlaq_lane_f32(vResult3, V.val[1], r, 1); // Dx+Hy+P
XM_PREFETCH(pInputVector + (XM_CACHE_LINE_SIZE * 3));
r = vget_low_f32(row2);
vResult0 = vmlaq_lane_f32(vResult0, V.val[2], r, 0); // Ax+Ey+Iz+M
vResult1 = vmlaq_lane_f32(vResult1, V.val[2], r, 1); // Bx+Fy+Jz+N
XM_PREFETCH(pInputVector + (XM_CACHE_LINE_SIZE * 4));
r = vget_high_f32(row2);
vResult2 = vmlaq_lane_f32(vResult2, V.val[2], r, 0); // Cx+Gy+Kz+O
vResult3 = vmlaq_lane_f32(vResult3, V.val[2], r, 1); // Dx+Hy+Lz+P
XM_PREFETCH(pInputVector + (XM_CACHE_LINE_SIZE * 5));
float32x4x4_t R;
R.val[0] = vResult0;
R.val[1] = vResult1;
R.val[2] = vResult2;
R.val[3] = vResult3;
vst4q_f32(reinterpret_cast<float*>(pOutputVector), R);
pOutputVector += sizeof(XMFLOAT4) * 4;
i += 4;
}
}
}
for (; i < VectorCount; i++)
{
float32x2_t VL = vld1_f32(reinterpret_cast<const float*>(pInputVector));
float32x2_t zero = vdup_n_f32(0);
float32x2_t VH = vld1_lane_f32(reinterpret_cast<const float*>(pInputVector) + 2, zero, 0);
pInputVector += InputStride;
XMVECTOR vResult = vmlaq_lane_f32(row3, row0, VL, 0); // X
vResult = vmlaq_lane_f32(vResult, row1, VL, 1); // Y
vResult = vmlaq_lane_f32(vResult, row2, VH, 0); // Z
vst1q_f32(reinterpret_cast<float*>(pOutputVector), vResult);
pOutputVector += OutputStride;
}
return pOutputStream;
#elif defined(_XM_SSE_INTRINSICS_)
auto pInputVector = reinterpret_cast<const uint8_t*>(pInputStream);
auto pOutputVector = reinterpret_cast<uint8_t*>(pOutputStream);
const XMVECTOR row0 = M.r[0];
const XMVECTOR row1 = M.r[1];
const XMVECTOR row2 = M.r[2];
const XMVECTOR row3 = M.r[3];
size_t i = 0;
size_t four = VectorCount >> 2;
if (four > 0)
{
if (InputStride == sizeof(XMFLOAT3))
{
if (!(reinterpret_cast<uintptr_t>(pOutputStream) & 0xF) && !(OutputStride & 0xF))
{
// Packed input, aligned output
for (size_t j = 0; j < four; ++j)
{
__m128 V1 = _mm_loadu_ps(reinterpret_cast<const float*>(pInputVector));
__m128 L2 = _mm_loadu_ps(reinterpret_cast<const float*>(pInputVector + 16));
__m128 L3 = _mm_loadu_ps(reinterpret_cast<const float*>(pInputVector + 32));
pInputVector += sizeof(XMFLOAT3) * 4;
// Unpack the 4 vectors (.w components are junk)
XM3UNPACK3INTO4(V1, L2, L3);
// Result 1
XMVECTOR Z = XM_PERMUTE_PS(V1, _MM_SHUFFLE(2, 2, 2, 2));
XMVECTOR Y = XM_PERMUTE_PS(V1, _MM_SHUFFLE(1, 1, 1, 1));
XMVECTOR X = XM_PERMUTE_PS(V1, _MM_SHUFFLE(0, 0, 0, 0));
XMVECTOR vTemp = XM_FMADD_PS(Z, row2, row3);
XMVECTOR vTemp2 = _mm_mul_ps(Y, row1);
XMVECTOR vTemp3 = _mm_mul_ps(X, row0);
vTemp = _mm_add_ps(vTemp, vTemp2);
vTemp = _mm_add_ps(vTemp, vTemp3);
XM_STREAM_PS(reinterpret_cast<float*>(pOutputVector), vTemp);
pOutputVector += OutputStride;
// Result 2
Z = XM_PERMUTE_PS(V2, _MM_SHUFFLE(2, 2, 2, 2));
Y = XM_PERMUTE_PS(V2, _MM_SHUFFLE(1, 1, 1, 1));
X = XM_PERMUTE_PS(V2, _MM_SHUFFLE(0, 0, 0, 0));
vTemp = XM_FMADD_PS(Z, row2, row3);
vTemp2 = _mm_mul_ps(Y, row1);
vTemp3 = _mm_mul_ps(X, row0);
vTemp = _mm_add_ps(vTemp, vTemp2);
vTemp = _mm_add_ps(vTemp, vTemp3);
XM_STREAM_PS(reinterpret_cast<float*>(pOutputVector), vTemp);
pOutputVector += OutputStride;
// Result 3
Z = XM_PERMUTE_PS(V3, _MM_SHUFFLE(2, 2, 2, 2));
Y = XM_PERMUTE_PS(V3, _MM_SHUFFLE(1, 1, 1, 1));
X = XM_PERMUTE_PS(V3, _MM_SHUFFLE(0, 0, 0, 0));
vTemp = XM_FMADD_PS(Z, row2, row3);
vTemp2 = _mm_mul_ps(Y, row1);
vTemp3 = _mm_mul_ps(X, row0);
vTemp = _mm_add_ps(vTemp, vTemp2);
vTemp = _mm_add_ps(vTemp, vTemp3);
XM_STREAM_PS(reinterpret_cast<float*>(pOutputVector), vTemp);
pOutputVector += OutputStride;
// Result 4
Z = XM_PERMUTE_PS(V4, _MM_SHUFFLE(2, 2, 2, 2));
Y = XM_PERMUTE_PS(V4, _MM_SHUFFLE(1, 1, 1, 1));
X = XM_PERMUTE_PS(V4, _MM_SHUFFLE(0, 0, 0, 0));
vTemp = XM_FMADD_PS(Z, row2, row3);
vTemp2 = _mm_mul_ps(Y, row1);
vTemp3 = _mm_mul_ps(X, row0);
vTemp = _mm_add_ps(vTemp, vTemp2);
vTemp = _mm_add_ps(vTemp, vTemp3);
XM_STREAM_PS(reinterpret_cast<float*>(pOutputVector), vTemp);
pOutputVector += OutputStride;
i += 4;
}
}
else
{
// Packed input, unaligned output
for (size_t j = 0; j < four; ++j)
{
__m128 V1 = _mm_loadu_ps(reinterpret_cast<const float*>(pInputVector));
__m128 L2 = _mm_loadu_ps(reinterpret_cast<const float*>(pInputVector + 16));
__m128 L3 = _mm_loadu_ps(reinterpret_cast<const float*>(pInputVector + 32));
pInputVector += sizeof(XMFLOAT3) * 4;
// Unpack the 4 vectors (.w components are junk)
XM3UNPACK3INTO4(V1, L2, L3);
// Result 1
XMVECTOR Z = XM_PERMUTE_PS(V1, _MM_SHUFFLE(2, 2, 2, 2));
XMVECTOR Y = XM_PERMUTE_PS(V1, _MM_SHUFFLE(1, 1, 1, 1));
XMVECTOR X = XM_PERMUTE_PS(V1, _MM_SHUFFLE(0, 0, 0, 0));
XMVECTOR vTemp = XM_FMADD_PS(Z, row2, row3);
XMVECTOR vTemp2 = _mm_mul_ps(Y, row1);
XMVECTOR vTemp3 = _mm_mul_ps(X, row0);
vTemp = _mm_add_ps(vTemp, vTemp2);
vTemp = _mm_add_ps(vTemp, vTemp3);
_mm_storeu_ps(reinterpret_cast<float*>(pOutputVector), vTemp);
pOutputVector += OutputStride;
// Result 2
Z = XM_PERMUTE_PS(V2, _MM_SHUFFLE(2, 2, 2, 2));
Y = XM_PERMUTE_PS(V2, _MM_SHUFFLE(1, 1, 1, 1));
X = XM_PERMUTE_PS(V2, _MM_SHUFFLE(0, 0, 0, 0));
vTemp = XM_FMADD_PS(Z, row2, row3);
vTemp2 = _mm_mul_ps(Y, row1);
vTemp3 = _mm_mul_ps(X, row0);
vTemp = _mm_add_ps(vTemp, vTemp2);
vTemp = _mm_add_ps(vTemp, vTemp3);
_mm_storeu_ps(reinterpret_cast<float*>(pOutputVector), vTemp);
pOutputVector += OutputStride;
// Result 3
Z = XM_PERMUTE_PS(V3, _MM_SHUFFLE(2, 2, 2, 2));
Y = XM_PERMUTE_PS(V3, _MM_SHUFFLE(1, 1, 1, 1));
X = XM_PERMUTE_PS(V3, _MM_SHUFFLE(0, 0, 0, 0));
vTemp = XM_FMADD_PS(Z, row2, row3);
vTemp2 = _mm_mul_ps(Y, row1);
vTemp3 = _mm_mul_ps(X, row0);
vTemp = _mm_add_ps(vTemp, vTemp2);
vTemp = _mm_add_ps(vTemp, vTemp3);
_mm_storeu_ps(reinterpret_cast<float*>(pOutputVector), vTemp);
pOutputVector += OutputStride;
// Result 4
Z = XM_PERMUTE_PS(V4, _MM_SHUFFLE(2, 2, 2, 2));
Y = XM_PERMUTE_PS(V4, _MM_SHUFFLE(1, 1, 1, 1));
X = XM_PERMUTE_PS(V4, _MM_SHUFFLE(0, 0, 0, 0));
vTemp = XM_FMADD_PS(Z, row2, row3);
vTemp2 = _mm_mul_ps(Y, row1);
vTemp3 = _mm_mul_ps(X, row0);
vTemp = _mm_add_ps(vTemp, vTemp2);
vTemp = _mm_add_ps(vTemp, vTemp3);
_mm_storeu_ps(reinterpret_cast<float*>(pOutputVector), vTemp);
pOutputVector += OutputStride;
i += 4;
}
}
}
}
if (!(reinterpret_cast<uintptr_t>(pOutputStream) & 0xF) && !(OutputStride & 0xF))
{
// Aligned output
for (; i < VectorCount; ++i)
{
XMVECTOR V = XMLoadFloat3(reinterpret_cast<const XMFLOAT3*>(pInputVector));
pInputVector += InputStride;
XMVECTOR Z = XM_PERMUTE_PS(V, _MM_SHUFFLE(2, 2, 2, 2));
XMVECTOR Y = XM_PERMUTE_PS(V, _MM_SHUFFLE(1, 1, 1, 1));
XMVECTOR X = XM_PERMUTE_PS(V, _MM_SHUFFLE(0, 0, 0, 0));
XMVECTOR vTemp = XM_FMADD_PS(Z, row2, row3);
XMVECTOR vTemp2 = _mm_mul_ps(Y, row1);
XMVECTOR vTemp3 = _mm_mul_ps(X, row0);
vTemp = _mm_add_ps(vTemp, vTemp2);
vTemp = _mm_add_ps(vTemp, vTemp3);
XM_STREAM_PS(reinterpret_cast<float*>(pOutputVector), vTemp);
pOutputVector += OutputStride;
}
}
else
{
// Unaligned output
for (; i < VectorCount; ++i)
{
XMVECTOR V = XMLoadFloat3(reinterpret_cast<const XMFLOAT3*>(pInputVector));
pInputVector += InputStride;
XMVECTOR Z = XM_PERMUTE_PS(V, _MM_SHUFFLE(2, 2, 2, 2));
XMVECTOR Y = XM_PERMUTE_PS(V, _MM_SHUFFLE(1, 1, 1, 1));
XMVECTOR X = XM_PERMUTE_PS(V, _MM_SHUFFLE(0, 0, 0, 0));
XMVECTOR vTemp = XM_FMADD_PS(Z, row2, row3);
XMVECTOR vTemp2 = _mm_mul_ps(Y, row1);
XMVECTOR vTemp3 = _mm_mul_ps(X, row0);
vTemp = _mm_add_ps(vTemp, vTemp2);
vTemp = _mm_add_ps(vTemp, vTemp3);
_mm_storeu_ps(reinterpret_cast<float*>(pOutputVector), vTemp);
pOutputVector += OutputStride;
}
}
XM_SFENCE();
return pOutputStream;
#endif
}
#ifdef _PREFAST_
#pragma prefast(pop)
#endif
//------------------------------------------------------------------------------
inline XMVECTOR XM_CALLCONV XMVector3TransformCoord
(
FXMVECTOR V,
FXMMATRIX M
) noexcept
{
XMVECTOR Z = XMVectorSplatZ(V);
XMVECTOR Y = XMVectorSplatY(V);
XMVECTOR X = XMVectorSplatX(V);
XMVECTOR Result = XMVectorMultiplyAdd(Z, M.r[2], M.r[3]);
Result = XMVectorMultiplyAdd(Y, M.r[1], Result);
Result = XMVectorMultiplyAdd(X, M.r[0], Result);
XMVECTOR W = XMVectorSplatW(Result);
return XMVectorDivide(Result, W);
}
//------------------------------------------------------------------------------
#ifdef _PREFAST_
#pragma prefast(push)
#pragma prefast(disable : 26015 26019, "PREfast noise: Esp:1307" )
#endif
_Use_decl_annotations_
inline XMFLOAT3* XM_CALLCONV XMVector3TransformCoordStream
(
XMFLOAT3* pOutputStream,
size_t OutputStride,
const XMFLOAT3* pInputStream,
size_t InputStride,
size_t VectorCount,
FXMMATRIX M
) noexcept
{
assert(pOutputStream != nullptr);
assert(pInputStream != nullptr);
assert(InputStride >= sizeof(XMFLOAT3));
_Analysis_assume_(InputStride >= sizeof(XMFLOAT3));
assert(OutputStride >= sizeof(XMFLOAT3));
_Analysis_assume_(OutputStride >= sizeof(XMFLOAT3));
#if defined(_XM_NO_INTRINSICS_)
auto pInputVector = reinterpret_cast<const uint8_t*>(pInputStream);
auto pOutputVector = reinterpret_cast<uint8_t*>(pOutputStream);
const XMVECTOR row0 = M.r[0];
const XMVECTOR row1 = M.r[1];
const XMVECTOR row2 = M.r[2];
const XMVECTOR row3 = M.r[3];
for (size_t i = 0; i < VectorCount; i++)
{
XMVECTOR V = XMLoadFloat3(reinterpret_cast<const XMFLOAT3*>(pInputVector));
XMVECTOR Z = XMVectorSplatZ(V);
XMVECTOR Y = XMVectorSplatY(V);
XMVECTOR X = XMVectorSplatX(V);
XMVECTOR Result = XMVectorMultiplyAdd(Z, row2, row3);
Result = XMVectorMultiplyAdd(Y, row1, Result);
Result = XMVectorMultiplyAdd(X, row0, Result);
XMVECTOR W = XMVectorSplatW(Result);
Result = XMVectorDivide(Result, W);
XMStoreFloat3(reinterpret_cast<XMFLOAT3*>(pOutputVector), Result);
pInputVector += InputStride;
pOutputVector += OutputStride;
}
return pOutputStream;
#elif defined(_XM_ARM_NEON_INTRINSICS_)
auto pInputVector = reinterpret_cast<const uint8_t*>(pInputStream);
auto pOutputVector = reinterpret_cast<uint8_t*>(pOutputStream);
const XMVECTOR row0 = M.r[0];
const XMVECTOR row1 = M.r[1];
const XMVECTOR row2 = M.r[2];
const XMVECTOR row3 = M.r[3];
size_t i = 0;
size_t four = VectorCount >> 2;
if (four > 0)
{
if ((InputStride == sizeof(XMFLOAT3)) && (OutputStride == sizeof(XMFLOAT3)))
{
for (size_t j = 0; j < four; ++j)
{
float32x4x3_t V = vld3q_f32(reinterpret_cast<const float*>(pInputVector));
pInputVector += sizeof(XMFLOAT3) * 4;
float32x2_t r3 = vget_low_f32(row3);
float32x2_t r = vget_low_f32(row0);
XMVECTOR vResult0 = vmlaq_lane_f32(vdupq_lane_f32(r3, 0), V.val[0], r, 0); // Ax+M
XMVECTOR vResult1 = vmlaq_lane_f32(vdupq_lane_f32(r3, 1), V.val[0], r, 1); // Bx+N
XM_PREFETCH(pInputVector);
r3 = vget_high_f32(row3);
r = vget_high_f32(row0);
XMVECTOR vResult2 = vmlaq_lane_f32(vdupq_lane_f32(r3, 0), V.val[0], r, 0); // Cx+O
XMVECTOR W = vmlaq_lane_f32(vdupq_lane_f32(r3, 1), V.val[0], r, 1); // Dx+P
XM_PREFETCH(pInputVector + XM_CACHE_LINE_SIZE);
r = vget_low_f32(row1);
vResult0 = vmlaq_lane_f32(vResult0, V.val[1], r, 0); // Ax+Ey+M
vResult1 = vmlaq_lane_f32(vResult1, V.val[1], r, 1); // Bx+Fy+N
XM_PREFETCH(pInputVector + (XM_CACHE_LINE_SIZE * 2));
r = vget_high_f32(row1);
vResult2 = vmlaq_lane_f32(vResult2, V.val[1], r, 0); // Cx+Gy+O
W = vmlaq_lane_f32(W, V.val[1], r, 1); // Dx+Hy+P
XM_PREFETCH(pInputVector + (XM_CACHE_LINE_SIZE * 3));
r = vget_low_f32(row2);
vResult0 = vmlaq_lane_f32(vResult0, V.val[2], r, 0); // Ax+Ey+Iz+M
vResult1 = vmlaq_lane_f32(vResult1, V.val[2], r, 1); // Bx+Fy+Jz+N
XM_PREFETCH(pInputVector + (XM_CACHE_LINE_SIZE * 4));
r = vget_high_f32(row2);
vResult2 = vmlaq_lane_f32(vResult2, V.val[2], r, 0); // Cx+Gy+Kz+O
W = vmlaq_lane_f32(W, V.val[2], r, 1); // Dx+Hy+Lz+P
XM_PREFETCH(pInputVector + (XM_CACHE_LINE_SIZE * 5));
#if defined(_M_ARM64) || defined(_M_HYBRID_X86_ARM64) || __aarch64__
V.val[0] = vdivq_f32(vResult0, W);
V.val[1] = vdivq_f32(vResult1, W);
V.val[2] = vdivq_f32(vResult2, W);
#else
// 2 iterations of Newton-Raphson refinement of reciprocal
float32x4_t Reciprocal = vrecpeq_f32(W);
float32x4_t S = vrecpsq_f32(Reciprocal, W);
Reciprocal = vmulq_f32(S, Reciprocal);
S = vrecpsq_f32(Reciprocal, W);
Reciprocal = vmulq_f32(S, Reciprocal);
V.val[0] = vmulq_f32(vResult0, Reciprocal);
V.val[1] = vmulq_f32(vResult1, Reciprocal);
V.val[2] = vmulq_f32(vResult2, Reciprocal);
#endif
vst3q_f32(reinterpret_cast<float*>(pOutputVector), V);
pOutputVector += sizeof(XMFLOAT3) * 4;
i += 4;
}
}
}
for (; i < VectorCount; i++)
{
float32x2_t VL = vld1_f32(reinterpret_cast<const float*>(pInputVector));
float32x2_t zero = vdup_n_f32(0);
float32x2_t VH = vld1_lane_f32(reinterpret_cast<const float*>(pInputVector) + 2, zero, 0);
pInputVector += InputStride;
XMVECTOR vResult = vmlaq_lane_f32(row3, row0, VL, 0); // X
vResult = vmlaq_lane_f32(vResult, row1, VL, 1); // Y
vResult = vmlaq_lane_f32(vResult, row2, VH, 0); // Z
VH = vget_high_f32(vResult);
XMVECTOR W = vdupq_lane_f32(VH, 1);
#if defined(_M_ARM64) || defined(_M_HYBRID_X86_ARM64) || __aarch64__
vResult = vdivq_f32(vResult, W);
#else
// 2 iterations of Newton-Raphson refinement of reciprocal for W
float32x4_t Reciprocal = vrecpeq_f32(W);
float32x4_t S = vrecpsq_f32(Reciprocal, W);
Reciprocal = vmulq_f32(S, Reciprocal);
S = vrecpsq_f32(Reciprocal, W);
Reciprocal = vmulq_f32(S, Reciprocal);
vResult = vmulq_f32(vResult, Reciprocal);
#endif
VL = vget_low_f32(vResult);
vst1_f32(reinterpret_cast<float*>(pOutputVector), VL);
vst1q_lane_f32(reinterpret_cast<float*>(pOutputVector) + 2, vResult, 2);
pOutputVector += OutputStride;
}
return pOutputStream;
#elif defined(_XM_SSE_INTRINSICS_)
auto pInputVector = reinterpret_cast<const uint8_t*>(pInputStream);
auto pOutputVector = reinterpret_cast<uint8_t*>(pOutputStream);
const XMVECTOR row0 = M.r[0];
const XMVECTOR row1 = M.r[1];
const XMVECTOR row2 = M.r[2];
const XMVECTOR row3 = M.r[3];
size_t i = 0;
size_t four = VectorCount >> 2;
if (four > 0)
{
if (InputStride == sizeof(XMFLOAT3))
{
if (OutputStride == sizeof(XMFLOAT3))
{
if (!(reinterpret_cast<uintptr_t>(pOutputStream) & 0xF))
{
// Packed input, aligned & packed output
for (size_t j = 0; j < four; ++j)
{
__m128 V1 = _mm_loadu_ps(reinterpret_cast<const float*>(pInputVector));
__m128 L2 = _mm_loadu_ps(reinterpret_cast<const float*>(pInputVector + 16));
__m128 L3 = _mm_loadu_ps(reinterpret_cast<const float*>(pInputVector + 32));
pInputVector += sizeof(XMFLOAT3) * 4;
// Unpack the 4 vectors (.w components are junk)
XM3UNPACK3INTO4(V1, L2, L3);
// Result 1
XMVECTOR Z = XM_PERMUTE_PS(V1, _MM_SHUFFLE(2, 2, 2, 2));
XMVECTOR Y = XM_PERMUTE_PS(V1, _MM_SHUFFLE(1, 1, 1, 1));
XMVECTOR X = XM_PERMUTE_PS(V1, _MM_SHUFFLE(0, 0, 0, 0));
XMVECTOR vTemp = XM_FMADD_PS(Z, row2, row3);
XMVECTOR vTemp2 = _mm_mul_ps(Y, row1);
XMVECTOR vTemp3 = _mm_mul_ps(X, row0);
vTemp = _mm_add_ps(vTemp, vTemp2);
vTemp = _mm_add_ps(vTemp, vTemp3);
XMVECTOR W = XM_PERMUTE_PS(vTemp, _MM_SHUFFLE(3, 3, 3, 3));
V1 = _mm_div_ps(vTemp, W);
// Result 2
Z = XM_PERMUTE_PS(V2, _MM_SHUFFLE(2, 2, 2, 2));
Y = XM_PERMUTE_PS(V2, _MM_SHUFFLE(1, 1, 1, 1));
X = XM_PERMUTE_PS(V2, _MM_SHUFFLE(0, 0, 0, 0));
vTemp = XM_FMADD_PS(Z, row2, row3);
vTemp2 = _mm_mul_ps(Y, row1);
vTemp3 = _mm_mul_ps(X, row0);
vTemp = _mm_add_ps(vTemp, vTemp2);
vTemp = _mm_add_ps(vTemp, vTemp3);
W = XM_PERMUTE_PS(vTemp, _MM_SHUFFLE(3, 3, 3, 3));
V2 = _mm_div_ps(vTemp, W);
// Result 3
Z = XM_PERMUTE_PS(V3, _MM_SHUFFLE(2, 2, 2, 2));
Y = XM_PERMUTE_PS(V3, _MM_SHUFFLE(1, 1, 1, 1));
X = XM_PERMUTE_PS(V3, _MM_SHUFFLE(0, 0, 0, 0));
vTemp = XM_FMADD_PS(Z, row2, row3);
vTemp2 = _mm_mul_ps(Y, row1);
vTemp3 = _mm_mul_ps(X, row0);
vTemp = _mm_add_ps(vTemp, vTemp2);
vTemp = _mm_add_ps(vTemp, vTemp3);
W = XM_PERMUTE_PS(vTemp, _MM_SHUFFLE(3, 3, 3, 3));
V3 = _mm_div_ps(vTemp, W);
// Result 4
Z = XM_PERMUTE_PS(V4, _MM_SHUFFLE(2, 2, 2, 2));
Y = XM_PERMUTE_PS(V4, _MM_SHUFFLE(1, 1, 1, 1));
X = XM_PERMUTE_PS(V4, _MM_SHUFFLE(0, 0, 0, 0));
vTemp = XM_FMADD_PS(Z, row2, row3);
vTemp2 = _mm_mul_ps(Y, row1);
vTemp3 = _mm_mul_ps(X, row0);
vTemp = _mm_add_ps(vTemp, vTemp2);
vTemp = _mm_add_ps(vTemp, vTemp3);
W = XM_PERMUTE_PS(vTemp, _MM_SHUFFLE(3, 3, 3, 3));
V4 = _mm_div_ps(vTemp, W);
// Pack and store the vectors
XM3PACK4INTO3(vTemp);
XM_STREAM_PS(reinterpret_cast<float*>(pOutputVector), V1);
XM_STREAM_PS(reinterpret_cast<float*>(pOutputVector + 16), vTemp);
XM_STREAM_PS(reinterpret_cast<float*>(pOutputVector + 32), V3);
pOutputVector += sizeof(XMFLOAT3) * 4;
i += 4;
}
}
else
{
// Packed input, unaligned & packed output
for (size_t j = 0; j < four; ++j)
{
__m128 V1 = _mm_loadu_ps(reinterpret_cast<const float*>(pInputVector));
__m128 L2 = _mm_loadu_ps(reinterpret_cast<const float*>(pInputVector + 16));
__m128 L3 = _mm_loadu_ps(reinterpret_cast<const float*>(pInputVector + 32));
pInputVector += sizeof(XMFLOAT3) * 4;
// Unpack the 4 vectors (.w components are junk)
XM3UNPACK3INTO4(V1, L2, L3);
// Result 1
XMVECTOR Z = XM_PERMUTE_PS(V1, _MM_SHUFFLE(2, 2, 2, 2));
XMVECTOR Y = XM_PERMUTE_PS(V1, _MM_SHUFFLE(1, 1, 1, 1));
XMVECTOR X = XM_PERMUTE_PS(V1, _MM_SHUFFLE(0, 0, 0, 0));
XMVECTOR vTemp = XM_FMADD_PS(Z, row2, row3);
XMVECTOR vTemp2 = _mm_mul_ps(Y, row1);
XMVECTOR vTemp3 = _mm_mul_ps(X, row0);
vTemp = _mm_add_ps(vTemp, vTemp2);
vTemp = _mm_add_ps(vTemp, vTemp3);
XMVECTOR W = XM_PERMUTE_PS(vTemp, _MM_SHUFFLE(3, 3, 3, 3));
V1 = _mm_div_ps(vTemp, W);
// Result 2
Z = XM_PERMUTE_PS(V2, _MM_SHUFFLE(2, 2, 2, 2));
Y = XM_PERMUTE_PS(V2, _MM_SHUFFLE(1, 1, 1, 1));
X = XM_PERMUTE_PS(V2, _MM_SHUFFLE(0, 0, 0, 0));
vTemp = XM_FMADD_PS(Z, row2, row3);
vTemp2 = _mm_mul_ps(Y, row1);
vTemp3 = _mm_mul_ps(X, row0);
vTemp = _mm_add_ps(vTemp, vTemp2);
vTemp = _mm_add_ps(vTemp, vTemp3);
W = XM_PERMUTE_PS(vTemp, _MM_SHUFFLE(3, 3, 3, 3));
V2 = _mm_div_ps(vTemp, W);
// Result 3
Z = XM_PERMUTE_PS(V3, _MM_SHUFFLE(2, 2, 2, 2));
Y = XM_PERMUTE_PS(V3, _MM_SHUFFLE(1, 1, 1, 1));
X = XM_PERMUTE_PS(V3, _MM_SHUFFLE(0, 0, 0, 0));
vTemp = XM_FMADD_PS(Z, row2, row3);
vTemp2 = _mm_mul_ps(Y, row1);
vTemp3 = _mm_mul_ps(X, row0);
vTemp = _mm_add_ps(vTemp, vTemp2);
vTemp = _mm_add_ps(vTemp, vTemp3);
W = XM_PERMUTE_PS(vTemp, _MM_SHUFFLE(3, 3, 3, 3));
V3 = _mm_div_ps(vTemp, W);
// Result 4
Z = XM_PERMUTE_PS(V4, _MM_SHUFFLE(2, 2, 2, 2));
Y = XM_PERMUTE_PS(V4, _MM_SHUFFLE(1, 1, 1, 1));
X = XM_PERMUTE_PS(V4, _MM_SHUFFLE(0, 0, 0, 0));
vTemp = XM_FMADD_PS(Z, row2, row3);
vTemp2 = _mm_mul_ps(Y, row1);
vTemp3 = _mm_mul_ps(X, row0);
vTemp = _mm_add_ps(vTemp, vTemp2);
vTemp = _mm_add_ps(vTemp, vTemp3);
W = XM_PERMUTE_PS(vTemp, _MM_SHUFFLE(3, 3, 3, 3));
V4 = _mm_div_ps(vTemp, W);
// Pack and store the vectors
XM3PACK4INTO3(vTemp);
_mm_storeu_ps(reinterpret_cast<float*>(pOutputVector), V1);
_mm_storeu_ps(reinterpret_cast<float*>(pOutputVector + 16), vTemp);
_mm_storeu_ps(reinterpret_cast<float*>(pOutputVector + 32), V3);
pOutputVector += sizeof(XMFLOAT3) * 4;
i += 4;
}
}
}
else
{
// Packed input, unpacked output
for (size_t j = 0; j < four; ++j)
{
__m128 V1 = _mm_loadu_ps(reinterpret_cast<const float*>(pInputVector));
__m128 L2 = _mm_loadu_ps(reinterpret_cast<const float*>(pInputVector + 16));
__m128 L3 = _mm_loadu_ps(reinterpret_cast<const float*>(pInputVector + 32));
pInputVector += sizeof(XMFLOAT3) * 4;
// Unpack the 4 vectors (.w components are junk)
XM3UNPACK3INTO4(V1, L2, L3);
// Result 1
XMVECTOR Z = XM_PERMUTE_PS(V1, _MM_SHUFFLE(2, 2, 2, 2));
XMVECTOR Y = XM_PERMUTE_PS(V1, _MM_SHUFFLE(1, 1, 1, 1));
XMVECTOR X = XM_PERMUTE_PS(V1, _MM_SHUFFLE(0, 0, 0, 0));
XMVECTOR vTemp = XM_FMADD_PS(Z, row2, row3);
XMVECTOR vTemp2 = _mm_mul_ps(Y, row1);
XMVECTOR vTemp3 = _mm_mul_ps(X, row0);
vTemp = _mm_add_ps(vTemp, vTemp2);
vTemp = _mm_add_ps(vTemp, vTemp3);
XMVECTOR W = XM_PERMUTE_PS(vTemp, _MM_SHUFFLE(3, 3, 3, 3));
vTemp = _mm_div_ps(vTemp, W);
XMStoreFloat3(reinterpret_cast<XMFLOAT3*>(pOutputVector), vTemp);
pOutputVector += OutputStride;
// Result 2
Z = XM_PERMUTE_PS(V2, _MM_SHUFFLE(2, 2, 2, 2));
Y = XM_PERMUTE_PS(V2, _MM_SHUFFLE(1, 1, 1, 1));
X = XM_PERMUTE_PS(V2, _MM_SHUFFLE(0, 0, 0, 0));
vTemp = XM_FMADD_PS(Z, row2, row3);
vTemp2 = _mm_mul_ps(Y, row1);
vTemp3 = _mm_mul_ps(X, row0);
vTemp = _mm_add_ps(vTemp, vTemp2);
vTemp = _mm_add_ps(vTemp, vTemp3);
W = XM_PERMUTE_PS(vTemp, _MM_SHUFFLE(3, 3, 3, 3));
vTemp = _mm_div_ps(vTemp, W);
XMStoreFloat3(reinterpret_cast<XMFLOAT3*>(pOutputVector), vTemp);
pOutputVector += OutputStride;
// Result 3
Z = XM_PERMUTE_PS(V3, _MM_SHUFFLE(2, 2, 2, 2));
Y = XM_PERMUTE_PS(V3, _MM_SHUFFLE(1, 1, 1, 1));
X = XM_PERMUTE_PS(V3, _MM_SHUFFLE(0, 0, 0, 0));
vTemp = XM_FMADD_PS(Z, row2, row3);
vTemp2 = _mm_mul_ps(Y, row1);
vTemp3 = _mm_mul_ps(X, row0);
vTemp = _mm_add_ps(vTemp, vTemp2);
vTemp = _mm_add_ps(vTemp, vTemp3);
W = XM_PERMUTE_PS(vTemp, _MM_SHUFFLE(3, 3, 3, 3));
vTemp = _mm_div_ps(vTemp, W);
XMStoreFloat3(reinterpret_cast<XMFLOAT3*>(pOutputVector), vTemp);
pOutputVector += OutputStride;
// Result 4
Z = XM_PERMUTE_PS(V4, _MM_SHUFFLE(2, 2, 2, 2));
Y = XM_PERMUTE_PS(V4, _MM_SHUFFLE(1, 1, 1, 1));
X = XM_PERMUTE_PS(V4, _MM_SHUFFLE(0, 0, 0, 0));
vTemp = XM_FMADD_PS(Z, row2, row3);
vTemp2 = _mm_mul_ps(Y, row1);
vTemp3 = _mm_mul_ps(X, row0);
vTemp = _mm_add_ps(vTemp, vTemp2);
vTemp = _mm_add_ps(vTemp, vTemp3);
W = XM_PERMUTE_PS(vTemp, _MM_SHUFFLE(3, 3, 3, 3));
vTemp = _mm_div_ps(vTemp, W);
XMStoreFloat3(reinterpret_cast<XMFLOAT3*>(pOutputVector), vTemp);
pOutputVector += OutputStride;
i += 4;
}
}
}
}
for (; i < VectorCount; i++)
{
XMVECTOR V = XMLoadFloat3(reinterpret_cast<const XMFLOAT3*>(pInputVector));
pInputVector += InputStride;
XMVECTOR Z = XM_PERMUTE_PS(V, _MM_SHUFFLE(2, 2, 2, 2));
XMVECTOR Y = XM_PERMUTE_PS(V, _MM_SHUFFLE(1, 1, 1, 1));
XMVECTOR X = XM_PERMUTE_PS(V, _MM_SHUFFLE(0, 0, 0, 0));
XMVECTOR vTemp = XM_FMADD_PS(Z, row2, row3);
XMVECTOR vTemp2 = _mm_mul_ps(Y, row1);
XMVECTOR vTemp3 = _mm_mul_ps(X, row0);
vTemp = _mm_add_ps(vTemp, vTemp2);
vTemp = _mm_add_ps(vTemp, vTemp3);
XMVECTOR W = XM_PERMUTE_PS(vTemp, _MM_SHUFFLE(3, 3, 3, 3));
vTemp = _mm_div_ps(vTemp, W);
XMStoreFloat3(reinterpret_cast<XMFLOAT3*>(pOutputVector), vTemp);
pOutputVector += OutputStride;
}
XM_SFENCE();
return pOutputStream;
#endif
}
#ifdef _PREFAST_
#pragma prefast(pop)
#endif
//------------------------------------------------------------------------------
inline XMVECTOR XM_CALLCONV XMVector3TransformNormal
(
FXMVECTOR V,
FXMMATRIX M
) noexcept
{
#if defined(_XM_NO_INTRINSICS_)
XMVECTOR Z = XMVectorSplatZ(V);
XMVECTOR Y = XMVectorSplatY(V);
XMVECTOR X = XMVectorSplatX(V);
XMVECTOR Result = XMVectorMultiply(Z, M.r[2]);
Result = XMVectorMultiplyAdd(Y, M.r[1], Result);
Result = XMVectorMultiplyAdd(X, M.r[0], Result);
return Result;
#elif defined(_XM_ARM_NEON_INTRINSICS_)
float32x2_t VL = vget_low_f32(V);
XMVECTOR vResult = vmulq_lane_f32(M.r[0], VL, 0); // X
vResult = vmlaq_lane_f32(vResult, M.r[1], VL, 1); // Y
return vmlaq_lane_f32(vResult, M.r[2], vget_high_f32(V), 0); // Z
#elif defined(_XM_SSE_INTRINSICS_)
XMVECTOR vResult = XM_PERMUTE_PS(V, _MM_SHUFFLE(2, 2, 2, 2)); // Z
vResult = _mm_mul_ps(vResult, M.r[2]);
XMVECTOR vTemp = XM_PERMUTE_PS(V, _MM_SHUFFLE(1, 1, 1, 1)); // Y
vResult = XM_FMADD_PS(vTemp, M.r[1], vResult);
vTemp = XM_PERMUTE_PS(V, _MM_SHUFFLE(0, 0, 0, 0)); // X
vResult = XM_FMADD_PS(vTemp, M.r[0], vResult);
return vResult;
#endif
}
//------------------------------------------------------------------------------
#ifdef _PREFAST_
#pragma prefast(push)
#pragma prefast(disable : 26015 26019, "PREfast noise: Esp:1307" )
#endif
_Use_decl_annotations_
inline XMFLOAT3* XM_CALLCONV XMVector3TransformNormalStream
(
XMFLOAT3* pOutputStream,
size_t OutputStride,
const XMFLOAT3* pInputStream,
size_t InputStride,
size_t VectorCount,
FXMMATRIX M
) noexcept
{
assert(pOutputStream != nullptr);
assert(pInputStream != nullptr);
assert(InputStride >= sizeof(XMFLOAT3));
_Analysis_assume_(InputStride >= sizeof(XMFLOAT3));
assert(OutputStride >= sizeof(XMFLOAT3));
_Analysis_assume_(OutputStride >= sizeof(XMFLOAT3));
#if defined(_XM_NO_INTRINSICS_)
auto pInputVector = reinterpret_cast<const uint8_t*>(pInputStream);
auto pOutputVector = reinterpret_cast<uint8_t*>(pOutputStream);
const XMVECTOR row0 = M.r[0];
const XMVECTOR row1 = M.r[1];
const XMVECTOR row2 = M.r[2];
for (size_t i = 0; i < VectorCount; i++)
{
XMVECTOR V = XMLoadFloat3(reinterpret_cast<const XMFLOAT3*>(pInputVector));
XMVECTOR Z = XMVectorSplatZ(V);
XMVECTOR Y = XMVectorSplatY(V);
XMVECTOR X = XMVectorSplatX(V);
XMVECTOR Result = XMVectorMultiply(Z, row2);
Result = XMVectorMultiplyAdd(Y, row1, Result);
Result = XMVectorMultiplyAdd(X, row0, Result);
XMStoreFloat3(reinterpret_cast<XMFLOAT3*>(pOutputVector), Result);
pInputVector += InputStride;
pOutputVector += OutputStride;
}
return pOutputStream;
#elif defined(_XM_ARM_NEON_INTRINSICS_)
auto pInputVector = reinterpret_cast<const uint8_t*>(pInputStream);
auto pOutputVector = reinterpret_cast<uint8_t*>(pOutputStream);
const XMVECTOR row0 = M.r[0];
const XMVECTOR row1 = M.r[1];
const XMVECTOR row2 = M.r[2];
size_t i = 0;
size_t four = VectorCount >> 2;
if (four > 0)
{
if ((InputStride == sizeof(XMFLOAT3)) && (OutputStride == sizeof(XMFLOAT3)))
{
for (size_t j = 0; j < four; ++j)
{
float32x4x3_t V = vld3q_f32(reinterpret_cast<const float*>(pInputVector));
pInputVector += sizeof(XMFLOAT3) * 4;
float32x2_t r = vget_low_f32(row0);
XMVECTOR vResult0 = vmulq_lane_f32(V.val[0], r, 0); // Ax
XMVECTOR vResult1 = vmulq_lane_f32(V.val[0], r, 1); // Bx
XM_PREFETCH(pInputVector);
r = vget_high_f32(row0);
XMVECTOR vResult2 = vmulq_lane_f32(V.val[0], r, 0); // Cx
XM_PREFETCH(pInputVector + XM_CACHE_LINE_SIZE);
r = vget_low_f32(row1);
vResult0 = vmlaq_lane_f32(vResult0, V.val[1], r, 0); // Ax+Ey
vResult1 = vmlaq_lane_f32(vResult1, V.val[1], r, 1); // Bx+Fy
XM_PREFETCH(pInputVector + (XM_CACHE_LINE_SIZE * 2));
r = vget_high_f32(row1);
vResult2 = vmlaq_lane_f32(vResult2, V.val[1], r, 0); // Cx+Gy
XM_PREFETCH(pInputVector + (XM_CACHE_LINE_SIZE * 3));
r = vget_low_f32(row2);
vResult0 = vmlaq_lane_f32(vResult0, V.val[2], r, 0); // Ax+Ey+Iz
vResult1 = vmlaq_lane_f32(vResult1, V.val[2], r, 1); // Bx+Fy+Jz
XM_PREFETCH(pInputVector + (XM_CACHE_LINE_SIZE * 4));
r = vget_high_f32(row2);
vResult2 = vmlaq_lane_f32(vResult2, V.val[2], r, 0); // Cx+Gy+Kz
XM_PREFETCH(pInputVector + (XM_CACHE_LINE_SIZE * 5));
V.val[0] = vResult0;
V.val[1] = vResult1;
V.val[2] = vResult2;
vst3q_f32(reinterpret_cast<float*>(pOutputVector), V);
pOutputVector += sizeof(XMFLOAT3) * 4;
i += 4;
}
}
}
for (; i < VectorCount; i++)
{
float32x2_t VL = vld1_f32(reinterpret_cast<const float*>(pInputVector));
float32x2_t zero = vdup_n_f32(0);
float32x2_t VH = vld1_lane_f32(reinterpret_cast<const float*>(pInputVector) + 2, zero, 0);
pInputVector += InputStride;
XMVECTOR vResult = vmulq_lane_f32(row0, VL, 0); // X
vResult = vmlaq_lane_f32(vResult, row1, VL, 1); // Y
vResult = vmlaq_lane_f32(vResult, row2, VH, 0); // Z
VL = vget_low_f32(vResult);
vst1_f32(reinterpret_cast<float*>(pOutputVector), VL);
vst1q_lane_f32(reinterpret_cast<float*>(pOutputVector) + 2, vResult, 2);
pOutputVector += OutputStride;
}
return pOutputStream;
#elif defined(_XM_SSE_INTRINSICS_)
auto pInputVector = reinterpret_cast<const uint8_t*>(pInputStream);
auto pOutputVector = reinterpret_cast<uint8_t*>(pOutputStream);
const XMVECTOR row0 = M.r[0];
const XMVECTOR row1 = M.r[1];
const XMVECTOR row2 = M.r[2];
size_t i = 0;
size_t four = VectorCount >> 2;
if (four > 0)
{
if (InputStride == sizeof(XMFLOAT3))
{
if (OutputStride == sizeof(XMFLOAT3))
{
if (!(reinterpret_cast<uintptr_t>(pOutputStream) & 0xF))
{
// Packed input, aligned & packed output
for (size_t j = 0; j < four; ++j)
{
__m128 V1 = _mm_loadu_ps(reinterpret_cast<const float*>(pInputVector));
__m128 L2 = _mm_loadu_ps(reinterpret_cast<const float*>(pInputVector + 16));
__m128 L3 = _mm_loadu_ps(reinterpret_cast<const float*>(pInputVector + 32));
pInputVector += sizeof(XMFLOAT3) * 4;
// Unpack the 4 vectors (.w components are junk)
XM3UNPACK3INTO4(V1, L2, L3);
// Result 1
XMVECTOR Z = XM_PERMUTE_PS(V1, _MM_SHUFFLE(2, 2, 2, 2));
XMVECTOR Y = XM_PERMUTE_PS(V1, _MM_SHUFFLE(1, 1, 1, 1));
XMVECTOR X = XM_PERMUTE_PS(V1, _MM_SHUFFLE(0, 0, 0, 0));
XMVECTOR vTemp = _mm_mul_ps(Z, row2);
XMVECTOR vTemp2 = _mm_mul_ps(Y, row1);
XMVECTOR vTemp3 = _mm_mul_ps(X, row0);
vTemp = _mm_add_ps(vTemp, vTemp2);
V1 = _mm_add_ps(vTemp, vTemp3);
// Result 2
Z = XM_PERMUTE_PS(V2, _MM_SHUFFLE(2, 2, 2, 2));
Y = XM_PERMUTE_PS(V2, _MM_SHUFFLE(1, 1, 1, 1));
X = XM_PERMUTE_PS(V2, _MM_SHUFFLE(0, 0, 0, 0));
vTemp = _mm_mul_ps(Z, row2);
vTemp2 = _mm_mul_ps(Y, row1);
vTemp3 = _mm_mul_ps(X, row0);
vTemp = _mm_add_ps(vTemp, vTemp2);
V2 = _mm_add_ps(vTemp, vTemp3);
// Result 3
Z = XM_PERMUTE_PS(V3, _MM_SHUFFLE(2, 2, 2, 2));
Y = XM_PERMUTE_PS(V3, _MM_SHUFFLE(1, 1, 1, 1));
X = XM_PERMUTE_PS(V3, _MM_SHUFFLE(0, 0, 0, 0));
vTemp = _mm_mul_ps(Z, row2);
vTemp2 = _mm_mul_ps(Y, row1);
vTemp3 = _mm_mul_ps(X, row0);
vTemp = _mm_add_ps(vTemp, vTemp2);
V3 = _mm_add_ps(vTemp, vTemp3);
// Result 4
Z = XM_PERMUTE_PS(V4, _MM_SHUFFLE(2, 2, 2, 2));
Y = XM_PERMUTE_PS(V4, _MM_SHUFFLE(1, 1, 1, 1));
X = XM_PERMUTE_PS(V4, _MM_SHUFFLE(0, 0, 0, 0));
vTemp = _mm_mul_ps(Z, row2);
vTemp2 = _mm_mul_ps(Y, row1);
vTemp3 = _mm_mul_ps(X, row0);
vTemp = _mm_add_ps(vTemp, vTemp2);
V4 = _mm_add_ps(vTemp, vTemp3);
// Pack and store the vectors
XM3PACK4INTO3(vTemp);
XM_STREAM_PS(reinterpret_cast<float*>(pOutputVector), V1);
XM_STREAM_PS(reinterpret_cast<float*>(pOutputVector + 16), vTemp);
XM_STREAM_PS(reinterpret_cast<float*>(pOutputVector + 32), V3);
pOutputVector += sizeof(XMFLOAT3) * 4;
i += 4;
}
}
else
{
// Packed input, unaligned & packed output
for (size_t j = 0; j < four; ++j)
{
__m128 V1 = _mm_loadu_ps(reinterpret_cast<const float*>(pInputVector));
__m128 L2 = _mm_loadu_ps(reinterpret_cast<const float*>(pInputVector + 16));
__m128 L3 = _mm_loadu_ps(reinterpret_cast<const float*>(pInputVector + 32));
pInputVector += sizeof(XMFLOAT3) * 4;
// Unpack the 4 vectors (.w components are junk)
XM3UNPACK3INTO4(V1, L2, L3);
// Result 1
XMVECTOR Z = XM_PERMUTE_PS(V1, _MM_SHUFFLE(2, 2, 2, 2));
XMVECTOR Y = XM_PERMUTE_PS(V1, _MM_SHUFFLE(1, 1, 1, 1));
XMVECTOR X = XM_PERMUTE_PS(V1, _MM_SHUFFLE(0, 0, 0, 0));
XMVECTOR vTemp = _mm_mul_ps(Z, row2);
XMVECTOR vTemp2 = _mm_mul_ps(Y, row1);
XMVECTOR vTemp3 = _mm_mul_ps(X, row0);
vTemp = _mm_add_ps(vTemp, vTemp2);
V1 = _mm_add_ps(vTemp, vTemp3);
// Result 2
Z = XM_PERMUTE_PS(V2, _MM_SHUFFLE(2, 2, 2, 2));
Y = XM_PERMUTE_PS(V2, _MM_SHUFFLE(1, 1, 1, 1));
X = XM_PERMUTE_PS(V2, _MM_SHUFFLE(0, 0, 0, 0));
vTemp = _mm_mul_ps(Z, row2);
vTemp2 = _mm_mul_ps(Y, row1);
vTemp3 = _mm_mul_ps(X, row0);
vTemp = _mm_add_ps(vTemp, vTemp2);
V2 = _mm_add_ps(vTemp, vTemp3);
// Result 3
Z = XM_PERMUTE_PS(V3, _MM_SHUFFLE(2, 2, 2, 2));
Y = XM_PERMUTE_PS(V3, _MM_SHUFFLE(1, 1, 1, 1));
X = XM_PERMUTE_PS(V3, _MM_SHUFFLE(0, 0, 0, 0));
vTemp = _mm_mul_ps(Z, row2);
vTemp2 = _mm_mul_ps(Y, row1);
vTemp3 = _mm_mul_ps(X, row0);
vTemp = _mm_add_ps(vTemp, vTemp2);
V3 = _mm_add_ps(vTemp, vTemp3);
// Result 4
Z = XM_PERMUTE_PS(V4, _MM_SHUFFLE(2, 2, 2, 2));
Y = XM_PERMUTE_PS(V4, _MM_SHUFFLE(1, 1, 1, 1));
X = XM_PERMUTE_PS(V4, _MM_SHUFFLE(0, 0, 0, 0));
vTemp = _mm_mul_ps(Z, row2);
vTemp2 = _mm_mul_ps(Y, row1);
vTemp3 = _mm_mul_ps(X, row0);
vTemp = _mm_add_ps(vTemp, vTemp2);
V4 = _mm_add_ps(vTemp, vTemp3);
// Pack and store the vectors
XM3PACK4INTO3(vTemp);
_mm_storeu_ps(reinterpret_cast<float*>(pOutputVector), V1);
_mm_storeu_ps(reinterpret_cast<float*>(pOutputVector + 16), vTemp);
_mm_storeu_ps(reinterpret_cast<float*>(pOutputVector + 32), V3);
pOutputVector += sizeof(XMFLOAT3) * 4;
i += 4;
}
}
}
else
{
// Packed input, unpacked output
for (size_t j = 0; j < four; ++j)
{
__m128 V1 = _mm_loadu_ps(reinterpret_cast<const float*>(pInputVector));
__m128 L2 = _mm_loadu_ps(reinterpret_cast<const float*>(pInputVector + 16));
__m128 L3 = _mm_loadu_ps(reinterpret_cast<const float*>(pInputVector + 32));
pInputVector += sizeof(XMFLOAT3) * 4;
// Unpack the 4 vectors (.w components are junk)
XM3UNPACK3INTO4(V1, L2, L3);
// Result 1
XMVECTOR Z = XM_PERMUTE_PS(V1, _MM_SHUFFLE(2, 2, 2, 2));
XMVECTOR Y = XM_PERMUTE_PS(V1, _MM_SHUFFLE(1, 1, 1, 1));
XMVECTOR X = XM_PERMUTE_PS(V1, _MM_SHUFFLE(0, 0, 0, 0));
XMVECTOR vTemp = _mm_mul_ps(Z, row2);
XMVECTOR vTemp2 = _mm_mul_ps(Y, row1);
XMVECTOR vTemp3 = _mm_mul_ps(X, row0);
vTemp = _mm_add_ps(vTemp, vTemp2);
vTemp = _mm_add_ps(vTemp, vTemp3);
XMStoreFloat3(reinterpret_cast<XMFLOAT3*>(pOutputVector), vTemp);
pOutputVector += OutputStride;
// Result 2
Z = XM_PERMUTE_PS(V2, _MM_SHUFFLE(2, 2, 2, 2));
Y = XM_PERMUTE_PS(V2, _MM_SHUFFLE(1, 1, 1, 1));
X = XM_PERMUTE_PS(V2, _MM_SHUFFLE(0, 0, 0, 0));
vTemp = _mm_mul_ps(Z, row2);
vTemp2 = _mm_mul_ps(Y, row1);
vTemp3 = _mm_mul_ps(X, row0);
vTemp = _mm_add_ps(vTemp, vTemp2);
vTemp = _mm_add_ps(vTemp, vTemp3);
XMStoreFloat3(reinterpret_cast<XMFLOAT3*>(pOutputVector), vTemp);
pOutputVector += OutputStride;
// Result 3
Z = XM_PERMUTE_PS(V3, _MM_SHUFFLE(2, 2, 2, 2));
Y = XM_PERMUTE_PS(V3, _MM_SHUFFLE(1, 1, 1, 1));
X = XM_PERMUTE_PS(V3, _MM_SHUFFLE(0, 0, 0, 0));
vTemp = _mm_mul_ps(Z, row2);
vTemp2 = _mm_mul_ps(Y, row1);
vTemp3 = _mm_mul_ps(X, row0);
vTemp = _mm_add_ps(vTemp, vTemp2);
vTemp = _mm_add_ps(vTemp, vTemp3);
XMStoreFloat3(reinterpret_cast<XMFLOAT3*>(pOutputVector), vTemp);
pOutputVector += OutputStride;
// Result 4
Z = XM_PERMUTE_PS(V4, _MM_SHUFFLE(2, 2, 2, 2));
Y = XM_PERMUTE_PS(V4, _MM_SHUFFLE(1, 1, 1, 1));
X = XM_PERMUTE_PS(V4, _MM_SHUFFLE(0, 0, 0, 0));
vTemp = _mm_mul_ps(Z, row2);
vTemp2 = _mm_mul_ps(Y, row1);
vTemp3 = _mm_mul_ps(X, row0);
vTemp = _mm_add_ps(vTemp, vTemp2);
vTemp = _mm_add_ps(vTemp, vTemp3);
XMStoreFloat3(reinterpret_cast<XMFLOAT3*>(pOutputVector), vTemp);
pOutputVector += OutputStride;
i += 4;
}
}
}
}
for (; i < VectorCount; i++)
{
XMVECTOR V = XMLoadFloat3(reinterpret_cast<const XMFLOAT3*>(pInputVector));
pInputVector += InputStride;
XMVECTOR Z = XM_PERMUTE_PS(V, _MM_SHUFFLE(2, 2, 2, 2));
XMVECTOR Y = XM_PERMUTE_PS(V, _MM_SHUFFLE(1, 1, 1, 1));
XMVECTOR X = XM_PERMUTE_PS(V, _MM_SHUFFLE(0, 0, 0, 0));
XMVECTOR vTemp = _mm_mul_ps(Z, row2);
XMVECTOR vTemp2 = _mm_mul_ps(Y, row1);
XMVECTOR vTemp3 = _mm_mul_ps(X, row0);
vTemp = _mm_add_ps(vTemp, vTemp2);
vTemp = _mm_add_ps(vTemp, vTemp3);
XMStoreFloat3(reinterpret_cast<XMFLOAT3*>(pOutputVector), vTemp);
pOutputVector += OutputStride;
}
XM_SFENCE();
return pOutputStream;
#endif
}
#ifdef _PREFAST_
#pragma prefast(pop)
#endif
//------------------------------------------------------------------------------
inline XMVECTOR XM_CALLCONV XMVector3Project
(
FXMVECTOR V,
float ViewportX,
float ViewportY,
float ViewportWidth,
float ViewportHeight,
float ViewportMinZ,
float ViewportMaxZ,
FXMMATRIX Projection,
CXMMATRIX View,
CXMMATRIX World
) noexcept
{
const float HalfViewportWidth = ViewportWidth * 0.5f;
const float HalfViewportHeight = ViewportHeight * 0.5f;
XMVECTOR Scale = XMVectorSet(HalfViewportWidth, -HalfViewportHeight, ViewportMaxZ - ViewportMinZ, 0.0f);
XMVECTOR Offset = XMVectorSet(ViewportX + HalfViewportWidth, ViewportY + HalfViewportHeight, ViewportMinZ, 0.0f);
XMMATRIX Transform = XMMatrixMultiply(World, View);
Transform = XMMatrixMultiply(Transform, Projection);
XMVECTOR Result = XMVector3TransformCoord(V, Transform);
Result = XMVectorMultiplyAdd(Result, Scale, Offset);
return Result;
}
//------------------------------------------------------------------------------
#ifdef _PREFAST_
#pragma prefast(push)
#pragma prefast(disable : 26015 26019, "PREfast noise: Esp:1307" )
#endif
_Use_decl_annotations_
inline XMFLOAT3* XM_CALLCONV XMVector3ProjectStream
(
XMFLOAT3* pOutputStream,
size_t OutputStride,
const XMFLOAT3* pInputStream,
size_t InputStride,
size_t VectorCount,
float ViewportX,
float ViewportY,
float ViewportWidth,
float ViewportHeight,
float ViewportMinZ,
float ViewportMaxZ,
FXMMATRIX Projection,
CXMMATRIX View,
CXMMATRIX World
) noexcept
{
assert(pOutputStream != nullptr);
assert(pInputStream != nullptr);
assert(InputStride >= sizeof(XMFLOAT3));
_Analysis_assume_(InputStride >= sizeof(XMFLOAT3));
assert(OutputStride >= sizeof(XMFLOAT3));
_Analysis_assume_(OutputStride >= sizeof(XMFLOAT3));
#if defined(_XM_NO_INTRINSICS_)
const float HalfViewportWidth = ViewportWidth * 0.5f;
const float HalfViewportHeight = ViewportHeight * 0.5f;
XMVECTOR Scale = XMVectorSet(HalfViewportWidth, -HalfViewportHeight, ViewportMaxZ - ViewportMinZ, 1.0f);
XMVECTOR Offset = XMVectorSet(ViewportX + HalfViewportWidth, ViewportY + HalfViewportHeight, ViewportMinZ, 0.0f);
XMMATRIX Transform = XMMatrixMultiply(World, View);
Transform = XMMatrixMultiply(Transform, Projection);
auto pInputVector = reinterpret_cast<const uint8_t*>(pInputStream);
auto pOutputVector = reinterpret_cast<uint8_t*>(pOutputStream);
for (size_t i = 0; i < VectorCount; i++)
{
XMVECTOR V = XMLoadFloat3(reinterpret_cast<const XMFLOAT3*>(pInputVector));
XMVECTOR Result = XMVector3TransformCoord(V, Transform);
Result = XMVectorMultiplyAdd(Result, Scale, Offset);
XMStoreFloat3(reinterpret_cast<XMFLOAT3*>(pOutputVector), Result);
pInputVector += InputStride;
pOutputVector += OutputStride;
}
return pOutputStream;
#elif defined(_XM_ARM_NEON_INTRINSICS_)
const float HalfViewportWidth = ViewportWidth * 0.5f;
const float HalfViewportHeight = ViewportHeight * 0.5f;
XMMATRIX Transform = XMMatrixMultiply(World, View);
Transform = XMMatrixMultiply(Transform, Projection);
auto pInputVector = reinterpret_cast<const uint8_t*>(pInputStream);
auto pOutputVector = reinterpret_cast<uint8_t*>(pOutputStream);
size_t i = 0;
size_t four = VectorCount >> 2;
if (four > 0)
{
if ((InputStride == sizeof(XMFLOAT3)) && (OutputStride == sizeof(XMFLOAT3)))
{
XMVECTOR ScaleX = vdupq_n_f32(HalfViewportWidth);
XMVECTOR ScaleY = vdupq_n_f32(-HalfViewportHeight);
XMVECTOR ScaleZ = vdupq_n_f32(ViewportMaxZ - ViewportMinZ);
XMVECTOR OffsetX = vdupq_n_f32(ViewportX + HalfViewportWidth);
XMVECTOR OffsetY = vdupq_n_f32(ViewportY + HalfViewportHeight);
XMVECTOR OffsetZ = vdupq_n_f32(ViewportMinZ);
for (size_t j = 0; j < four; ++j)
{
float32x4x3_t V = vld3q_f32(reinterpret_cast<const float*>(pInputVector));
pInputVector += sizeof(XMFLOAT3) * 4;
float32x2_t r3 = vget_low_f32(Transform.r[3]);
float32x2_t r = vget_low_f32(Transform.r[0]);
XMVECTOR vResult0 = vmlaq_lane_f32(vdupq_lane_f32(r3, 0), V.val[0], r, 0); // Ax+M
XMVECTOR vResult1 = vmlaq_lane_f32(vdupq_lane_f32(r3, 1), V.val[0], r, 1); // Bx+N
XM_PREFETCH(pInputVector);
r3 = vget_high_f32(Transform.r[3]);
r = vget_high_f32(Transform.r[0]);
XMVECTOR vResult2 = vmlaq_lane_f32(vdupq_lane_f32(r3, 0), V.val[0], r, 0); // Cx+O
XMVECTOR W = vmlaq_lane_f32(vdupq_lane_f32(r3, 1), V.val[0], r, 1); // Dx+P
XM_PREFETCH(pInputVector + XM_CACHE_LINE_SIZE);
r = vget_low_f32(Transform.r[1]);
vResult0 = vmlaq_lane_f32(vResult0, V.val[1], r, 0); // Ax+Ey+M
vResult1 = vmlaq_lane_f32(vResult1, V.val[1], r, 1); // Bx+Fy+N
XM_PREFETCH(pInputVector + (XM_CACHE_LINE_SIZE * 2));
r = vget_high_f32(Transform.r[1]);
vResult2 = vmlaq_lane_f32(vResult2, V.val[1], r, 0); // Cx+Gy+O
W = vmlaq_lane_f32(W, V.val[1], r, 1); // Dx+Hy+P
XM_PREFETCH(pInputVector + (XM_CACHE_LINE_SIZE * 3));
r = vget_low_f32(Transform.r[2]);
vResult0 = vmlaq_lane_f32(vResult0, V.val[2], r, 0); // Ax+Ey+Iz+M
vResult1 = vmlaq_lane_f32(vResult1, V.val[2], r, 1); // Bx+Fy+Jz+N
XM_PREFETCH(pInputVector + (XM_CACHE_LINE_SIZE * 4));
r = vget_high_f32(Transform.r[2]);
vResult2 = vmlaq_lane_f32(vResult2, V.val[2], r, 0); // Cx+Gy+Kz+O
W = vmlaq_lane_f32(W, V.val[2], r, 1); // Dx+Hy+Lz+P
XM_PREFETCH(pInputVector + (XM_CACHE_LINE_SIZE * 5));
#if defined(_M_ARM64) || defined(_M_HYBRID_X86_ARM64) || __aarch64__
vResult0 = vdivq_f32(vResult0, W);
vResult1 = vdivq_f32(vResult1, W);
vResult2 = vdivq_f32(vResult2, W);
#else
// 2 iterations of Newton-Raphson refinement of reciprocal
float32x4_t Reciprocal = vrecpeq_f32(W);
float32x4_t S = vrecpsq_f32(Reciprocal, W);
Reciprocal = vmulq_f32(S, Reciprocal);
S = vrecpsq_f32(Reciprocal, W);
Reciprocal = vmulq_f32(S, Reciprocal);
vResult0 = vmulq_f32(vResult0, Reciprocal);
vResult1 = vmulq_f32(vResult1, Reciprocal);
vResult2 = vmulq_f32(vResult2, Reciprocal);
#endif
V.val[0] = vmlaq_f32(OffsetX, vResult0, ScaleX);
V.val[1] = vmlaq_f32(OffsetY, vResult1, ScaleY);
V.val[2] = vmlaq_f32(OffsetZ, vResult2, ScaleZ);
vst3q_f32(reinterpret_cast<float*>(pOutputVector), V);
pOutputVector += sizeof(XMFLOAT3) * 4;
i += 4;
}
}
}
if (i < VectorCount)
{
XMVECTOR Scale = XMVectorSet(HalfViewportWidth, -HalfViewportHeight, ViewportMaxZ - ViewportMinZ, 1.0f);
XMVECTOR Offset = XMVectorSet(ViewportX + HalfViewportWidth, ViewportY + HalfViewportHeight, ViewportMinZ, 0.0f);
for (; i < VectorCount; i++)
{
float32x2_t VL = vld1_f32(reinterpret_cast<const float*>(pInputVector));
float32x2_t zero = vdup_n_f32(0);
float32x2_t VH = vld1_lane_f32(reinterpret_cast<const float*>(pInputVector) + 2, zero, 0);
pInputVector += InputStride;
XMVECTOR vResult = vmlaq_lane_f32(Transform.r[3], Transform.r[0], VL, 0); // X
vResult = vmlaq_lane_f32(vResult, Transform.r[1], VL, 1); // Y
vResult = vmlaq_lane_f32(vResult, Transform.r[2], VH, 0); // Z
VH = vget_high_f32(vResult);
XMVECTOR W = vdupq_lane_f32(VH, 1);
#if defined(_M_ARM64) || defined(_M_HYBRID_X86_ARM64) || __aarch64__
vResult = vdivq_f32(vResult, W);
#else
// 2 iterations of Newton-Raphson refinement of reciprocal for W
float32x4_t Reciprocal = vrecpeq_f32(W);
float32x4_t S = vrecpsq_f32(Reciprocal, W);
Reciprocal = vmulq_f32(S, Reciprocal);
S = vrecpsq_f32(Reciprocal, W);
Reciprocal = vmulq_f32(S, Reciprocal);
vResult = vmulq_f32(vResult, Reciprocal);
#endif
vResult = vmlaq_f32(Offset, vResult, Scale);
VL = vget_low_f32(vResult);
vst1_f32(reinterpret_cast<float*>(pOutputVector), VL);
vst1q_lane_f32(reinterpret_cast<float*>(pOutputVector) + 2, vResult, 2);
pOutputVector += OutputStride;
}
}
return pOutputStream;
#elif defined(_XM_SSE_INTRINSICS_)
const float HalfViewportWidth = ViewportWidth * 0.5f;
const float HalfViewportHeight = ViewportHeight * 0.5f;
XMVECTOR Scale = XMVectorSet(HalfViewportWidth, -HalfViewportHeight, ViewportMaxZ - ViewportMinZ, 1.0f);
XMVECTOR Offset = XMVectorSet(ViewportX + HalfViewportWidth, ViewportY + HalfViewportHeight, ViewportMinZ, 0.0f);
XMMATRIX Transform = XMMatrixMultiply(World, View);
Transform = XMMatrixMultiply(Transform, Projection);
auto pInputVector = reinterpret_cast<const uint8_t*>(pInputStream);
auto pOutputVector = reinterpret_cast<uint8_t*>(pOutputStream);
size_t i = 0;
size_t four = VectorCount >> 2;
if (four > 0)
{
if (InputStride == sizeof(XMFLOAT3))
{
if (OutputStride == sizeof(XMFLOAT3))
{
if (!(reinterpret_cast<uintptr_t>(pOutputStream) & 0xF))
{
// Packed input, aligned & packed output
for (size_t j = 0; j < four; ++j)
{
__m128 V1 = _mm_loadu_ps(reinterpret_cast<const float*>(pInputVector));
__m128 L2 = _mm_loadu_ps(reinterpret_cast<const float*>(pInputVector + 16));
__m128 L3 = _mm_loadu_ps(reinterpret_cast<const float*>(pInputVector + 32));
pInputVector += sizeof(XMFLOAT3) * 4;
// Unpack the 4 vectors (.w components are junk)
XM3UNPACK3INTO4(V1, L2, L3);
// Result 1
XMVECTOR Z = XM_PERMUTE_PS(V1, _MM_SHUFFLE(2, 2, 2, 2));
XMVECTOR Y = XM_PERMUTE_PS(V1, _MM_SHUFFLE(1, 1, 1, 1));
XMVECTOR X = XM_PERMUTE_PS(V1, _MM_SHUFFLE(0, 0, 0, 0));
XMVECTOR vTemp = XM_FMADD_PS(Z, Transform.r[2], Transform.r[3]);
XMVECTOR vTemp2 = _mm_mul_ps(Y, Transform.r[1]);
XMVECTOR vTemp3 = _mm_mul_ps(X, Transform.r[0]);
vTemp = _mm_add_ps(vTemp, vTemp2);
vTemp = _mm_add_ps(vTemp, vTemp3);
XMVECTOR W = XM_PERMUTE_PS(vTemp, _MM_SHUFFLE(3, 3, 3, 3));
vTemp = _mm_div_ps(vTemp, W);
V1 = XM_FMADD_PS(vTemp, Scale, Offset);
// Result 2
Z = XM_PERMUTE_PS(V2, _MM_SHUFFLE(2, 2, 2, 2));
Y = XM_PERMUTE_PS(V2, _MM_SHUFFLE(1, 1, 1, 1));
X = XM_PERMUTE_PS(V2, _MM_SHUFFLE(0, 0, 0, 0));
vTemp = XM_FMADD_PS(Z, Transform.r[2], Transform.r[3]);
vTemp2 = _mm_mul_ps(Y, Transform.r[1]);
vTemp3 = _mm_mul_ps(X, Transform.r[0]);
vTemp = _mm_add_ps(vTemp, vTemp2);
vTemp = _mm_add_ps(vTemp, vTemp3);
W = XM_PERMUTE_PS(vTemp, _MM_SHUFFLE(3, 3, 3, 3));
vTemp = _mm_div_ps(vTemp, W);
V2 = XM_FMADD_PS(vTemp, Scale, Offset);
// Result 3
Z = XM_PERMUTE_PS(V3, _MM_SHUFFLE(2, 2, 2, 2));
Y = XM_PERMUTE_PS(V3, _MM_SHUFFLE(1, 1, 1, 1));
X = XM_PERMUTE_PS(V3, _MM_SHUFFLE(0, 0, 0, 0));
vTemp = XM_FMADD_PS(Z, Transform.r[2], Transform.r[3]);
vTemp2 = _mm_mul_ps(Y, Transform.r[1]);
vTemp3 = _mm_mul_ps(X, Transform.r[0]);
vTemp = _mm_add_ps(vTemp, vTemp2);
vTemp = _mm_add_ps(vTemp, vTemp3);
W = XM_PERMUTE_PS(vTemp, _MM_SHUFFLE(3, 3, 3, 3));
vTemp = _mm_div_ps(vTemp, W);
V3 = XM_FMADD_PS(vTemp, Scale, Offset);
// Result 4
Z = XM_PERMUTE_PS(V4, _MM_SHUFFLE(2, 2, 2, 2));
Y = XM_PERMUTE_PS(V4, _MM_SHUFFLE(1, 1, 1, 1));
X = XM_PERMUTE_PS(V4, _MM_SHUFFLE(0, 0, 0, 0));
vTemp = XM_FMADD_PS(Z, Transform.r[2], Transform.r[3]);
vTemp2 = _mm_mul_ps(Y, Transform.r[1]);
vTemp3 = _mm_mul_ps(X, Transform.r[0]);
vTemp = _mm_add_ps(vTemp, vTemp2);
vTemp = _mm_add_ps(vTemp, vTemp3);
W = XM_PERMUTE_PS(vTemp, _MM_SHUFFLE(3, 3, 3, 3));
vTemp = _mm_div_ps(vTemp, W);
V4 = XM_FMADD_PS(vTemp, Scale, Offset);
// Pack and store the vectors
XM3PACK4INTO3(vTemp);
XM_STREAM_PS(reinterpret_cast<float*>(pOutputVector), V1);
XM_STREAM_PS(reinterpret_cast<float*>(pOutputVector + 16), vTemp);
XM_STREAM_PS(reinterpret_cast<float*>(pOutputVector + 32), V3);
pOutputVector += sizeof(XMFLOAT3) * 4;
i += 4;
}
}
else
{
// Packed input, unaligned & packed output
for (size_t j = 0; j < four; ++j)
{
__m128 V1 = _mm_loadu_ps(reinterpret_cast<const float*>(pInputVector));
__m128 L2 = _mm_loadu_ps(reinterpret_cast<const float*>(pInputVector + 16));
__m128 L3 = _mm_loadu_ps(reinterpret_cast<const float*>(pInputVector + 32));
pInputVector += sizeof(XMFLOAT3) * 4;
// Unpack the 4 vectors (.w components are junk)
XM3UNPACK3INTO4(V1, L2, L3);
// Result 1
XMVECTOR Z = XM_PERMUTE_PS(V1, _MM_SHUFFLE(2, 2, 2, 2));
XMVECTOR Y = XM_PERMUTE_PS(V1, _MM_SHUFFLE(1, 1, 1, 1));
XMVECTOR X = XM_PERMUTE_PS(V1, _MM_SHUFFLE(0, 0, 0, 0));
XMVECTOR vTemp = XM_FMADD_PS(Z, Transform.r[2], Transform.r[3]);
XMVECTOR vTemp2 = _mm_mul_ps(Y, Transform.r[1]);
XMVECTOR vTemp3 = _mm_mul_ps(X, Transform.r[0]);
vTemp = _mm_add_ps(vTemp, vTemp2);
vTemp = _mm_add_ps(vTemp, vTemp3);
XMVECTOR W = XM_PERMUTE_PS(vTemp, _MM_SHUFFLE(3, 3, 3, 3));
vTemp = _mm_div_ps(vTemp, W);
V1 = XM_FMADD_PS(vTemp, Scale, Offset);
// Result 2
Z = XM_PERMUTE_PS(V2, _MM_SHUFFLE(2, 2, 2, 2));
Y = XM_PERMUTE_PS(V2, _MM_SHUFFLE(1, 1, 1, 1));
X = XM_PERMUTE_PS(V2, _MM_SHUFFLE(0, 0, 0, 0));
vTemp = XM_FMADD_PS(Z, Transform.r[2], Transform.r[3]);
vTemp2 = _mm_mul_ps(Y, Transform.r[1]);
vTemp3 = _mm_mul_ps(X, Transform.r[0]);
vTemp = _mm_add_ps(vTemp, vTemp2);
vTemp = _mm_add_ps(vTemp, vTemp3);
W = XM_PERMUTE_PS(vTemp, _MM_SHUFFLE(3, 3, 3, 3));
vTemp = _mm_div_ps(vTemp, W);
V2 = XM_FMADD_PS(vTemp, Scale, Offset);
// Result 3
Z = XM_PERMUTE_PS(V3, _MM_SHUFFLE(2, 2, 2, 2));
Y = XM_PERMUTE_PS(V3, _MM_SHUFFLE(1, 1, 1, 1));
X = XM_PERMUTE_PS(V3, _MM_SHUFFLE(0, 0, 0, 0));
vTemp = XM_FMADD_PS(Z, Transform.r[2], Transform.r[3]);
vTemp2 = _mm_mul_ps(Y, Transform.r[1]);
vTemp3 = _mm_mul_ps(X, Transform.r[0]);
vTemp = _mm_add_ps(vTemp, vTemp2);
vTemp = _mm_add_ps(vTemp, vTemp3);
W = XM_PERMUTE_PS(vTemp, _MM_SHUFFLE(3, 3, 3, 3));
vTemp = _mm_div_ps(vTemp, W);
V3 = XM_FMADD_PS(vTemp, Scale, Offset);
// Result 4
Z = XM_PERMUTE_PS(V4, _MM_SHUFFLE(2, 2, 2, 2));
Y = XM_PERMUTE_PS(V4, _MM_SHUFFLE(1, 1, 1, 1));
X = XM_PERMUTE_PS(V4, _MM_SHUFFLE(0, 0, 0, 0));
vTemp = XM_FMADD_PS(Z, Transform.r[2], Transform.r[3]);
vTemp2 = _mm_mul_ps(Y, Transform.r[1]);
vTemp3 = _mm_mul_ps(X, Transform.r[0]);
vTemp = _mm_add_ps(vTemp, vTemp2);
vTemp = _mm_add_ps(vTemp, vTemp3);
W = XM_PERMUTE_PS(vTemp, _MM_SHUFFLE(3, 3, 3, 3));
vTemp = _mm_div_ps(vTemp, W);
V4 = XM_FMADD_PS(vTemp, Scale, Offset);
// Pack and store the vectors
XM3PACK4INTO3(vTemp);
_mm_storeu_ps(reinterpret_cast<float*>(pOutputVector), V1);
_mm_storeu_ps(reinterpret_cast<float*>(pOutputVector + 16), vTemp);
_mm_storeu_ps(reinterpret_cast<float*>(pOutputVector + 32), V3);
pOutputVector += sizeof(XMFLOAT3) * 4;
i += 4;
}
}
}
else
{
// Packed input, unpacked output
for (size_t j = 0; j < four; ++j)
{
__m128 V1 = _mm_loadu_ps(reinterpret_cast<const float*>(pInputVector));
__m128 L2 = _mm_loadu_ps(reinterpret_cast<const float*>(pInputVector + 16));
__m128 L3 = _mm_loadu_ps(reinterpret_cast<const float*>(pInputVector + 32));
pInputVector += sizeof(XMFLOAT3) * 4;
// Unpack the 4 vectors (.w components are junk)
XM3UNPACK3INTO4(V1, L2, L3);
// Result 1
XMVECTOR Z = XM_PERMUTE_PS(V1, _MM_SHUFFLE(2, 2, 2, 2));
XMVECTOR Y = XM_PERMUTE_PS(V1, _MM_SHUFFLE(1, 1, 1, 1));
XMVECTOR X = XM_PERMUTE_PS(V1, _MM_SHUFFLE(0, 0, 0, 0));
XMVECTOR vTemp = XM_FMADD_PS(Z, Transform.r[2], Transform.r[3]);
XMVECTOR vTemp2 = _mm_mul_ps(Y, Transform.r[1]);
XMVECTOR vTemp3 = _mm_mul_ps(X, Transform.r[0]);
vTemp = _mm_add_ps(vTemp, vTemp2);
vTemp = _mm_add_ps(vTemp, vTemp3);
XMVECTOR W = XM_PERMUTE_PS(vTemp, _MM_SHUFFLE(3, 3, 3, 3));
vTemp = _mm_div_ps(vTemp, W);
vTemp = XM_FMADD_PS(vTemp, Scale, Offset);
XMStoreFloat3(reinterpret_cast<XMFLOAT3*>(pOutputVector), vTemp);
pOutputVector += OutputStride;
// Result 2
Z = XM_PERMUTE_PS(V2, _MM_SHUFFLE(2, 2, 2, 2));
Y = XM_PERMUTE_PS(V2, _MM_SHUFFLE(1, 1, 1, 1));
X = XM_PERMUTE_PS(V2, _MM_SHUFFLE(0, 0, 0, 0));
vTemp = XM_FMADD_PS(Z, Transform.r[2], Transform.r[3]);
vTemp2 = _mm_mul_ps(Y, Transform.r[1]);
vTemp3 = _mm_mul_ps(X, Transform.r[0]);
vTemp = _mm_add_ps(vTemp, vTemp2);
vTemp = _mm_add_ps(vTemp, vTemp3);
W = XM_PERMUTE_PS(vTemp, _MM_SHUFFLE(3, 3, 3, 3));
vTemp = _mm_div_ps(vTemp, W);
vTemp = XM_FMADD_PS(vTemp, Scale, Offset);
XMStoreFloat3(reinterpret_cast<XMFLOAT3*>(pOutputVector), vTemp);
pOutputVector += OutputStride;
// Result 3
Z = XM_PERMUTE_PS(V3, _MM_SHUFFLE(2, 2, 2, 2));
Y = XM_PERMUTE_PS(V3, _MM_SHUFFLE(1, 1, 1, 1));
X = XM_PERMUTE_PS(V3, _MM_SHUFFLE(0, 0, 0, 0));
vTemp = XM_FMADD_PS(Z, Transform.r[2], Transform.r[3]);
vTemp2 = _mm_mul_ps(Y, Transform.r[1]);
vTemp3 = _mm_mul_ps(X, Transform.r[0]);
vTemp = _mm_add_ps(vTemp, vTemp2);
vTemp = _mm_add_ps(vTemp, vTemp3);
W = XM_PERMUTE_PS(vTemp, _MM_SHUFFLE(3, 3, 3, 3));
vTemp = _mm_div_ps(vTemp, W);
vTemp = XM_FMADD_PS(vTemp, Scale, Offset);
XMStoreFloat3(reinterpret_cast<XMFLOAT3*>(pOutputVector), vTemp);
pOutputVector += OutputStride;
// Result 4
Z = XM_PERMUTE_PS(V4, _MM_SHUFFLE(2, 2, 2, 2));
Y = XM_PERMUTE_PS(V4, _MM_SHUFFLE(1, 1, 1, 1));
X = XM_PERMUTE_PS(V4, _MM_SHUFFLE(0, 0, 0, 0));
vTemp = XM_FMADD_PS(Z, Transform.r[2], Transform.r[3]);
vTemp2 = _mm_mul_ps(Y, Transform.r[1]);
vTemp3 = _mm_mul_ps(X, Transform.r[0]);
vTemp = _mm_add_ps(vTemp, vTemp2);
vTemp = _mm_add_ps(vTemp, vTemp3);
W = XM_PERMUTE_PS(vTemp, _MM_SHUFFLE(3, 3, 3, 3));
vTemp = _mm_div_ps(vTemp, W);
vTemp = XM_FMADD_PS(vTemp, Scale, Offset);
XMStoreFloat3(reinterpret_cast<XMFLOAT3*>(pOutputVector), vTemp);
pOutputVector += OutputStride;
i += 4;
}
}
}
}
for (; i < VectorCount; i++)
{
XMVECTOR V = XMLoadFloat3(reinterpret_cast<const XMFLOAT3*>(pInputVector));
pInputVector += InputStride;
XMVECTOR Z = XM_PERMUTE_PS(V, _MM_SHUFFLE(2, 2, 2, 2));
XMVECTOR Y = XM_PERMUTE_PS(V, _MM_SHUFFLE(1, 1, 1, 1));
XMVECTOR X = XM_PERMUTE_PS(V, _MM_SHUFFLE(0, 0, 0, 0));
XMVECTOR vTemp = XM_FMADD_PS(Z, Transform.r[2], Transform.r[3]);
XMVECTOR vTemp2 = _mm_mul_ps(Y, Transform.r[1]);
XMVECTOR vTemp3 = _mm_mul_ps(X, Transform.r[0]);
vTemp = _mm_add_ps(vTemp, vTemp2);
vTemp = _mm_add_ps(vTemp, vTemp3);
XMVECTOR W = XM_PERMUTE_PS(vTemp, _MM_SHUFFLE(3, 3, 3, 3));
vTemp = _mm_div_ps(vTemp, W);
vTemp = XM_FMADD_PS(vTemp, Scale, Offset);
XMStoreFloat3(reinterpret_cast<XMFLOAT3*>(pOutputVector), vTemp);
pOutputVector += OutputStride;
}
XM_SFENCE();
return pOutputStream;
#endif
}
#ifdef _PREFAST_
#pragma prefast(pop)
#endif
//------------------------------------------------------------------------------
inline XMVECTOR XM_CALLCONV XMVector3Unproject
(
FXMVECTOR V,
float ViewportX,
float ViewportY,
float ViewportWidth,
float ViewportHeight,
float ViewportMinZ,
float ViewportMaxZ,
FXMMATRIX Projection,
CXMMATRIX View,
CXMMATRIX World
) noexcept
{
static const XMVECTORF32 D = { { { -1.0f, 1.0f, 0.0f, 0.0f } } };
XMVECTOR Scale = XMVectorSet(ViewportWidth * 0.5f, -ViewportHeight * 0.5f, ViewportMaxZ - ViewportMinZ, 1.0f);
Scale = XMVectorReciprocal(Scale);
XMVECTOR Offset = XMVectorSet(-ViewportX, -ViewportY, -ViewportMinZ, 0.0f);
Offset = XMVectorMultiplyAdd(Scale, Offset, D.v);
XMMATRIX Transform = XMMatrixMultiply(World, View);
Transform = XMMatrixMultiply(Transform, Projection);
Transform = XMMatrixInverse(nullptr, Transform);
XMVECTOR Result = XMVectorMultiplyAdd(V, Scale, Offset);
return XMVector3TransformCoord(Result, Transform);
}
//------------------------------------------------------------------------------
#ifdef _PREFAST_
#pragma prefast(push)
#pragma prefast(disable : 26015 26019, "PREfast noise: Esp:1307" )
#endif
_Use_decl_annotations_
inline XMFLOAT3* XM_CALLCONV XMVector3UnprojectStream
(
XMFLOAT3* pOutputStream,
size_t OutputStride,
const XMFLOAT3* pInputStream,
size_t InputStride,
size_t VectorCount,
float ViewportX,
float ViewportY,
float ViewportWidth,
float ViewportHeight,
float ViewportMinZ,
float ViewportMaxZ,
FXMMATRIX Projection,
CXMMATRIX View,
CXMMATRIX World
) noexcept
{
assert(pOutputStream != nullptr);
assert(pInputStream != nullptr);
assert(InputStride >= sizeof(XMFLOAT3));
_Analysis_assume_(InputStride >= sizeof(XMFLOAT3));
assert(OutputStride >= sizeof(XMFLOAT3));
_Analysis_assume_(OutputStride >= sizeof(XMFLOAT3));
#if defined(_XM_NO_INTRINSICS_)
static const XMVECTORF32 D = { { { -1.0f, 1.0f, 0.0f, 0.0f } } };
XMVECTOR Scale = XMVectorSet(ViewportWidth * 0.5f, -ViewportHeight * 0.5f, ViewportMaxZ - ViewportMinZ, 1.0f);
Scale = XMVectorReciprocal(Scale);
XMVECTOR Offset = XMVectorSet(-ViewportX, -ViewportY, -ViewportMinZ, 0.0f);
Offset = XMVectorMultiplyAdd(Scale, Offset, D.v);
XMMATRIX Transform = XMMatrixMultiply(World, View);
Transform = XMMatrixMultiply(Transform, Projection);
Transform = XMMatrixInverse(nullptr, Transform);
auto pInputVector = reinterpret_cast<const uint8_t*>(pInputStream);
auto pOutputVector = reinterpret_cast<uint8_t*>(pOutputStream);
for (size_t i = 0; i < VectorCount; i++)
{
XMVECTOR V = XMLoadFloat3(reinterpret_cast<const XMFLOAT3*>(pInputVector));
XMVECTOR Result = XMVectorMultiplyAdd(V, Scale, Offset);
Result = XMVector3TransformCoord(Result, Transform);
XMStoreFloat3(reinterpret_cast<XMFLOAT3*>(pOutputVector), Result);
pInputVector += InputStride;
pOutputVector += OutputStride;
}
return pOutputStream;
#elif defined(_XM_ARM_NEON_INTRINSICS_)
XMMATRIX Transform = XMMatrixMultiply(World, View);
Transform = XMMatrixMultiply(Transform, Projection);
Transform = XMMatrixInverse(nullptr, Transform);
auto pInputVector = reinterpret_cast<const uint8_t*>(pInputStream);
auto pOutputVector = reinterpret_cast<uint8_t*>(pOutputStream);
float sx = 1.f / (ViewportWidth * 0.5f);
float sy = 1.f / (-ViewportHeight * 0.5f);
float sz = 1.f / (ViewportMaxZ - ViewportMinZ);
float ox = (-ViewportX * sx) - 1.f;
float oy = (-ViewportY * sy) + 1.f;
float oz = (-ViewportMinZ * sz);
size_t i = 0;
size_t four = VectorCount >> 2;
if (four > 0)
{
if ((InputStride == sizeof(XMFLOAT3)) && (OutputStride == sizeof(XMFLOAT3)))
{
for (size_t j = 0; j < four; ++j)
{
float32x4x3_t V = vld3q_f32(reinterpret_cast<const float*>(pInputVector));
pInputVector += sizeof(XMFLOAT3) * 4;
XMVECTOR ScaleX = vdupq_n_f32(sx);
XMVECTOR OffsetX = vdupq_n_f32(ox);
XMVECTOR VX = vmlaq_f32(OffsetX, ScaleX, V.val[0]);
float32x2_t r3 = vget_low_f32(Transform.r[3]);
float32x2_t r = vget_low_f32(Transform.r[0]);
XMVECTOR vResult0 = vmlaq_lane_f32(vdupq_lane_f32(r3, 0), VX, r, 0); // Ax+M
XMVECTOR vResult1 = vmlaq_lane_f32(vdupq_lane_f32(r3, 1), VX, r, 1); // Bx+N
XM_PREFETCH(pInputVector);
r3 = vget_high_f32(Transform.r[3]);
r = vget_high_f32(Transform.r[0]);
XMVECTOR vResult2 = vmlaq_lane_f32(vdupq_lane_f32(r3, 0), VX, r, 0); // Cx+O
XMVECTOR W = vmlaq_lane_f32(vdupq_lane_f32(r3, 1), VX, r, 1); // Dx+P
XM_PREFETCH(pInputVector + XM_CACHE_LINE_SIZE);
XMVECTOR ScaleY = vdupq_n_f32(sy);
XMVECTOR OffsetY = vdupq_n_f32(oy);
XMVECTOR VY = vmlaq_f32(OffsetY, ScaleY, V.val[1]);
r = vget_low_f32(Transform.r[1]);
vResult0 = vmlaq_lane_f32(vResult0, VY, r, 0); // Ax+Ey+M
vResult1 = vmlaq_lane_f32(vResult1, VY, r, 1); // Bx+Fy+N
XM_PREFETCH(pInputVector + (XM_CACHE_LINE_SIZE * 2));
r = vget_high_f32(Transform.r[1]);
vResult2 = vmlaq_lane_f32(vResult2, VY, r, 0); // Cx+Gy+O
W = vmlaq_lane_f32(W, VY, r, 1); // Dx+Hy+P
XM_PREFETCH(pInputVector + (XM_CACHE_LINE_SIZE * 3));
XMVECTOR ScaleZ = vdupq_n_f32(sz);
XMVECTOR OffsetZ = vdupq_n_f32(oz);
XMVECTOR VZ = vmlaq_f32(OffsetZ, ScaleZ, V.val[2]);
r = vget_low_f32(Transform.r[2]);
vResult0 = vmlaq_lane_f32(vResult0, VZ, r, 0); // Ax+Ey+Iz+M
vResult1 = vmlaq_lane_f32(vResult1, VZ, r, 1); // Bx+Fy+Jz+N
XM_PREFETCH(pInputVector + (XM_CACHE_LINE_SIZE * 4));
r = vget_high_f32(Transform.r[2]);
vResult2 = vmlaq_lane_f32(vResult2, VZ, r, 0); // Cx+Gy+Kz+O
W = vmlaq_lane_f32(W, VZ, r, 1); // Dx+Hy+Lz+P
XM_PREFETCH(pInputVector + (XM_CACHE_LINE_SIZE * 5));
#if defined(_M_ARM64) || defined(_M_HYBRID_X86_ARM64) || __aarch64__
V.val[0] = vdivq_f32(vResult0, W);
V.val[1] = vdivq_f32(vResult1, W);
V.val[2] = vdivq_f32(vResult2, W);
#else
// 2 iterations of Newton-Raphson refinement of reciprocal
float32x4_t Reciprocal = vrecpeq_f32(W);
float32x4_t S = vrecpsq_f32(Reciprocal, W);
Reciprocal = vmulq_f32(S, Reciprocal);
S = vrecpsq_f32(Reciprocal, W);
Reciprocal = vmulq_f32(S, Reciprocal);
V.val[0] = vmulq_f32(vResult0, Reciprocal);
V.val[1] = vmulq_f32(vResult1, Reciprocal);
V.val[2] = vmulq_f32(vResult2, Reciprocal);
#endif
vst3q_f32(reinterpret_cast<float*>(pOutputVector), V);
pOutputVector += sizeof(XMFLOAT3) * 4;
i += 4;
}
}
}
if (i < VectorCount)
{
float32x2_t ScaleL = vcreate_f32(
static_cast<uint64_t>(*reinterpret_cast<const uint32_t*>(&sx))
| (static_cast<uint64_t>(*reinterpret_cast<const uint32_t*>(&sy)) << 32));
float32x2_t ScaleH = vcreate_f32(static_cast<uint64_t>(*reinterpret_cast<const uint32_t*>(&sz)));
float32x2_t OffsetL = vcreate_f32(
static_cast<uint64_t>(*reinterpret_cast<const uint32_t*>(&ox))
| (static_cast<uint64_t>(*reinterpret_cast<const uint32_t*>(&oy)) << 32));
float32x2_t OffsetH = vcreate_f32(static_cast<uint64_t>(*reinterpret_cast<const uint32_t*>(&oz)));
for (; i < VectorCount; i++)
{
float32x2_t VL = vld1_f32(reinterpret_cast<const float*>(pInputVector));
float32x2_t zero = vdup_n_f32(0);
float32x2_t VH = vld1_lane_f32(reinterpret_cast<const float*>(pInputVector) + 2, zero, 0);
pInputVector += InputStride;
VL = vmla_f32(OffsetL, VL, ScaleL);
VH = vmla_f32(OffsetH, VH, ScaleH);
XMVECTOR vResult = vmlaq_lane_f32(Transform.r[3], Transform.r[0], VL, 0); // X
vResult = vmlaq_lane_f32(vResult, Transform.r[1], VL, 1); // Y
vResult = vmlaq_lane_f32(vResult, Transform.r[2], VH, 0); // Z
VH = vget_high_f32(vResult);
XMVECTOR W = vdupq_lane_f32(VH, 1);
#if defined(_M_ARM64) || defined(_M_HYBRID_X86_ARM64) || __aarch64__
vResult = vdivq_f32(vResult, W);
#else
// 2 iterations of Newton-Raphson refinement of reciprocal for W
float32x4_t Reciprocal = vrecpeq_f32(W);
float32x4_t S = vrecpsq_f32(Reciprocal, W);
Reciprocal = vmulq_f32(S, Reciprocal);
S = vrecpsq_f32(Reciprocal, W);
Reciprocal = vmulq_f32(S, Reciprocal);
vResult = vmulq_f32(vResult, Reciprocal);
#endif
VL = vget_low_f32(vResult);
vst1_f32(reinterpret_cast<float*>(pOutputVector), VL);
vst1q_lane_f32(reinterpret_cast<float*>(pOutputVector) + 2, vResult, 2);
pOutputVector += OutputStride;
}
}
return pOutputStream;
#elif defined(_XM_SSE_INTRINSICS_)
static const XMVECTORF32 D = { { { -1.0f, 1.0f, 0.0f, 0.0f } } };
XMVECTOR Scale = XMVectorSet(ViewportWidth * 0.5f, -ViewportHeight * 0.5f, ViewportMaxZ - ViewportMinZ, 1.0f);
Scale = XMVectorReciprocal(Scale);
XMVECTOR Offset = XMVectorSet(-ViewportX, -ViewportY, -ViewportMinZ, 0.0f);
Offset = _mm_mul_ps(Scale, Offset);
Offset = _mm_add_ps(Offset, D);
XMMATRIX Transform = XMMatrixMultiply(World, View);
Transform = XMMatrixMultiply(Transform, Projection);
Transform = XMMatrixInverse(nullptr, Transform);
auto pInputVector = reinterpret_cast<const uint8_t*>(pInputStream);
auto pOutputVector = reinterpret_cast<uint8_t*>(pOutputStream);
size_t i = 0;
size_t four = VectorCount >> 2;
if (four > 0)
{
if (InputStride == sizeof(XMFLOAT3))
{
if (OutputStride == sizeof(XMFLOAT3))
{
if (!(reinterpret_cast<uintptr_t>(pOutputStream) & 0xF))
{
// Packed input, aligned & packed output
for (size_t j = 0; j < four; ++j)
{
__m128 V1 = _mm_loadu_ps(reinterpret_cast<const float*>(pInputVector));
__m128 L2 = _mm_loadu_ps(reinterpret_cast<const float*>(pInputVector + 16));
__m128 L3 = _mm_loadu_ps(reinterpret_cast<const float*>(pInputVector + 32));
pInputVector += sizeof(XMFLOAT3) * 4;
// Unpack the 4 vectors (.w components are junk)
XM3UNPACK3INTO4(V1, L2, L3);
// Result 1
V1 = XM_FMADD_PS(V1, Scale, Offset);
XMVECTOR Z = XM_PERMUTE_PS(V1, _MM_SHUFFLE(2, 2, 2, 2));
XMVECTOR Y = XM_PERMUTE_PS(V1, _MM_SHUFFLE(1, 1, 1, 1));
XMVECTOR X = XM_PERMUTE_PS(V1, _MM_SHUFFLE(0, 0, 0, 0));
XMVECTOR vTemp = XM_FMADD_PS(Z, Transform.r[2], Transform.r[3]);
XMVECTOR vTemp2 = _mm_mul_ps(Y, Transform.r[1]);
XMVECTOR vTemp3 = _mm_mul_ps(X, Transform.r[0]);
vTemp = _mm_add_ps(vTemp, vTemp2);
vTemp = _mm_add_ps(vTemp, vTemp3);
XMVECTOR W = XM_PERMUTE_PS(vTemp, _MM_SHUFFLE(3, 3, 3, 3));
V1 = _mm_div_ps(vTemp, W);
// Result 2
V2 = XM_FMADD_PS(V2, Scale, Offset);
Z = XM_PERMUTE_PS(V2, _MM_SHUFFLE(2, 2, 2, 2));
Y = XM_PERMUTE_PS(V2, _MM_SHUFFLE(1, 1, 1, 1));
X = XM_PERMUTE_PS(V2, _MM_SHUFFLE(0, 0, 0, 0));
vTemp = XM_FMADD_PS(Z, Transform.r[2], Transform.r[3]);
vTemp2 = _mm_mul_ps(Y, Transform.r[1]);
vTemp3 = _mm_mul_ps(X, Transform.r[0]);
vTemp = _mm_add_ps(vTemp, vTemp2);
vTemp = _mm_add_ps(vTemp, vTemp3);
W = XM_PERMUTE_PS(vTemp, _MM_SHUFFLE(3, 3, 3, 3));
V2 = _mm_div_ps(vTemp, W);
// Result 3
V3 = XM_FMADD_PS(V3, Scale, Offset);
Z = XM_PERMUTE_PS(V3, _MM_SHUFFLE(2, 2, 2, 2));
Y = XM_PERMUTE_PS(V3, _MM_SHUFFLE(1, 1, 1, 1));
X = XM_PERMUTE_PS(V3, _MM_SHUFFLE(0, 0, 0, 0));
vTemp = XM_FMADD_PS(Z, Transform.r[2], Transform.r[3]);
vTemp2 = _mm_mul_ps(Y, Transform.r[1]);
vTemp3 = _mm_mul_ps(X, Transform.r[0]);
vTemp = _mm_add_ps(vTemp, vTemp2);
vTemp = _mm_add_ps(vTemp, vTemp3);
W = XM_PERMUTE_PS(vTemp, _MM_SHUFFLE(3, 3, 3, 3));
V3 = _mm_div_ps(vTemp, W);
// Result 4
V4 = XM_FMADD_PS(V4, Scale, Offset);
Z = XM_PERMUTE_PS(V4, _MM_SHUFFLE(2, 2, 2, 2));
Y = XM_PERMUTE_PS(V4, _MM_SHUFFLE(1, 1, 1, 1));
X = XM_PERMUTE_PS(V4, _MM_SHUFFLE(0, 0, 0, 0));
vTemp = XM_FMADD_PS(Z, Transform.r[2], Transform.r[3]);
vTemp2 = _mm_mul_ps(Y, Transform.r[1]);
vTemp3 = _mm_mul_ps(X, Transform.r[0]);
vTemp = _mm_add_ps(vTemp, vTemp2);
vTemp = _mm_add_ps(vTemp, vTemp3);
W = XM_PERMUTE_PS(vTemp, _MM_SHUFFLE(3, 3, 3, 3));
V4 = _mm_div_ps(vTemp, W);
// Pack and store the vectors
XM3PACK4INTO3(vTemp);
XM_STREAM_PS(reinterpret_cast<float*>(pOutputVector), V1);
XM_STREAM_PS(reinterpret_cast<float*>(pOutputVector + 16), vTemp);
XM_STREAM_PS(reinterpret_cast<float*>(pOutputVector + 32), V3);
pOutputVector += sizeof(XMFLOAT3) * 4;
i += 4;
}
}
else
{
// Packed input, unaligned & packed output
for (size_t j = 0; j < four; ++j)
{
__m128 V1 = _mm_loadu_ps(reinterpret_cast<const float*>(pInputVector));
__m128 L2 = _mm_loadu_ps(reinterpret_cast<const float*>(pInputVector + 16));
__m128 L3 = _mm_loadu_ps(reinterpret_cast<const float*>(pInputVector + 32));
pInputVector += sizeof(XMFLOAT3) * 4;
// Unpack the 4 vectors (.w components are junk)
XM3UNPACK3INTO4(V1, L2, L3);
// Result 1
V1 = XM_FMADD_PS(V1, Scale, Offset);
XMVECTOR Z = XM_PERMUTE_PS(V1, _MM_SHUFFLE(2, 2, 2, 2));
XMVECTOR Y = XM_PERMUTE_PS(V1, _MM_SHUFFLE(1, 1, 1, 1));
XMVECTOR X = XM_PERMUTE_PS(V1, _MM_SHUFFLE(0, 0, 0, 0));
XMVECTOR vTemp = XM_FMADD_PS(Z, Transform.r[2], Transform.r[3]);
XMVECTOR vTemp2 = _mm_mul_ps(Y, Transform.r[1]);
XMVECTOR vTemp3 = _mm_mul_ps(X, Transform.r[0]);
vTemp = _mm_add_ps(vTemp, vTemp2);
vTemp = _mm_add_ps(vTemp, vTemp3);
XMVECTOR W = XM_PERMUTE_PS(vTemp, _MM_SHUFFLE(3, 3, 3, 3));
V1 = _mm_div_ps(vTemp, W);
// Result 2
V2 = XM_FMADD_PS(V2, Scale, Offset);
Z = XM_PERMUTE_PS(V2, _MM_SHUFFLE(2, 2, 2, 2));
Y = XM_PERMUTE_PS(V2, _MM_SHUFFLE(1, 1, 1, 1));
X = XM_PERMUTE_PS(V2, _MM_SHUFFLE(0, 0, 0, 0));
vTemp = XM_FMADD_PS(Z, Transform.r[2], Transform.r[3]);
vTemp2 = _mm_mul_ps(Y, Transform.r[1]);
vTemp3 = _mm_mul_ps(X, Transform.r[0]);
vTemp = _mm_add_ps(vTemp, vTemp2);
vTemp = _mm_add_ps(vTemp, vTemp3);
W = XM_PERMUTE_PS(vTemp, _MM_SHUFFLE(3, 3, 3, 3));
V2 = _mm_div_ps(vTemp, W);
// Result 3
V3 = XM_FMADD_PS(V3, Scale, Offset);
Z = XM_PERMUTE_PS(V3, _MM_SHUFFLE(2, 2, 2, 2));
Y = XM_PERMUTE_PS(V3, _MM_SHUFFLE(1, 1, 1, 1));
X = XM_PERMUTE_PS(V3, _MM_SHUFFLE(0, 0, 0, 0));
vTemp = XM_FMADD_PS(Z, Transform.r[2], Transform.r[3]);
vTemp2 = _mm_mul_ps(Y, Transform.r[1]);
vTemp3 = _mm_mul_ps(X, Transform.r[0]);
vTemp = _mm_add_ps(vTemp, vTemp2);
vTemp = _mm_add_ps(vTemp, vTemp3);
W = XM_PERMUTE_PS(vTemp, _MM_SHUFFLE(3, 3, 3, 3));
V3 = _mm_div_ps(vTemp, W);
// Result 4
V4 = XM_FMADD_PS(V4, Scale, Offset);
Z = XM_PERMUTE_PS(V4, _MM_SHUFFLE(2, 2, 2, 2));
Y = XM_PERMUTE_PS(V4, _MM_SHUFFLE(1, 1, 1, 1));
X = XM_PERMUTE_PS(V4, _MM_SHUFFLE(0, 0, 0, 0));
vTemp = XM_FMADD_PS(Z, Transform.r[2], Transform.r[3]);
vTemp2 = _mm_mul_ps(Y, Transform.r[1]);
vTemp3 = _mm_mul_ps(X, Transform.r[0]);
vTemp = _mm_add_ps(vTemp, vTemp2);
vTemp = _mm_add_ps(vTemp, vTemp3);
W = XM_PERMUTE_PS(vTemp, _MM_SHUFFLE(3, 3, 3, 3));
V4 = _mm_div_ps(vTemp, W);
// Pack and store the vectors
XM3PACK4INTO3(vTemp);
_mm_storeu_ps(reinterpret_cast<float*>(pOutputVector), V1);
_mm_storeu_ps(reinterpret_cast<float*>(pOutputVector + 16), vTemp);
_mm_storeu_ps(reinterpret_cast<float*>(pOutputVector + 32), V3);
pOutputVector += sizeof(XMFLOAT3) * 4;
i += 4;
}
}
}
else
{
// Packed input, unpacked output
for (size_t j = 0; j < four; ++j)
{
__m128 V1 = _mm_loadu_ps(reinterpret_cast<const float*>(pInputVector));
__m128 L2 = _mm_loadu_ps(reinterpret_cast<const float*>(pInputVector + 16));
__m128 L3 = _mm_loadu_ps(reinterpret_cast<const float*>(pInputVector + 32));
pInputVector += sizeof(XMFLOAT3) * 4;
// Unpack the 4 vectors (.w components are junk)
XM3UNPACK3INTO4(V1, L2, L3);
// Result 1
V1 = XM_FMADD_PS(V1, Scale, Offset);
XMVECTOR Z = XM_PERMUTE_PS(V1, _MM_SHUFFLE(2, 2, 2, 2));
XMVECTOR Y = XM_PERMUTE_PS(V1, _MM_SHUFFLE(1, 1, 1, 1));
XMVECTOR X = XM_PERMUTE_PS(V1, _MM_SHUFFLE(0, 0, 0, 0));
XMVECTOR vTemp = XM_FMADD_PS(Z, Transform.r[2], Transform.r[3]);
XMVECTOR vTemp2 = _mm_mul_ps(Y, Transform.r[1]);
XMVECTOR vTemp3 = _mm_mul_ps(X, Transform.r[0]);
vTemp = _mm_add_ps(vTemp, vTemp2);
vTemp = _mm_add_ps(vTemp, vTemp3);
XMVECTOR W = XM_PERMUTE_PS(vTemp, _MM_SHUFFLE(3, 3, 3, 3));
vTemp = _mm_div_ps(vTemp, W);
XMStoreFloat3(reinterpret_cast<XMFLOAT3*>(pOutputVector), vTemp);
pOutputVector += OutputStride;
// Result 2
V2 = XM_FMADD_PS(V2, Scale, Offset);
Z = XM_PERMUTE_PS(V2, _MM_SHUFFLE(2, 2, 2, 2));
Y = XM_PERMUTE_PS(V2, _MM_SHUFFLE(1, 1, 1, 1));
X = XM_PERMUTE_PS(V2, _MM_SHUFFLE(0, 0, 0, 0));
vTemp = XM_FMADD_PS(Z, Transform.r[2], Transform.r[3]);
vTemp2 = _mm_mul_ps(Y, Transform.r[1]);
vTemp3 = _mm_mul_ps(X, Transform.r[0]);
vTemp = _mm_add_ps(vTemp, vTemp2);
vTemp = _mm_add_ps(vTemp, vTemp3);
W = XM_PERMUTE_PS(vTemp, _MM_SHUFFLE(3, 3, 3, 3));
vTemp = _mm_div_ps(vTemp, W);
XMStoreFloat3(reinterpret_cast<XMFLOAT3*>(pOutputVector), vTemp);
pOutputVector += OutputStride;
// Result 3
V3 = XM_FMADD_PS(V3, Scale, Offset);
Z = XM_PERMUTE_PS(V3, _MM_SHUFFLE(2, 2, 2, 2));
Y = XM_PERMUTE_PS(V3, _MM_SHUFFLE(1, 1, 1, 1));
X = XM_PERMUTE_PS(V3, _MM_SHUFFLE(0, 0, 0, 0));
vTemp = XM_FMADD_PS(Z, Transform.r[2], Transform.r[3]);
vTemp2 = _mm_mul_ps(Y, Transform.r[1]);
vTemp3 = _mm_mul_ps(X, Transform.r[0]);
vTemp = _mm_add_ps(vTemp, vTemp2);
vTemp = _mm_add_ps(vTemp, vTemp3);
W = XM_PERMUTE_PS(vTemp, _MM_SHUFFLE(3, 3, 3, 3));
vTemp = _mm_div_ps(vTemp, W);
XMStoreFloat3(reinterpret_cast<XMFLOAT3*>(pOutputVector), vTemp);
pOutputVector += OutputStride;
// Result 4
V4 = XM_FMADD_PS(V4, Scale, Offset);
Z = XM_PERMUTE_PS(V4, _MM_SHUFFLE(2, 2, 2, 2));
Y = XM_PERMUTE_PS(V4, _MM_SHUFFLE(1, 1, 1, 1));
X = XM_PERMUTE_PS(V4, _MM_SHUFFLE(0, 0, 0, 0));
vTemp = XM_FMADD_PS(Z, Transform.r[2], Transform.r[3]);
vTemp2 = _mm_mul_ps(Y, Transform.r[1]);
vTemp3 = _mm_mul_ps(X, Transform.r[0]);
vTemp = _mm_add_ps(vTemp, vTemp2);
vTemp = _mm_add_ps(vTemp, vTemp3);
W = XM_PERMUTE_PS(vTemp, _MM_SHUFFLE(3, 3, 3, 3));
vTemp = _mm_div_ps(vTemp, W);
XMStoreFloat3(reinterpret_cast<XMFLOAT3*>(pOutputVector), vTemp);
pOutputVector += OutputStride;
i += 4;
}
}
}
}
for (; i < VectorCount; i++)
{
XMVECTOR V = XMLoadFloat3(reinterpret_cast<const XMFLOAT3*>(pInputVector));
pInputVector += InputStride;
V = _mm_mul_ps(V, Scale);
V = _mm_add_ps(V, Offset);
XMVECTOR Z = XM_PERMUTE_PS(V, _MM_SHUFFLE(2, 2, 2, 2));
XMVECTOR Y = XM_PERMUTE_PS(V, _MM_SHUFFLE(1, 1, 1, 1));
XMVECTOR X = XM_PERMUTE_PS(V, _MM_SHUFFLE(0, 0, 0, 0));
XMVECTOR vTemp = XM_FMADD_PS(Z, Transform.r[2], Transform.r[3]);
XMVECTOR vTemp2 = _mm_mul_ps(Y, Transform.r[1]);
XMVECTOR vTemp3 = _mm_mul_ps(X, Transform.r[0]);
vTemp = _mm_add_ps(vTemp, vTemp2);
vTemp = _mm_add_ps(vTemp, vTemp3);
XMVECTOR W = XM_PERMUTE_PS(vTemp, _MM_SHUFFLE(3, 3, 3, 3));
vTemp = _mm_div_ps(vTemp, W);
XMStoreFloat3(reinterpret_cast<XMFLOAT3*>(pOutputVector), vTemp);
pOutputVector += OutputStride;
}
XM_SFENCE();
return pOutputStream;
#endif
}
#ifdef _PREFAST_
#pragma prefast(pop)
#endif
/****************************************************************************
*
* 4D Vector
*
****************************************************************************/
//------------------------------------------------------------------------------
// Comparison operations
//------------------------------------------------------------------------------
//------------------------------------------------------------------------------
inline bool XM_CALLCONV XMVector4Equal
(
FXMVECTOR V1,
FXMVECTOR V2
) noexcept
{
#if defined(_XM_NO_INTRINSICS_)
return (((V1.vector4_f32[0] == V2.vector4_f32[0]) && (V1.vector4_f32[1] == V2.vector4_f32[1]) && (V1.vector4_f32[2] == V2.vector4_f32[2]) && (V1.vector4_f32[3] == V2.vector4_f32[3])) != 0);
#elif defined(_XM_ARM_NEON_INTRINSICS_)
uint32x4_t vResult = vceqq_f32(V1, V2);
uint8x8x2_t vTemp = vzip_u8(vget_low_u8(vreinterpretq_u8_u32(vResult)), vget_high_u8(vreinterpretq_u8_u32(vResult)));
uint16x4x2_t vTemp2 = vzip_u16(vreinterpret_u16_u8(vTemp.val[0]), vreinterpret_u16_u8(vTemp.val[1]));
return (vget_lane_u32(vreinterpret_u32_u16(vTemp2.val[1]), 1) == 0xFFFFFFFFU);
#elif defined(_XM_SSE_INTRINSICS_)
XMVECTOR vTemp = _mm_cmpeq_ps(V1, V2);
return ((_mm_movemask_ps(vTemp) == 0x0f) != 0);
#else
return XMComparisonAllTrue(XMVector4EqualR(V1, V2));
#endif
}
//------------------------------------------------------------------------------
inline uint32_t XM_CALLCONV XMVector4EqualR
(
FXMVECTOR V1,
FXMVECTOR V2
) noexcept
{
#if defined(_XM_NO_INTRINSICS_)
uint32_t CR = 0;
if ((V1.vector4_f32[0] == V2.vector4_f32[0]) &&
(V1.vector4_f32[1] == V2.vector4_f32[1]) &&
(V1.vector4_f32[2] == V2.vector4_f32[2]) &&
(V1.vector4_f32[3] == V2.vector4_f32[3]))
{
CR = XM_CRMASK_CR6TRUE;
}
else if ((V1.vector4_f32[0] != V2.vector4_f32[0]) &&
(V1.vector4_f32[1] != V2.vector4_f32[1]) &&
(V1.vector4_f32[2] != V2.vector4_f32[2]) &&
(V1.vector4_f32[3] != V2.vector4_f32[3]))
{
CR = XM_CRMASK_CR6FALSE;
}
return CR;
#elif defined(_XM_ARM_NEON_INTRINSICS_)
uint32x4_t vResult = vceqq_f32(V1, V2);
uint8x8x2_t vTemp = vzip_u8(vget_low_u8(vreinterpretq_u8_u32(vResult)), vget_high_u8(vreinterpretq_u8_u32(vResult)));
uint16x4x2_t vTemp2 = vzip_u16(vreinterpret_u16_u8(vTemp.val[0]), vreinterpret_u16_u8(vTemp.val[1]));
uint32_t r = vget_lane_u32(vreinterpret_u32_u16(vTemp2.val[1]), 1);
uint32_t CR = 0;
if (r == 0xFFFFFFFFU)
{
CR = XM_CRMASK_CR6TRUE;
}
else if (!r)
{
CR = XM_CRMASK_CR6FALSE;
}
return CR;
#elif defined(_XM_SSE_INTRINSICS_)
XMVECTOR vTemp = _mm_cmpeq_ps(V1, V2);
int iTest = _mm_movemask_ps(vTemp);
uint32_t CR = 0;
if (iTest == 0xf) // All equal?
{
CR = XM_CRMASK_CR6TRUE;
}
else if (iTest == 0) // All not equal?
{
CR = XM_CRMASK_CR6FALSE;
}
return CR;
#endif
}
//------------------------------------------------------------------------------
inline bool XM_CALLCONV XMVector4EqualInt
(
FXMVECTOR V1,
FXMVECTOR V2
) noexcept
{
#if defined(_XM_NO_INTRINSICS_)
return (((V1.vector4_u32[0] == V2.vector4_u32[0]) && (V1.vector4_u32[1] == V2.vector4_u32[1]) && (V1.vector4_u32[2] == V2.vector4_u32[2]) && (V1.vector4_u32[3] == V2.vector4_u32[3])) != 0);
#elif defined(_XM_ARM_NEON_INTRINSICS_)
uint32x4_t vResult = vceqq_u32(vreinterpretq_u32_f32(V1), vreinterpretq_u32_f32(V2));
uint8x8x2_t vTemp = vzip_u8(vget_low_u8(vreinterpretq_u8_u32(vResult)), vget_high_u8(vreinterpretq_u8_u32(vResult)));
uint16x4x2_t vTemp2 = vzip_u16(vreinterpret_u16_u8(vTemp.val[0]), vreinterpret_u16_u8(vTemp.val[1]));
return (vget_lane_u32(vreinterpret_u32_u16(vTemp2.val[1]), 1) == 0xFFFFFFFFU);
#elif defined(_XM_SSE_INTRINSICS_)
__m128i vTemp = _mm_cmpeq_epi32(_mm_castps_si128(V1), _mm_castps_si128(V2));
return ((_mm_movemask_ps(_mm_castsi128_ps(vTemp)) == 0xf) != 0);
#else
return XMComparisonAllTrue(XMVector4EqualIntR(V1, V2));
#endif
}
//------------------------------------------------------------------------------
inline uint32_t XM_CALLCONV XMVector4EqualIntR
(
FXMVECTOR V1,
FXMVECTOR V2
) noexcept
{
#if defined(_XM_NO_INTRINSICS_)
uint32_t CR = 0;
if (V1.vector4_u32[0] == V2.vector4_u32[0] &&
V1.vector4_u32[1] == V2.vector4_u32[1] &&
V1.vector4_u32[2] == V2.vector4_u32[2] &&
V1.vector4_u32[3] == V2.vector4_u32[3])
{
CR = XM_CRMASK_CR6TRUE;
}
else if (V1.vector4_u32[0] != V2.vector4_u32[0] &&
V1.vector4_u32[1] != V2.vector4_u32[1] &&
V1.vector4_u32[2] != V2.vector4_u32[2] &&
V1.vector4_u32[3] != V2.vector4_u32[3])
{
CR = XM_CRMASK_CR6FALSE;
}
return CR;
#elif defined(_XM_ARM_NEON_INTRINSICS_)
uint32x4_t vResult = vceqq_u32(vreinterpretq_u32_f32(V1), vreinterpretq_u32_f32(V2));
uint8x8x2_t vTemp = vzip_u8(vget_low_u8(vreinterpretq_u8_u32(vResult)), vget_high_u8(vreinterpretq_u8_u32(vResult)));
uint16x4x2_t vTemp2 = vzip_u16(vreinterpret_u16_u8(vTemp.val[0]), vreinterpret_u16_u8(vTemp.val[1]));
uint32_t r = vget_lane_u32(vreinterpret_u32_u16(vTemp2.val[1]), 1);
uint32_t CR = 0;
if (r == 0xFFFFFFFFU)
{
CR = XM_CRMASK_CR6TRUE;
}
else if (!r)
{
CR = XM_CRMASK_CR6FALSE;
}
return CR;
#elif defined(_XM_SSE_INTRINSICS_)
__m128i vTemp = _mm_cmpeq_epi32(_mm_castps_si128(V1), _mm_castps_si128(V2));
int iTest = _mm_movemask_ps(_mm_castsi128_ps(vTemp));
uint32_t CR = 0;
if (iTest == 0xf) // All equal?
{
CR = XM_CRMASK_CR6TRUE;
}
else if (iTest == 0) // All not equal?
{
CR = XM_CRMASK_CR6FALSE;
}
return CR;
#endif
}
inline bool XM_CALLCONV XMVector4NearEqual
(
FXMVECTOR V1,
FXMVECTOR V2,
FXMVECTOR Epsilon
) noexcept
{
#if defined(_XM_NO_INTRINSICS_)
float dx, dy, dz, dw;
dx = fabsf(V1.vector4_f32[0] - V2.vector4_f32[0]);
dy = fabsf(V1.vector4_f32[1] - V2.vector4_f32[1]);
dz = fabsf(V1.vector4_f32[2] - V2.vector4_f32[2]);
dw = fabsf(V1.vector4_f32[3] - V2.vector4_f32[3]);
return (((dx <= Epsilon.vector4_f32[0]) &&
(dy <= Epsilon.vector4_f32[1]) &&
(dz <= Epsilon.vector4_f32[2]) &&
(dw <= Epsilon.vector4_f32[3])) != 0);
#elif defined(_XM_ARM_NEON_INTRINSICS_)
float32x4_t vDelta = vsubq_f32(V1, V2);
#ifdef _MSC_VER
uint32x4_t vResult = vacleq_f32(vDelta, Epsilon);
#else
uint32x4_t vResult = vcleq_f32(vabsq_f32(vDelta), Epsilon);
#endif
uint8x8x2_t vTemp = vzip_u8(vget_low_u8(vreinterpretq_u8_u32(vResult)), vget_high_u8(vreinterpretq_u8_u32(vResult)));
uint16x4x2_t vTemp2 = vzip_u16(vreinterpret_u16_u8(vTemp.val[0]), vreinterpret_u16_u8(vTemp.val[1]));
return (vget_lane_u32(vreinterpret_u32_u16(vTemp2.val[1]), 1) == 0xFFFFFFFFU);
#elif defined(_XM_SSE_INTRINSICS_)
// Get the difference
XMVECTOR vDelta = _mm_sub_ps(V1, V2);
// Get the absolute value of the difference
XMVECTOR vTemp = _mm_setzero_ps();
vTemp = _mm_sub_ps(vTemp, vDelta);
vTemp = _mm_max_ps(vTemp, vDelta);
vTemp = _mm_cmple_ps(vTemp, Epsilon);
return ((_mm_movemask_ps(vTemp) == 0xf) != 0);
#endif
}
//------------------------------------------------------------------------------
inline bool XM_CALLCONV XMVector4NotEqual
(
FXMVECTOR V1,
FXMVECTOR V2
) noexcept
{
#if defined(_XM_NO_INTRINSICS_)
return (((V1.vector4_f32[0] != V2.vector4_f32[0]) || (V1.vector4_f32[1] != V2.vector4_f32[1]) || (V1.vector4_f32[2] != V2.vector4_f32[2]) || (V1.vector4_f32[3] != V2.vector4_f32[3])) != 0);
#elif defined(_XM_ARM_NEON_INTRINSICS_)
uint32x4_t vResult = vceqq_f32(V1, V2);
uint8x8x2_t vTemp = vzip_u8(vget_low_u8(vreinterpretq_u8_u32(vResult)), vget_high_u8(vreinterpretq_u8_u32(vResult)));
uint16x4x2_t vTemp2 = vzip_u16(vreinterpret_u16_u8(vTemp.val[0]), vreinterpret_u16_u8(vTemp.val[1]));
return (vget_lane_u32(vreinterpret_u32_u16(vTemp2.val[1]), 1) != 0xFFFFFFFFU);
#elif defined(_XM_SSE_INTRINSICS_)
XMVECTOR vTemp = _mm_cmpneq_ps(V1, V2);
return ((_mm_movemask_ps(vTemp)) != 0);
#else
return XMComparisonAnyFalse(XMVector4EqualR(V1, V2));
#endif
}
//------------------------------------------------------------------------------
inline bool XM_CALLCONV XMVector4NotEqualInt
(
FXMVECTOR V1,
FXMVECTOR V2
) noexcept
{
#if defined(_XM_NO_INTRINSICS_)
return (((V1.vector4_u32[0] != V2.vector4_u32[0]) || (V1.vector4_u32[1] != V2.vector4_u32[1]) || (V1.vector4_u32[2] != V2.vector4_u32[2]) || (V1.vector4_u32[3] != V2.vector4_u32[3])) != 0);
#elif defined(_XM_ARM_NEON_INTRINSICS_)
uint32x4_t vResult = vceqq_u32(vreinterpretq_u32_f32(V1), vreinterpretq_u32_f32(V2));
uint8x8x2_t vTemp = vzip_u8(vget_low_u8(vreinterpretq_u8_u32(vResult)), vget_high_u8(vreinterpretq_u8_u32(vResult)));
uint16x4x2_t vTemp2 = vzip_u16(vreinterpret_u16_u8(vTemp.val[0]), vreinterpret_u16_u8(vTemp.val[1]));
return (vget_lane_u32(vreinterpret_u32_u16(vTemp2.val[1]), 1) != 0xFFFFFFFFU);
#elif defined(_XM_SSE_INTRINSICS_)
__m128i vTemp = _mm_cmpeq_epi32(_mm_castps_si128(V1), _mm_castps_si128(V2));
return ((_mm_movemask_ps(_mm_castsi128_ps(vTemp)) != 0xF) != 0);
#else
return XMComparisonAnyFalse(XMVector4EqualIntR(V1, V2));
#endif
}
//------------------------------------------------------------------------------
inline bool XM_CALLCONV XMVector4Greater
(
FXMVECTOR V1,
FXMVECTOR V2
) noexcept
{
#if defined(_XM_NO_INTRINSICS_)
return (((V1.vector4_f32[0] > V2.vector4_f32[0]) && (V1.vector4_f32[1] > V2.vector4_f32[1]) && (V1.vector4_f32[2] > V2.vector4_f32[2]) && (V1.vector4_f32[3] > V2.vector4_f32[3])) != 0);
#elif defined(_XM_ARM_NEON_INTRINSICS_)
uint32x4_t vResult = vcgtq_f32(V1, V2);
uint8x8x2_t vTemp = vzip_u8(vget_low_u8(vreinterpretq_u8_u32(vResult)), vget_high_u8(vreinterpretq_u8_u32(vResult)));
uint16x4x2_t vTemp2 = vzip_u16(vreinterpret_u16_u8(vTemp.val[0]), vreinterpret_u16_u8(vTemp.val[1]));
return (vget_lane_u32(vreinterpret_u32_u16(vTemp2.val[1]), 1) == 0xFFFFFFFFU);
#elif defined(_XM_SSE_INTRINSICS_)
XMVECTOR vTemp = _mm_cmpgt_ps(V1, V2);
return ((_mm_movemask_ps(vTemp) == 0x0f) != 0);
#else
return XMComparisonAllTrue(XMVector4GreaterR(V1, V2));
#endif
}
//------------------------------------------------------------------------------
inline uint32_t XM_CALLCONV XMVector4GreaterR
(
FXMVECTOR V1,
FXMVECTOR V2
) noexcept
{
#if defined(_XM_NO_INTRINSICS_)
uint32_t CR = 0;
if (V1.vector4_f32[0] > V2.vector4_f32[0] &&
V1.vector4_f32[1] > V2.vector4_f32[1] &&
V1.vector4_f32[2] > V2.vector4_f32[2] &&
V1.vector4_f32[3] > V2.vector4_f32[3])
{
CR = XM_CRMASK_CR6TRUE;
}
else if (V1.vector4_f32[0] <= V2.vector4_f32[0] &&
V1.vector4_f32[1] <= V2.vector4_f32[1] &&
V1.vector4_f32[2] <= V2.vector4_f32[2] &&
V1.vector4_f32[3] <= V2.vector4_f32[3])
{
CR = XM_CRMASK_CR6FALSE;
}
return CR;
#elif defined(_XM_ARM_NEON_INTRINSICS_)
uint32x4_t vResult = vcgtq_f32(V1, V2);
uint8x8x2_t vTemp = vzip_u8(vget_low_u8(vreinterpretq_u8_u32(vResult)), vget_high_u8(vreinterpretq_u8_u32(vResult)));
uint16x4x2_t vTemp2 = vzip_u16(vreinterpret_u16_u8(vTemp.val[0]), vreinterpret_u16_u8(vTemp.val[1]));
uint32_t r = vget_lane_u32(vreinterpret_u32_u16(vTemp2.val[1]), 1);
uint32_t CR = 0;
if (r == 0xFFFFFFFFU)
{
CR = XM_CRMASK_CR6TRUE;
}
else if (!r)
{
CR = XM_CRMASK_CR6FALSE;
}
return CR;
#elif defined(_XM_SSE_INTRINSICS_)
uint32_t CR = 0;
XMVECTOR vTemp = _mm_cmpgt_ps(V1, V2);
int iTest = _mm_movemask_ps(vTemp);
if (iTest == 0xf)
{
CR = XM_CRMASK_CR6TRUE;
}
else if (!iTest)
{
CR = XM_CRMASK_CR6FALSE;
}
return CR;
#endif
}
//------------------------------------------------------------------------------
inline bool XM_CALLCONV XMVector4GreaterOrEqual
(
FXMVECTOR V1,
FXMVECTOR V2
) noexcept
{
#if defined(_XM_NO_INTRINSICS_)
return (((V1.vector4_f32[0] >= V2.vector4_f32[0]) && (V1.vector4_f32[1] >= V2.vector4_f32[1]) && (V1.vector4_f32[2] >= V2.vector4_f32[2]) && (V1.vector4_f32[3] >= V2.vector4_f32[3])) != 0);
#elif defined(_XM_ARM_NEON_INTRINSICS_)
uint32x4_t vResult = vcgeq_f32(V1, V2);
uint8x8x2_t vTemp = vzip_u8(vget_low_u8(vreinterpretq_u8_u32(vResult)), vget_high_u8(vreinterpretq_u8_u32(vResult)));
uint16x4x2_t vTemp2 = vzip_u16(vreinterpret_u16_u8(vTemp.val[0]), vreinterpret_u16_u8(vTemp.val[1]));
return (vget_lane_u32(vreinterpret_u32_u16(vTemp2.val[1]), 1) == 0xFFFFFFFFU);
#elif defined(_XM_SSE_INTRINSICS_)
XMVECTOR vTemp = _mm_cmpge_ps(V1, V2);
return ((_mm_movemask_ps(vTemp) == 0x0f) != 0);
#else
return XMComparisonAllTrue(XMVector4GreaterOrEqualR(V1, V2));
#endif
}
//------------------------------------------------------------------------------
inline uint32_t XM_CALLCONV XMVector4GreaterOrEqualR
(
FXMVECTOR V1,
FXMVECTOR V2
) noexcept
{
#if defined(_XM_NO_INTRINSICS_)
uint32_t CR = 0;
if ((V1.vector4_f32[0] >= V2.vector4_f32[0]) &&
(V1.vector4_f32[1] >= V2.vector4_f32[1]) &&
(V1.vector4_f32[2] >= V2.vector4_f32[2]) &&
(V1.vector4_f32[3] >= V2.vector4_f32[3]))
{
CR = XM_CRMASK_CR6TRUE;
}
else if ((V1.vector4_f32[0] < V2.vector4_f32[0]) &&
(V1.vector4_f32[1] < V2.vector4_f32[1]) &&
(V1.vector4_f32[2] < V2.vector4_f32[2]) &&
(V1.vector4_f32[3] < V2.vector4_f32[3]))
{
CR = XM_CRMASK_CR6FALSE;
}
return CR;
#elif defined(_XM_ARM_NEON_INTRINSICS_)
uint32x4_t vResult = vcgeq_f32(V1, V2);
uint8x8x2_t vTemp = vzip_u8(vget_low_u8(vreinterpretq_u8_u32(vResult)), vget_high_u8(vreinterpretq_u8_u32(vResult)));
uint16x4x2_t vTemp2 = vzip_u16(vreinterpret_u16_u8(vTemp.val[0]), vreinterpret_u16_u8(vTemp.val[1]));
uint32_t r = vget_lane_u32(vreinterpret_u32_u16(vTemp2.val[1]), 1);
uint32_t CR = 0;
if (r == 0xFFFFFFFFU)
{
CR = XM_CRMASK_CR6TRUE;
}
else if (!r)
{
CR = XM_CRMASK_CR6FALSE;
}
return CR;
#elif defined(_XM_SSE_INTRINSICS_)
uint32_t CR = 0;
XMVECTOR vTemp = _mm_cmpge_ps(V1, V2);
int iTest = _mm_movemask_ps(vTemp);
if (iTest == 0x0f)
{
CR = XM_CRMASK_CR6TRUE;
}
else if (!iTest)
{
CR = XM_CRMASK_CR6FALSE;
}
return CR;
#endif
}
//------------------------------------------------------------------------------
inline bool XM_CALLCONV XMVector4Less
(
FXMVECTOR V1,
FXMVECTOR V2
) noexcept
{
#if defined(_XM_NO_INTRINSICS_)
return (((V1.vector4_f32[0] < V2.vector4_f32[0]) && (V1.vector4_f32[1] < V2.vector4_f32[1]) && (V1.vector4_f32[2] < V2.vector4_f32[2]) && (V1.vector4_f32[3] < V2.vector4_f32[3])) != 0);
#elif defined(_XM_ARM_NEON_INTRINSICS_)
uint32x4_t vResult = vcltq_f32(V1, V2);
uint8x8x2_t vTemp = vzip_u8(vget_low_u8(vreinterpretq_u8_u32(vResult)), vget_high_u8(vreinterpretq_u8_u32(vResult)));
uint16x4x2_t vTemp2 = vzip_u16(vreinterpret_u16_u8(vTemp.val[0]), vreinterpret_u16_u8(vTemp.val[1]));
return (vget_lane_u32(vreinterpret_u32_u16(vTemp2.val[1]), 1) == 0xFFFFFFFFU);
#elif defined(_XM_SSE_INTRINSICS_)
XMVECTOR vTemp = _mm_cmplt_ps(V1, V2);
return ((_mm_movemask_ps(vTemp) == 0x0f) != 0);
#else
return XMComparisonAllTrue(XMVector4GreaterR(V2, V1));
#endif
}
//------------------------------------------------------------------------------
inline bool XM_CALLCONV XMVector4LessOrEqual
(
FXMVECTOR V1,
FXMVECTOR V2
) noexcept
{
#if defined(_XM_NO_INTRINSICS_)
return (((V1.vector4_f32[0] <= V2.vector4_f32[0]) && (V1.vector4_f32[1] <= V2.vector4_f32[1]) && (V1.vector4_f32[2] <= V2.vector4_f32[2]) && (V1.vector4_f32[3] <= V2.vector4_f32[3])) != 0);
#elif defined(_XM_ARM_NEON_INTRINSICS_)
uint32x4_t vResult = vcleq_f32(V1, V2);
uint8x8x2_t vTemp = vzip_u8(vget_low_u8(vreinterpretq_u8_u32(vResult)), vget_high_u8(vreinterpretq_u8_u32(vResult)));
uint16x4x2_t vTemp2 = vzip_u16(vreinterpret_u16_u8(vTemp.val[0]), vreinterpret_u16_u8(vTemp.val[1]));
return (vget_lane_u32(vreinterpret_u32_u16(vTemp2.val[1]), 1) == 0xFFFFFFFFU);
#elif defined(_XM_SSE_INTRINSICS_)
XMVECTOR vTemp = _mm_cmple_ps(V1, V2);
return ((_mm_movemask_ps(vTemp) == 0x0f) != 0);
#else
return XMComparisonAllTrue(XMVector4GreaterOrEqualR(V2, V1));
#endif
}
//------------------------------------------------------------------------------
inline bool XM_CALLCONV XMVector4InBounds
(
FXMVECTOR V,
FXMVECTOR Bounds
) noexcept
{
#if defined(_XM_NO_INTRINSICS_)
return (((V.vector4_f32[0] <= Bounds.vector4_f32[0] && V.vector4_f32[0] >= -Bounds.vector4_f32[0]) &&
(V.vector4_f32[1] <= Bounds.vector4_f32[1] && V.vector4_f32[1] >= -Bounds.vector4_f32[1]) &&
(V.vector4_f32[2] <= Bounds.vector4_f32[2] && V.vector4_f32[2] >= -Bounds.vector4_f32[2]) &&
(V.vector4_f32[3] <= Bounds.vector4_f32[3] && V.vector4_f32[3] >= -Bounds.vector4_f32[3])) != 0);
#elif defined(_XM_ARM_NEON_INTRINSICS_)
// Test if less than or equal
uint32x4_t ivTemp1 = vcleq_f32(V, Bounds);
// Negate the bounds
float32x4_t vTemp2 = vnegq_f32(Bounds);
// Test if greater or equal (Reversed)
uint32x4_t ivTemp2 = vcleq_f32(vTemp2, V);
// Blend answers
ivTemp1 = vandq_u32(ivTemp1, ivTemp2);
// in bounds?
uint8x8x2_t vTemp = vzip_u8(vget_low_u8(vreinterpretq_u8_u32(ivTemp1)), vget_high_u8(vreinterpretq_u8_u32(ivTemp1)));
uint16x4x2_t vTemp3 = vzip_u16(vreinterpret_u16_u8(vTemp.val[0]), vreinterpret_u16_u8(vTemp.val[1]));
return (vget_lane_u32(vreinterpret_u32_u16(vTemp3.val[1]), 1) == 0xFFFFFFFFU);
#elif defined(_XM_SSE_INTRINSICS_)
// Test if less than or equal
XMVECTOR vTemp1 = _mm_cmple_ps(V, Bounds);
// Negate the bounds
XMVECTOR vTemp2 = _mm_mul_ps(Bounds, g_XMNegativeOne);
// Test if greater or equal (Reversed)
vTemp2 = _mm_cmple_ps(vTemp2, V);
// Blend answers
vTemp1 = _mm_and_ps(vTemp1, vTemp2);
// All in bounds?
return ((_mm_movemask_ps(vTemp1) == 0x0f) != 0);
#else
return XMComparisonAllInBounds(XMVector4InBoundsR(V, Bounds));
#endif
}
//------------------------------------------------------------------------------
#if !defined(_XM_NO_INTRINSICS_) && defined(_MSC_VER) && !defined(__clang__) && !defined(__INTEL_COMPILER)
#pragma float_control(push)
#pragma float_control(precise, on)
#endif
inline bool XM_CALLCONV XMVector4IsNaN(FXMVECTOR V) noexcept
{
#if defined(_XM_NO_INTRINSICS_)
return (XMISNAN(V.vector4_f32[0]) ||
XMISNAN(V.vector4_f32[1]) ||
XMISNAN(V.vector4_f32[2]) ||
XMISNAN(V.vector4_f32[3]));
#elif defined(_XM_ARM_NEON_INTRINSICS_)
// Test against itself. NaN is always not equal
uint32x4_t vTempNan = vceqq_f32(V, V);
uint8x8x2_t vTemp = vzip_u8(vget_low_u8(vreinterpretq_u8_u32(vTempNan)), vget_high_u8(vreinterpretq_u8_u32(vTempNan)));
uint16x4x2_t vTemp2 = vzip_u16(vreinterpret_u16_u8(vTemp.val[0]), vreinterpret_u16_u8(vTemp.val[1]));
// If any are NaN, the mask is zero
return (vget_lane_u32(vreinterpret_u32_u16(vTemp2.val[1]), 1) != 0xFFFFFFFFU);
#elif defined(_XM_SSE_INTRINSICS_)
// Test against itself. NaN is always not equal
XMVECTOR vTempNan = _mm_cmpneq_ps(V, V);
// If any are NaN, the mask is non-zero
return (_mm_movemask_ps(vTempNan) != 0);
#endif
}
#if !defined(_XM_NO_INTRINSICS_) && defined(_MSC_VER) && !defined(__clang__) && !defined(__INTEL_COMPILER)
#pragma float_control(pop)
#endif
//------------------------------------------------------------------------------
inline bool XM_CALLCONV XMVector4IsInfinite(FXMVECTOR V) noexcept
{
#if defined(_XM_NO_INTRINSICS_)
return (XMISINF(V.vector4_f32[0]) ||
XMISINF(V.vector4_f32[1]) ||
XMISINF(V.vector4_f32[2]) ||
XMISINF(V.vector4_f32[3]));
#elif defined(_XM_ARM_NEON_INTRINSICS_)
// Mask off the sign bit
uint32x4_t vTempInf = vandq_u32(vreinterpretq_u32_f32(V), g_XMAbsMask);
// Compare to infinity
vTempInf = vceqq_f32(vreinterpretq_f32_u32(vTempInf), g_XMInfinity);
// If any are infinity, the signs are true.
uint8x8x2_t vTemp = vzip_u8(vget_low_u8(vreinterpretq_u8_u32(vTempInf)), vget_high_u8(vreinterpretq_u8_u32(vTempInf)));
uint16x4x2_t vTemp2 = vzip_u16(vreinterpret_u16_u8(vTemp.val[0]), vreinterpret_u16_u8(vTemp.val[1]));
return (vget_lane_u32(vreinterpret_u32_u16(vTemp2.val[1]), 1) != 0);
#elif defined(_XM_SSE_INTRINSICS_)
// Mask off the sign bit
XMVECTOR vTemp = _mm_and_ps(V, g_XMAbsMask);
// Compare to infinity
vTemp = _mm_cmpeq_ps(vTemp, g_XMInfinity);
// If any are infinity, the signs are true.
return (_mm_movemask_ps(vTemp) != 0);
#endif
}
//------------------------------------------------------------------------------
// Computation operations
//------------------------------------------------------------------------------
//------------------------------------------------------------------------------
inline XMVECTOR XM_CALLCONV XMVector4Dot
(
FXMVECTOR V1,
FXMVECTOR V2
) noexcept
{
#if defined(_XM_NO_INTRINSICS_)
XMVECTORF32 Result;
Result.f[0] =
Result.f[1] =
Result.f[2] =
Result.f[3] = V1.vector4_f32[0] * V2.vector4_f32[0] + V1.vector4_f32[1] * V2.vector4_f32[1] + V1.vector4_f32[2] * V2.vector4_f32[2] + V1.vector4_f32[3] * V2.vector4_f32[3];
return Result.v;
#elif defined(_XM_ARM_NEON_INTRINSICS_)
float32x4_t vTemp = vmulq_f32(V1, V2);
float32x2_t v1 = vget_low_f32(vTemp);
float32x2_t v2 = vget_high_f32(vTemp);
v1 = vadd_f32(v1, v2);
v1 = vpadd_f32(v1, v1);
return vcombine_f32(v1, v1);
#elif defined(_XM_SSE4_INTRINSICS_)
return _mm_dp_ps(V1, V2, 0xff);
#elif defined(_XM_SSE3_INTRINSICS_)
XMVECTOR vTemp = _mm_mul_ps(V1, V2);
vTemp = _mm_hadd_ps(vTemp, vTemp);
return _mm_hadd_ps(vTemp, vTemp);
#elif defined(_XM_SSE_INTRINSICS_)
XMVECTOR vTemp2 = V2;
XMVECTOR vTemp = _mm_mul_ps(V1, vTemp2);
vTemp2 = _mm_shuffle_ps(vTemp2, vTemp, _MM_SHUFFLE(1, 0, 0, 0)); // Copy X to the Z position and Y to the W position
vTemp2 = _mm_add_ps(vTemp2, vTemp); // Add Z = X+Z; W = Y+W;
vTemp = _mm_shuffle_ps(vTemp, vTemp2, _MM_SHUFFLE(0, 3, 0, 0)); // Copy W to the Z position
vTemp = _mm_add_ps(vTemp, vTemp2); // Add Z and W together
return XM_PERMUTE_PS(vTemp, _MM_SHUFFLE(2, 2, 2, 2)); // Splat Z and return
#endif
}
//------------------------------------------------------------------------------
inline XMVECTOR XM_CALLCONV XMVector4Cross
(
FXMVECTOR V1,
FXMVECTOR V2,
FXMVECTOR V3
) noexcept
{
// [ ((v2.z*v3.w-v2.w*v3.z)*v1.y)-((v2.y*v3.w-v2.w*v3.y)*v1.z)+((v2.y*v3.z-v2.z*v3.y)*v1.w),
// ((v2.w*v3.z-v2.z*v3.w)*v1.x)-((v2.w*v3.x-v2.x*v3.w)*v1.z)+((v2.z*v3.x-v2.x*v3.z)*v1.w),
// ((v2.y*v3.w-v2.w*v3.y)*v1.x)-((v2.x*v3.w-v2.w*v3.x)*v1.y)+((v2.x*v3.y-v2.y*v3.x)*v1.w),
// ((v2.z*v3.y-v2.y*v3.z)*v1.x)-((v2.z*v3.x-v2.x*v3.z)*v1.y)+((v2.y*v3.x-v2.x*v3.y)*v1.z) ]
#if defined(_XM_NO_INTRINSICS_)
XMVECTORF32 Result = { { {
(((V2.vector4_f32[2] * V3.vector4_f32[3]) - (V2.vector4_f32[3] * V3.vector4_f32[2])) * V1.vector4_f32[1]) - (((V2.vector4_f32[1] * V3.vector4_f32[3]) - (V2.vector4_f32[3] * V3.vector4_f32[1])) * V1.vector4_f32[2]) + (((V2.vector4_f32[1] * V3.vector4_f32[2]) - (V2.vector4_f32[2] * V3.vector4_f32[1])) * V1.vector4_f32[3]),
(((V2.vector4_f32[3] * V3.vector4_f32[2]) - (V2.vector4_f32[2] * V3.vector4_f32[3])) * V1.vector4_f32[0]) - (((V2.vector4_f32[3] * V3.vector4_f32[0]) - (V2.vector4_f32[0] * V3.vector4_f32[3])) * V1.vector4_f32[2]) + (((V2.vector4_f32[2] * V3.vector4_f32[0]) - (V2.vector4_f32[0] * V3.vector4_f32[2])) * V1.vector4_f32[3]),
(((V2.vector4_f32[1] * V3.vector4_f32[3]) - (V2.vector4_f32[3] * V3.vector4_f32[1])) * V1.vector4_f32[0]) - (((V2.vector4_f32[0] * V3.vector4_f32[3]) - (V2.vector4_f32[3] * V3.vector4_f32[0])) * V1.vector4_f32[1]) + (((V2.vector4_f32[0] * V3.vector4_f32[1]) - (V2.vector4_f32[1] * V3.vector4_f32[0])) * V1.vector4_f32[3]),
(((V2.vector4_f32[2] * V3.vector4_f32[1]) - (V2.vector4_f32[1] * V3.vector4_f32[2])) * V1.vector4_f32[0]) - (((V2.vector4_f32[2] * V3.vector4_f32[0]) - (V2.vector4_f32[0] * V3.vector4_f32[2])) * V1.vector4_f32[1]) + (((V2.vector4_f32[1] * V3.vector4_f32[0]) - (V2.vector4_f32[0] * V3.vector4_f32[1])) * V1.vector4_f32[2]),
} } };
return Result.v;
#elif defined(_XM_ARM_NEON_INTRINSICS_)
const uint32x2_t select = vget_low_u32(g_XMMaskX);
// Term1: V2zwyz * V3wzwy
const float32x2_t v2xy = vget_low_f32(V2);
const float32x2_t v2zw = vget_high_f32(V2);
const float32x2_t v2yx = vrev64_f32(v2xy);
const float32x2_t v2wz = vrev64_f32(v2zw);
const float32x2_t v2yz = vbsl_f32(select, v2yx, v2wz);
const float32x2_t v3zw = vget_high_f32(V3);
const float32x2_t v3wz = vrev64_f32(v3zw);
const float32x2_t v3xy = vget_low_f32(V3);
const float32x2_t v3wy = vbsl_f32(select, v3wz, v3xy);
float32x4_t vTemp1 = vcombine_f32(v2zw, v2yz);
float32x4_t vTemp2 = vcombine_f32(v3wz, v3wy);
XMVECTOR vResult = vmulq_f32(vTemp1, vTemp2);
// - V2wzwy * V3zwyz
const float32x2_t v2wy = vbsl_f32(select, v2wz, v2xy);
const float32x2_t v3yx = vrev64_f32(v3xy);
const float32x2_t v3yz = vbsl_f32(select, v3yx, v3wz);
vTemp1 = vcombine_f32(v2wz, v2wy);
vTemp2 = vcombine_f32(v3zw, v3yz);
vResult = vmlsq_f32(vResult, vTemp1, vTemp2);
// term1 * V1yxxx
const float32x2_t v1xy = vget_low_f32(V1);
const float32x2_t v1yx = vrev64_f32(v1xy);
vTemp1 = vcombine_f32(v1yx, vdup_lane_f32(v1yx, 1));
vResult = vmulq_f32(vResult, vTemp1);
// Term2: V2ywxz * V3wxwx
const float32x2_t v2yw = vrev64_f32(v2wy);
const float32x2_t v2xz = vbsl_f32(select, v2xy, v2wz);
const float32x2_t v3wx = vbsl_f32(select, v3wz, v3yx);
vTemp1 = vcombine_f32(v2yw, v2xz);
vTemp2 = vcombine_f32(v3wx, v3wx);
float32x4_t vTerm = vmulq_f32(vTemp1, vTemp2);
// - V2wxwx * V3ywxz
const float32x2_t v2wx = vbsl_f32(select, v2wz, v2yx);
const float32x2_t v3yw = vrev64_f32(v3wy);
const float32x2_t v3xz = vbsl_f32(select, v3xy, v3wz);
vTemp1 = vcombine_f32(v2wx, v2wx);
vTemp2 = vcombine_f32(v3yw, v3xz);
vTerm = vmlsq_f32(vTerm, vTemp1, vTemp2);
// vResult - term2 * V1zzyy
const float32x2_t v1zw = vget_high_f32(V1);
vTemp1 = vcombine_f32(vdup_lane_f32(v1zw, 0), vdup_lane_f32(v1yx, 0));
vResult = vmlsq_f32(vResult, vTerm, vTemp1);
// Term3: V2yzxy * V3zxyx
const float32x2_t v3zx = vrev64_f32(v3xz);
vTemp1 = vcombine_f32(v2yz, v2xy);
vTemp2 = vcombine_f32(v3zx, v3yx);
vTerm = vmulq_f32(vTemp1, vTemp2);
// - V2zxyx * V3yzxy
const float32x2_t v2zx = vrev64_f32(v2xz);
vTemp1 = vcombine_f32(v2zx, v2yx);
vTemp2 = vcombine_f32(v3yz, v3xy);
vTerm = vmlsq_f32(vTerm, vTemp1, vTemp2);
// vResult + term3 * V1wwwz
const float32x2_t v1wz = vrev64_f32(v1zw);
vTemp1 = vcombine_f32(vdup_lane_f32(v1wz, 0), v1wz);
return vmlaq_f32(vResult, vTerm, vTemp1);
#elif defined(_XM_SSE_INTRINSICS_)
// V2zwyz * V3wzwy
XMVECTOR vResult = XM_PERMUTE_PS(V2, _MM_SHUFFLE(2, 1, 3, 2));
XMVECTOR vTemp3 = XM_PERMUTE_PS(V3, _MM_SHUFFLE(1, 3, 2, 3));
vResult = _mm_mul_ps(vResult, vTemp3);
// - V2wzwy * V3zwyz
XMVECTOR vTemp2 = XM_PERMUTE_PS(V2, _MM_SHUFFLE(1, 3, 2, 3));
vTemp3 = XM_PERMUTE_PS(vTemp3, _MM_SHUFFLE(1, 3, 0, 1));
vResult = XM_FNMADD_PS(vTemp2, vTemp3, vResult);
// term1 * V1yxxx
XMVECTOR vTemp1 = XM_PERMUTE_PS(V1, _MM_SHUFFLE(0, 0, 0, 1));
vResult = _mm_mul_ps(vResult, vTemp1);
// V2ywxz * V3wxwx
vTemp2 = XM_PERMUTE_PS(V2, _MM_SHUFFLE(2, 0, 3, 1));
vTemp3 = XM_PERMUTE_PS(V3, _MM_SHUFFLE(0, 3, 0, 3));
vTemp3 = _mm_mul_ps(vTemp3, vTemp2);
// - V2wxwx * V3ywxz
vTemp2 = XM_PERMUTE_PS(vTemp2, _MM_SHUFFLE(2, 1, 2, 1));
vTemp1 = XM_PERMUTE_PS(V3, _MM_SHUFFLE(2, 0, 3, 1));
vTemp3 = XM_FNMADD_PS(vTemp2, vTemp1, vTemp3);
// vResult - temp * V1zzyy
vTemp1 = XM_PERMUTE_PS(V1, _MM_SHUFFLE(1, 1, 2, 2));
vResult = XM_FNMADD_PS(vTemp1, vTemp3, vResult);
// V2yzxy * V3zxyx
vTemp2 = XM_PERMUTE_PS(V2, _MM_SHUFFLE(1, 0, 2, 1));
vTemp3 = XM_PERMUTE_PS(V3, _MM_SHUFFLE(0, 1, 0, 2));
vTemp3 = _mm_mul_ps(vTemp3, vTemp2);
// - V2zxyx * V3yzxy
vTemp2 = XM_PERMUTE_PS(vTemp2, _MM_SHUFFLE(2, 0, 2, 1));
vTemp1 = XM_PERMUTE_PS(V3, _MM_SHUFFLE(1, 0, 2, 1));
vTemp3 = XM_FNMADD_PS(vTemp1, vTemp2, vTemp3);
// vResult + term * V1wwwz
vTemp1 = XM_PERMUTE_PS(V1, _MM_SHUFFLE(2, 3, 3, 3));
vResult = XM_FMADD_PS(vTemp3, vTemp1, vResult);
return vResult;
#endif
}
//------------------------------------------------------------------------------
inline XMVECTOR XM_CALLCONV XMVector4LengthSq(FXMVECTOR V) noexcept
{
return XMVector4Dot(V, V);
}
//------------------------------------------------------------------------------
inline XMVECTOR XM_CALLCONV XMVector4ReciprocalLengthEst(FXMVECTOR V) noexcept
{
#if defined(_XM_NO_INTRINSICS_)
XMVECTOR Result;
Result = XMVector4LengthSq(V);
Result = XMVectorReciprocalSqrtEst(Result);
return Result;
#elif defined(_XM_ARM_NEON_INTRINSICS_)
// Dot4
float32x4_t vTemp = vmulq_f32(V, V);
float32x2_t v1 = vget_low_f32(vTemp);
float32x2_t v2 = vget_high_f32(vTemp);
v1 = vadd_f32(v1, v2);
v1 = vpadd_f32(v1, v1);
// Reciprocal sqrt (estimate)
v2 = vrsqrte_f32(v1);
return vcombine_f32(v2, v2);
#elif defined(_XM_SSE4_INTRINSICS_)
XMVECTOR vTemp = _mm_dp_ps(V, V, 0xff);
return _mm_rsqrt_ps(vTemp);
#elif defined(_XM_SSE3_INTRINSICS_)
XMVECTOR vLengthSq = _mm_mul_ps(V, V);
vLengthSq = _mm_hadd_ps(vLengthSq, vLengthSq);
vLengthSq = _mm_hadd_ps(vLengthSq, vLengthSq);
vLengthSq = _mm_rsqrt_ps(vLengthSq);
return vLengthSq;
#elif defined(_XM_SSE_INTRINSICS_)
// Perform the dot product on x,y,z and w
XMVECTOR vLengthSq = _mm_mul_ps(V, V);
// vTemp has z and w
XMVECTOR vTemp = XM_PERMUTE_PS(vLengthSq, _MM_SHUFFLE(3, 2, 3, 2));
// x+z, y+w
vLengthSq = _mm_add_ps(vLengthSq, vTemp);
// x+z,x+z,x+z,y+w
vLengthSq = XM_PERMUTE_PS(vLengthSq, _MM_SHUFFLE(1, 0, 0, 0));
// ??,??,y+w,y+w
vTemp = _mm_shuffle_ps(vTemp, vLengthSq, _MM_SHUFFLE(3, 3, 0, 0));
// ??,??,x+z+y+w,??
vLengthSq = _mm_add_ps(vLengthSq, vTemp);
// Splat the length
vLengthSq = XM_PERMUTE_PS(vLengthSq, _MM_SHUFFLE(2, 2, 2, 2));
// Get the reciprocal
vLengthSq = _mm_rsqrt_ps(vLengthSq);
return vLengthSq;
#endif
}
//------------------------------------------------------------------------------
inline XMVECTOR XM_CALLCONV XMVector4ReciprocalLength(FXMVECTOR V) noexcept
{
#if defined(_XM_NO_INTRINSICS_)
XMVECTOR Result;
Result = XMVector4LengthSq(V);
Result = XMVectorReciprocalSqrt(Result);
return Result;
#elif defined(_XM_ARM_NEON_INTRINSICS_)
// Dot4
float32x4_t vTemp = vmulq_f32(V, V);
float32x2_t v1 = vget_low_f32(vTemp);
float32x2_t v2 = vget_high_f32(vTemp);
v1 = vadd_f32(v1, v2);
v1 = vpadd_f32(v1, v1);
// Reciprocal sqrt
float32x2_t S0 = vrsqrte_f32(v1);
float32x2_t P0 = vmul_f32(v1, S0);
float32x2_t R0 = vrsqrts_f32(P0, S0);
float32x2_t S1 = vmul_f32(S0, R0);
float32x2_t P1 = vmul_f32(v1, S1);
float32x2_t R1 = vrsqrts_f32(P1, S1);
float32x2_t Result = vmul_f32(S1, R1);
return vcombine_f32(Result, Result);
#elif defined(_XM_SSE4_INTRINSICS_)
XMVECTOR vTemp = _mm_dp_ps(V, V, 0xff);
XMVECTOR vLengthSq = _mm_sqrt_ps(vTemp);
return _mm_div_ps(g_XMOne, vLengthSq);
#elif defined(_XM_SSE3_INTRINSICS_)
XMVECTOR vLengthSq = _mm_mul_ps(V, V);
vLengthSq = _mm_hadd_ps(vLengthSq, vLengthSq);
vLengthSq = _mm_hadd_ps(vLengthSq, vLengthSq);
vLengthSq = _mm_sqrt_ps(vLengthSq);
vLengthSq = _mm_div_ps(g_XMOne, vLengthSq);
return vLengthSq;
#elif defined(_XM_SSE_INTRINSICS_)
// Perform the dot product on x,y,z and w
XMVECTOR vLengthSq = _mm_mul_ps(V, V);
// vTemp has z and w
XMVECTOR vTemp = XM_PERMUTE_PS(vLengthSq, _MM_SHUFFLE(3, 2, 3, 2));
// x+z, y+w
vLengthSq = _mm_add_ps(vLengthSq, vTemp);
// x+z,x+z,x+z,y+w
vLengthSq = XM_PERMUTE_PS(vLengthSq, _MM_SHUFFLE(1, 0, 0, 0));
// ??,??,y+w,y+w
vTemp = _mm_shuffle_ps(vTemp, vLengthSq, _MM_SHUFFLE(3, 3, 0, 0));
// ??,??,x+z+y+w,??
vLengthSq = _mm_add_ps(vLengthSq, vTemp);
// Splat the length
vLengthSq = XM_PERMUTE_PS(vLengthSq, _MM_SHUFFLE(2, 2, 2, 2));
// Get the reciprocal
vLengthSq = _mm_sqrt_ps(vLengthSq);
// Accurate!
vLengthSq = _mm_div_ps(g_XMOne, vLengthSq);
return vLengthSq;
#endif
}
//------------------------------------------------------------------------------
inline XMVECTOR XM_CALLCONV XMVector4LengthEst(FXMVECTOR V) noexcept
{
#if defined(_XM_NO_INTRINSICS_)
XMVECTOR Result;
Result = XMVector4LengthSq(V);
Result = XMVectorSqrtEst(Result);
return Result;
#elif defined(_XM_ARM_NEON_INTRINSICS_)
// Dot4
float32x4_t vTemp = vmulq_f32(V, V);
float32x2_t v1 = vget_low_f32(vTemp);
float32x2_t v2 = vget_high_f32(vTemp);
v1 = vadd_f32(v1, v2);
v1 = vpadd_f32(v1, v1);
const float32x2_t zero = vdup_n_f32(0);
uint32x2_t VEqualsZero = vceq_f32(v1, zero);
// Sqrt (estimate)
float32x2_t Result = vrsqrte_f32(v1);
Result = vmul_f32(v1, Result);
Result = vbsl_f32(VEqualsZero, zero, Result);
return vcombine_f32(Result, Result);
#elif defined(_XM_SSE4_INTRINSICS_)
XMVECTOR vTemp = _mm_dp_ps(V, V, 0xff);
return _mm_sqrt_ps(vTemp);
#elif defined(_XM_SSE3_INTRINSICS_)
XMVECTOR vLengthSq = _mm_mul_ps(V, V);
vLengthSq = _mm_hadd_ps(vLengthSq, vLengthSq);
vLengthSq = _mm_hadd_ps(vLengthSq, vLengthSq);
vLengthSq = _mm_sqrt_ps(vLengthSq);
return vLengthSq;
#elif defined(_XM_SSE_INTRINSICS_)
// Perform the dot product on x,y,z and w
XMVECTOR vLengthSq = _mm_mul_ps(V, V);
// vTemp has z and w
XMVECTOR vTemp = XM_PERMUTE_PS(vLengthSq, _MM_SHUFFLE(3, 2, 3, 2));
// x+z, y+w
vLengthSq = _mm_add_ps(vLengthSq, vTemp);
// x+z,x+z,x+z,y+w
vLengthSq = XM_PERMUTE_PS(vLengthSq, _MM_SHUFFLE(1, 0, 0, 0));
// ??,??,y+w,y+w
vTemp = _mm_shuffle_ps(vTemp, vLengthSq, _MM_SHUFFLE(3, 3, 0, 0));
// ??,??,x+z+y+w,??
vLengthSq = _mm_add_ps(vLengthSq, vTemp);
// Splat the length
vLengthSq = XM_PERMUTE_PS(vLengthSq, _MM_SHUFFLE(2, 2, 2, 2));
// Get the length
vLengthSq = _mm_sqrt_ps(vLengthSq);
return vLengthSq;
#endif
}
//------------------------------------------------------------------------------
inline XMVECTOR XM_CALLCONV XMVector4Length(FXMVECTOR V) noexcept
{
#if defined(_XM_NO_INTRINSICS_)
XMVECTOR Result;
Result = XMVector4LengthSq(V);
Result = XMVectorSqrt(Result);
return Result;
#elif defined(_XM_ARM_NEON_INTRINSICS_)
// Dot4
float32x4_t vTemp = vmulq_f32(V, V);
float32x2_t v1 = vget_low_f32(vTemp);
float32x2_t v2 = vget_high_f32(vTemp);
v1 = vadd_f32(v1, v2);
v1 = vpadd_f32(v1, v1);
const float32x2_t zero = vdup_n_f32(0);
uint32x2_t VEqualsZero = vceq_f32(v1, zero);
// Sqrt
float32x2_t S0 = vrsqrte_f32(v1);
float32x2_t P0 = vmul_f32(v1, S0);
float32x2_t R0 = vrsqrts_f32(P0, S0);
float32x2_t S1 = vmul_f32(S0, R0);
float32x2_t P1 = vmul_f32(v1, S1);
float32x2_t R1 = vrsqrts_f32(P1, S1);
float32x2_t Result = vmul_f32(S1, R1);
Result = vmul_f32(v1, Result);
Result = vbsl_f32(VEqualsZero, zero, Result);
return vcombine_f32(Result, Result);
#elif defined(_XM_SSE4_INTRINSICS_)
XMVECTOR vTemp = _mm_dp_ps(V, V, 0xff);
return _mm_sqrt_ps(vTemp);
#elif defined(_XM_SSE3_INTRINSICS_)
XMVECTOR vLengthSq = _mm_mul_ps(V, V);
vLengthSq = _mm_hadd_ps(vLengthSq, vLengthSq);
vLengthSq = _mm_hadd_ps(vLengthSq, vLengthSq);
vLengthSq = _mm_sqrt_ps(vLengthSq);
return vLengthSq;
#elif defined(_XM_SSE_INTRINSICS_)
// Perform the dot product on x,y,z and w
XMVECTOR vLengthSq = _mm_mul_ps(V, V);
// vTemp has z and w
XMVECTOR vTemp = XM_PERMUTE_PS(vLengthSq, _MM_SHUFFLE(3, 2, 3, 2));
// x+z, y+w
vLengthSq = _mm_add_ps(vLengthSq, vTemp);
// x+z,x+z,x+z,y+w
vLengthSq = XM_PERMUTE_PS(vLengthSq, _MM_SHUFFLE(1, 0, 0, 0));
// ??,??,y+w,y+w
vTemp = _mm_shuffle_ps(vTemp, vLengthSq, _MM_SHUFFLE(3, 3, 0, 0));
// ??,??,x+z+y+w,??
vLengthSq = _mm_add_ps(vLengthSq, vTemp);
// Splat the length
vLengthSq = XM_PERMUTE_PS(vLengthSq, _MM_SHUFFLE(2, 2, 2, 2));
// Get the length
vLengthSq = _mm_sqrt_ps(vLengthSq);
return vLengthSq;
#endif
}
//------------------------------------------------------------------------------
// XMVector4NormalizeEst uses a reciprocal estimate and
// returns QNaN on zero and infinite vectors.
inline XMVECTOR XM_CALLCONV XMVector4NormalizeEst(FXMVECTOR V) noexcept
{
#if defined(_XM_NO_INTRINSICS_)
XMVECTOR Result;
Result = XMVector4ReciprocalLength(V);
Result = XMVectorMultiply(V, Result);
return Result;
#elif defined(_XM_ARM_NEON_INTRINSICS_)
// Dot4
float32x4_t vTemp = vmulq_f32(V, V);
float32x2_t v1 = vget_low_f32(vTemp);
float32x2_t v2 = vget_high_f32(vTemp);
v1 = vadd_f32(v1, v2);
v1 = vpadd_f32(v1, v1);
// Reciprocal sqrt (estimate)
v2 = vrsqrte_f32(v1);
// Normalize
return vmulq_f32(V, vcombine_f32(v2, v2));
#elif defined(_XM_SSE4_INTRINSICS_)
XMVECTOR vTemp = _mm_dp_ps(V, V, 0xff);
XMVECTOR vResult = _mm_rsqrt_ps(vTemp);
return _mm_mul_ps(vResult, V);
#elif defined(_XM_SSE3_INTRINSICS_)
XMVECTOR vDot = _mm_mul_ps(V, V);
vDot = _mm_hadd_ps(vDot, vDot);
vDot = _mm_hadd_ps(vDot, vDot);
vDot = _mm_rsqrt_ps(vDot);
vDot = _mm_mul_ps(vDot, V);
return vDot;
#elif defined(_XM_SSE_INTRINSICS_)
// Perform the dot product on x,y,z and w
XMVECTOR vLengthSq = _mm_mul_ps(V, V);
// vTemp has z and w
XMVECTOR vTemp = XM_PERMUTE_PS(vLengthSq, _MM_SHUFFLE(3, 2, 3, 2));
// x+z, y+w
vLengthSq = _mm_add_ps(vLengthSq, vTemp);
// x+z,x+z,x+z,y+w
vLengthSq = XM_PERMUTE_PS(vLengthSq, _MM_SHUFFLE(1, 0, 0, 0));
// ??,??,y+w,y+w
vTemp = _mm_shuffle_ps(vTemp, vLengthSq, _MM_SHUFFLE(3, 3, 0, 0));
// ??,??,x+z+y+w,??
vLengthSq = _mm_add_ps(vLengthSq, vTemp);
// Splat the length
vLengthSq = XM_PERMUTE_PS(vLengthSq, _MM_SHUFFLE(2, 2, 2, 2));
// Get the reciprocal
XMVECTOR vResult = _mm_rsqrt_ps(vLengthSq);
// Reciprocal mul to perform the normalization
vResult = _mm_mul_ps(vResult, V);
return vResult;
#endif
}
//------------------------------------------------------------------------------
inline XMVECTOR XM_CALLCONV XMVector4Normalize(FXMVECTOR V) noexcept
{
#if defined(_XM_NO_INTRINSICS_)
float fLength;
XMVECTOR vResult;
vResult = XMVector4Length(V);
fLength = vResult.vector4_f32[0];
// Prevent divide by zero
if (fLength > 0)
{
fLength = 1.0f / fLength;
}
vResult.vector4_f32[0] = V.vector4_f32[0] * fLength;
vResult.vector4_f32[1] = V.vector4_f32[1] * fLength;
vResult.vector4_f32[2] = V.vector4_f32[2] * fLength;
vResult.vector4_f32[3] = V.vector4_f32[3] * fLength;
return vResult;
#elif defined(_XM_ARM_NEON_INTRINSICS_)
// Dot4
float32x4_t vTemp = vmulq_f32(V, V);
float32x2_t v1 = vget_low_f32(vTemp);
float32x2_t v2 = vget_high_f32(vTemp);
v1 = vadd_f32(v1, v2);
v1 = vpadd_f32(v1, v1);
uint32x2_t VEqualsZero = vceq_f32(v1, vdup_n_f32(0));
uint32x2_t VEqualsInf = vceq_f32(v1, vget_low_f32(g_XMInfinity));
// Reciprocal sqrt (2 iterations of Newton-Raphson)
float32x2_t S0 = vrsqrte_f32(v1);
float32x2_t P0 = vmul_f32(v1, S0);
float32x2_t R0 = vrsqrts_f32(P0, S0);
float32x2_t S1 = vmul_f32(S0, R0);
float32x2_t P1 = vmul_f32(v1, S1);
float32x2_t R1 = vrsqrts_f32(P1, S1);
v2 = vmul_f32(S1, R1);
// Normalize
XMVECTOR vResult = vmulq_f32(V, vcombine_f32(v2, v2));
vResult = vbslq_f32(vcombine_u32(VEqualsZero, VEqualsZero), vdupq_n_f32(0), vResult);
return vbslq_f32(vcombine_u32(VEqualsInf, VEqualsInf), g_XMQNaN, vResult);
#elif defined(_XM_SSE4_INTRINSICS_)
XMVECTOR vLengthSq = _mm_dp_ps(V, V, 0xff);
// Prepare for the division
XMVECTOR vResult = _mm_sqrt_ps(vLengthSq);
// Create zero with a single instruction
XMVECTOR vZeroMask = _mm_setzero_ps();
// Test for a divide by zero (Must be FP to detect -0.0)
vZeroMask = _mm_cmpneq_ps(vZeroMask, vResult);
// Failsafe on zero (Or epsilon) length planes
// If the length is infinity, set the elements to zero
vLengthSq = _mm_cmpneq_ps(vLengthSq, g_XMInfinity);
// Divide to perform the normalization
vResult = _mm_div_ps(V, vResult);
// Any that are infinity, set to zero
vResult = _mm_and_ps(vResult, vZeroMask);
// Select qnan or result based on infinite length
XMVECTOR vTemp1 = _mm_andnot_ps(vLengthSq, g_XMQNaN);
XMVECTOR vTemp2 = _mm_and_ps(vResult, vLengthSq);
vResult = _mm_or_ps(vTemp1, vTemp2);
return vResult;
#elif defined(_XM_SSE3_INTRINSICS_)
// Perform the dot product on x,y,z and w
XMVECTOR vLengthSq = _mm_mul_ps(V, V);
vLengthSq = _mm_hadd_ps(vLengthSq, vLengthSq);
vLengthSq = _mm_hadd_ps(vLengthSq, vLengthSq);
// Prepare for the division
XMVECTOR vResult = _mm_sqrt_ps(vLengthSq);
// Create zero with a single instruction
XMVECTOR vZeroMask = _mm_setzero_ps();
// Test for a divide by zero (Must be FP to detect -0.0)
vZeroMask = _mm_cmpneq_ps(vZeroMask, vResult);
// Failsafe on zero (Or epsilon) length planes
// If the length is infinity, set the elements to zero
vLengthSq = _mm_cmpneq_ps(vLengthSq, g_XMInfinity);
// Divide to perform the normalization
vResult = _mm_div_ps(V, vResult);
// Any that are infinity, set to zero
vResult = _mm_and_ps(vResult, vZeroMask);
// Select qnan or result based on infinite length
XMVECTOR vTemp1 = _mm_andnot_ps(vLengthSq, g_XMQNaN);
XMVECTOR vTemp2 = _mm_and_ps(vResult, vLengthSq);
vResult = _mm_or_ps(vTemp1, vTemp2);
return vResult;
#elif defined(_XM_SSE_INTRINSICS_)
// Perform the dot product on x,y,z and w
XMVECTOR vLengthSq = _mm_mul_ps(V, V);
// vTemp has z and w
XMVECTOR vTemp = XM_PERMUTE_PS(vLengthSq, _MM_SHUFFLE(3, 2, 3, 2));
// x+z, y+w
vLengthSq = _mm_add_ps(vLengthSq, vTemp);
// x+z,x+z,x+z,y+w
vLengthSq = XM_PERMUTE_PS(vLengthSq, _MM_SHUFFLE(1, 0, 0, 0));
// ??,??,y+w,y+w
vTemp = _mm_shuffle_ps(vTemp, vLengthSq, _MM_SHUFFLE(3, 3, 0, 0));
// ??,??,x+z+y+w,??
vLengthSq = _mm_add_ps(vLengthSq, vTemp);
// Splat the length
vLengthSq = XM_PERMUTE_PS(vLengthSq, _MM_SHUFFLE(2, 2, 2, 2));
// Prepare for the division
XMVECTOR vResult = _mm_sqrt_ps(vLengthSq);
// Create zero with a single instruction
XMVECTOR vZeroMask = _mm_setzero_ps();
// Test for a divide by zero (Must be FP to detect -0.0)
vZeroMask = _mm_cmpneq_ps(vZeroMask, vResult);
// Failsafe on zero (Or epsilon) length planes
// If the length is infinity, set the elements to zero
vLengthSq = _mm_cmpneq_ps(vLengthSq, g_XMInfinity);
// Divide to perform the normalization
vResult = _mm_div_ps(V, vResult);
// Any that are infinity, set to zero
vResult = _mm_and_ps(vResult, vZeroMask);
// Select qnan or result based on infinite length
XMVECTOR vTemp1 = _mm_andnot_ps(vLengthSq, g_XMQNaN);
XMVECTOR vTemp2 = _mm_and_ps(vResult, vLengthSq);
vResult = _mm_or_ps(vTemp1, vTemp2);
return vResult;
#endif
}
//------------------------------------------------------------------------------
inline XMVECTOR XM_CALLCONV XMVector4ClampLength
(
FXMVECTOR V,
float LengthMin,
float LengthMax
) noexcept
{
XMVECTOR ClampMax = XMVectorReplicate(LengthMax);
XMVECTOR ClampMin = XMVectorReplicate(LengthMin);
return XMVector4ClampLengthV(V, ClampMin, ClampMax);
}
//------------------------------------------------------------------------------
inline XMVECTOR XM_CALLCONV XMVector4ClampLengthV
(
FXMVECTOR V,
FXMVECTOR LengthMin,
FXMVECTOR LengthMax
) noexcept
{
assert((XMVectorGetY(LengthMin) == XMVectorGetX(LengthMin)) && (XMVectorGetZ(LengthMin) == XMVectorGetX(LengthMin)) && (XMVectorGetW(LengthMin) == XMVectorGetX(LengthMin)));
assert((XMVectorGetY(LengthMax) == XMVectorGetX(LengthMax)) && (XMVectorGetZ(LengthMax) == XMVectorGetX(LengthMax)) && (XMVectorGetW(LengthMax) == XMVectorGetX(LengthMax)));
assert(XMVector4GreaterOrEqual(LengthMin, XMVectorZero()));
assert(XMVector4GreaterOrEqual(LengthMax, XMVectorZero()));
assert(XMVector4GreaterOrEqual(LengthMax, LengthMin));
XMVECTOR LengthSq = XMVector4LengthSq(V);
const XMVECTOR Zero = XMVectorZero();
XMVECTOR RcpLength = XMVectorReciprocalSqrt(LengthSq);
XMVECTOR InfiniteLength = XMVectorEqualInt(LengthSq, g_XMInfinity.v);
XMVECTOR ZeroLength = XMVectorEqual(LengthSq, Zero);
XMVECTOR Normal = XMVectorMultiply(V, RcpLength);
XMVECTOR Length = XMVectorMultiply(LengthSq, RcpLength);
XMVECTOR Select = XMVectorEqualInt(InfiniteLength, ZeroLength);
Length = XMVectorSelect(LengthSq, Length, Select);
Normal = XMVectorSelect(LengthSq, Normal, Select);
XMVECTOR ControlMax = XMVectorGreater(Length, LengthMax);
XMVECTOR ControlMin = XMVectorLess(Length, LengthMin);
XMVECTOR ClampLength = XMVectorSelect(Length, LengthMax, ControlMax);
ClampLength = XMVectorSelect(ClampLength, LengthMin, ControlMin);
XMVECTOR Result = XMVectorMultiply(Normal, ClampLength);
// Preserve the original vector (with no precision loss) if the length falls within the given range
XMVECTOR Control = XMVectorEqualInt(ControlMax, ControlMin);
Result = XMVectorSelect(Result, V, Control);
return Result;
}
//------------------------------------------------------------------------------
inline XMVECTOR XM_CALLCONV XMVector4Reflect
(
FXMVECTOR Incident,
FXMVECTOR Normal
) noexcept
{
// Result = Incident - (2 * dot(Incident, Normal)) * Normal
XMVECTOR Result = XMVector4Dot(Incident, Normal);
Result = XMVectorAdd(Result, Result);
Result = XMVectorNegativeMultiplySubtract(Result, Normal, Incident);
return Result;
}
//------------------------------------------------------------------------------
inline XMVECTOR XM_CALLCONV XMVector4Refract
(
FXMVECTOR Incident,
FXMVECTOR Normal,
float RefractionIndex
) noexcept
{
XMVECTOR Index = XMVectorReplicate(RefractionIndex);
return XMVector4RefractV(Incident, Normal, Index);
}
//------------------------------------------------------------------------------
inline XMVECTOR XM_CALLCONV XMVector4RefractV
(
FXMVECTOR Incident,
FXMVECTOR Normal,
FXMVECTOR RefractionIndex
) noexcept
{
#if defined(_XM_NO_INTRINSICS_)
XMVECTOR IDotN;
XMVECTOR R;
const XMVECTOR Zero = XMVectorZero();
// Result = RefractionIndex * Incident - Normal * (RefractionIndex * dot(Incident, Normal) +
// sqrt(1 - RefractionIndex * RefractionIndex * (1 - dot(Incident, Normal) * dot(Incident, Normal))))
IDotN = XMVector4Dot(Incident, Normal);
// R = 1.0f - RefractionIndex * RefractionIndex * (1.0f - IDotN * IDotN)
R = XMVectorNegativeMultiplySubtract(IDotN, IDotN, g_XMOne.v);
R = XMVectorMultiply(R, RefractionIndex);
R = XMVectorNegativeMultiplySubtract(R, RefractionIndex, g_XMOne.v);
if (XMVector4LessOrEqual(R, Zero))
{
// Total internal reflection
return Zero;
}
else
{
XMVECTOR Result;
// R = RefractionIndex * IDotN + sqrt(R)
R = XMVectorSqrt(R);
R = XMVectorMultiplyAdd(RefractionIndex, IDotN, R);
// Result = RefractionIndex * Incident - Normal * R
Result = XMVectorMultiply(RefractionIndex, Incident);
Result = XMVectorNegativeMultiplySubtract(Normal, R, Result);
return Result;
}
#elif defined(_XM_ARM_NEON_INTRINSICS_)
XMVECTOR IDotN = XMVector4Dot(Incident, Normal);
// R = 1.0f - RefractionIndex * RefractionIndex * (1.0f - IDotN * IDotN)
float32x4_t R = vmlsq_f32(g_XMOne, IDotN, IDotN);
R = vmulq_f32(R, RefractionIndex);
R = vmlsq_f32(g_XMOne, R, RefractionIndex);
uint32x4_t isrzero = vcleq_f32(R, g_XMZero);
uint8x8x2_t vTemp = vzip_u8(vget_low_u8(vreinterpretq_u8_u32(isrzero)), vget_high_u8(vreinterpretq_u8_u32(isrzero)));
uint16x4x2_t vTemp2 = vzip_u16(vreinterpret_u16_u8(vTemp.val[0]), vreinterpret_u16_u8(vTemp.val[1]));
float32x4_t vResult;
if (vget_lane_u32(vreinterpret_u32_u16(vTemp2.val[1]), 1) == 0xFFFFFFFFU)
{
// Total internal reflection
vResult = g_XMZero;
}
else
{
// Sqrt(R)
float32x4_t S0 = vrsqrteq_f32(R);
float32x4_t P0 = vmulq_f32(R, S0);
float32x4_t R0 = vrsqrtsq_f32(P0, S0);
float32x4_t S1 = vmulq_f32(S0, R0);
float32x4_t P1 = vmulq_f32(R, S1);
float32x4_t R1 = vrsqrtsq_f32(P1, S1);
float32x4_t S2 = vmulq_f32(S1, R1);
R = vmulq_f32(R, S2);
// R = RefractionIndex * IDotN + sqrt(R)
R = vmlaq_f32(R, RefractionIndex, IDotN);
// Result = RefractionIndex * Incident - Normal * R
vResult = vmulq_f32(RefractionIndex, Incident);
vResult = vmlsq_f32(vResult, R, Normal);
}
return vResult;
#elif defined(_XM_SSE_INTRINSICS_)
XMVECTOR IDotN = XMVector4Dot(Incident, Normal);
// R = 1.0f - RefractionIndex * RefractionIndex * (1.0f - IDotN * IDotN)
XMVECTOR R = XM_FNMADD_PS(IDotN, IDotN, g_XMOne);
XMVECTOR R2 = _mm_mul_ps(RefractionIndex, RefractionIndex);
R = XM_FNMADD_PS(R, R2, g_XMOne);
XMVECTOR vResult = _mm_cmple_ps(R, g_XMZero);
if (_mm_movemask_ps(vResult) == 0x0f)
{
// Total internal reflection
vResult = g_XMZero;
}
else
{
// R = RefractionIndex * IDotN + sqrt(R)
R = _mm_sqrt_ps(R);
R = XM_FMADD_PS(RefractionIndex, IDotN, R);
// Result = RefractionIndex * Incident - Normal * R
vResult = _mm_mul_ps(RefractionIndex, Incident);
vResult = XM_FNMADD_PS(R, Normal, vResult);
}
return vResult;
#endif
}
//------------------------------------------------------------------------------
inline XMVECTOR XM_CALLCONV XMVector4Orthogonal(FXMVECTOR V) noexcept
{
#if defined(_XM_NO_INTRINSICS_)
XMVECTORF32 Result = { { {
V.vector4_f32[2],
V.vector4_f32[3],
-V.vector4_f32[0],
-V.vector4_f32[1]
} } };
return Result.v;
#elif defined(_XM_ARM_NEON_INTRINSICS_)
static const XMVECTORF32 Negate = { { { 1.f, 1.f, -1.f, -1.f } } };
float32x4_t Result = vcombine_f32(vget_high_f32(V), vget_low_f32(V));
return vmulq_f32(Result, Negate);
#elif defined(_XM_SSE_INTRINSICS_)
static const XMVECTORF32 FlipZW = { { { 1.0f, 1.0f, -1.0f, -1.0f } } };
XMVECTOR vResult = XM_PERMUTE_PS(V, _MM_SHUFFLE(1, 0, 3, 2));
vResult = _mm_mul_ps(vResult, FlipZW);
return vResult;
#endif
}
//------------------------------------------------------------------------------
inline XMVECTOR XM_CALLCONV XMVector4AngleBetweenNormalsEst
(
FXMVECTOR N1,
FXMVECTOR N2
) noexcept
{
XMVECTOR Result = XMVector4Dot(N1, N2);
Result = XMVectorClamp(Result, g_XMNegativeOne.v, g_XMOne.v);
Result = XMVectorACosEst(Result);
return Result;
}
//------------------------------------------------------------------------------
inline XMVECTOR XM_CALLCONV XMVector4AngleBetweenNormals
(
FXMVECTOR N1,
FXMVECTOR N2
) noexcept
{
XMVECTOR Result = XMVector4Dot(N1, N2);
Result = XMVectorClamp(Result, g_XMNegativeOne.v, g_XMOne.v);
Result = XMVectorACos(Result);
return Result;
}
//------------------------------------------------------------------------------
inline XMVECTOR XM_CALLCONV XMVector4AngleBetweenVectors
(
FXMVECTOR V1,
FXMVECTOR V2
) noexcept
{
XMVECTOR L1 = XMVector4ReciprocalLength(V1);
XMVECTOR L2 = XMVector4ReciprocalLength(V2);
XMVECTOR Dot = XMVector4Dot(V1, V2);
L1 = XMVectorMultiply(L1, L2);
XMVECTOR CosAngle = XMVectorMultiply(Dot, L1);
CosAngle = XMVectorClamp(CosAngle, g_XMNegativeOne.v, g_XMOne.v);
return XMVectorACos(CosAngle);
}
//------------------------------------------------------------------------------
inline XMVECTOR XM_CALLCONV XMVector4Transform
(
FXMVECTOR V,
FXMMATRIX M
) noexcept
{
#if defined(_XM_NO_INTRINSICS_)
float fX = (M.m[0][0] * V.vector4_f32[0]) + (M.m[1][0] * V.vector4_f32[1]) + (M.m[2][0] * V.vector4_f32[2]) + (M.m[3][0] * V.vector4_f32[3]);
float fY = (M.m[0][1] * V.vector4_f32[0]) + (M.m[1][1] * V.vector4_f32[1]) + (M.m[2][1] * V.vector4_f32[2]) + (M.m[3][1] * V.vector4_f32[3]);
float fZ = (M.m[0][2] * V.vector4_f32[0]) + (M.m[1][2] * V.vector4_f32[1]) + (M.m[2][2] * V.vector4_f32[2]) + (M.m[3][2] * V.vector4_f32[3]);
float fW = (M.m[0][3] * V.vector4_f32[0]) + (M.m[1][3] * V.vector4_f32[1]) + (M.m[2][3] * V.vector4_f32[2]) + (M.m[3][3] * V.vector4_f32[3]);
XMVECTORF32 vResult = { { { fX, fY, fZ, fW } } };
return vResult.v;
#elif defined(_XM_ARM_NEON_INTRINSICS_)
float32x2_t VL = vget_low_f32(V);
XMVECTOR vResult = vmulq_lane_f32(M.r[0], VL, 0); // X
vResult = vmlaq_lane_f32(vResult, M.r[1], VL, 1); // Y
float32x2_t VH = vget_high_f32(V);
vResult = vmlaq_lane_f32(vResult, M.r[2], VH, 0); // Z
return vmlaq_lane_f32(vResult, M.r[3], VH, 1); // W
#elif defined(_XM_SSE_INTRINSICS_)
XMVECTOR vResult = XM_PERMUTE_PS(V, _MM_SHUFFLE(3, 3, 3, 3)); // W
vResult = _mm_mul_ps(vResult, M.r[3]);
XMVECTOR vTemp = XM_PERMUTE_PS(V, _MM_SHUFFLE(2, 2, 2, 2)); // Z
vResult = XM_FMADD_PS(vTemp, M.r[2], vResult);
vTemp = XM_PERMUTE_PS(V, _MM_SHUFFLE(1, 1, 1, 1)); // Y
vResult = XM_FMADD_PS(vTemp, M.r[1], vResult);
vTemp = XM_PERMUTE_PS(V, _MM_SHUFFLE(0, 0, 0, 0)); // X
vResult = XM_FMADD_PS(vTemp, M.r[0], vResult);
return vResult;
#endif
}
//------------------------------------------------------------------------------
_Use_decl_annotations_
inline XMFLOAT4* XM_CALLCONV XMVector4TransformStream
(
XMFLOAT4* pOutputStream,
size_t OutputStride,
const XMFLOAT4* pInputStream,
size_t InputStride,
size_t VectorCount,
FXMMATRIX M
) noexcept
{
assert(pOutputStream != nullptr);
assert(pInputStream != nullptr);
assert(InputStride >= sizeof(XMFLOAT4));
_Analysis_assume_(InputStride >= sizeof(XMFLOAT4));
assert(OutputStride >= sizeof(XMFLOAT4));
_Analysis_assume_(OutputStride >= sizeof(XMFLOAT4));
#if defined(_XM_NO_INTRINSICS_)
auto pInputVector = reinterpret_cast<const uint8_t*>(pInputStream);
auto pOutputVector = reinterpret_cast<uint8_t*>(pOutputStream);
const XMVECTOR row0 = M.r[0];
const XMVECTOR row1 = M.r[1];
const XMVECTOR row2 = M.r[2];
const XMVECTOR row3 = M.r[3];
for (size_t i = 0; i < VectorCount; i++)
{
XMVECTOR V = XMLoadFloat4(reinterpret_cast<const XMFLOAT4*>(pInputVector));
XMVECTOR W = XMVectorSplatW(V);
XMVECTOR Z = XMVectorSplatZ(V);
XMVECTOR Y = XMVectorSplatY(V);
XMVECTOR X = XMVectorSplatX(V);
XMVECTOR Result = XMVectorMultiply(W, row3);
Result = XMVectorMultiplyAdd(Z, row2, Result);
Result = XMVectorMultiplyAdd(Y, row1, Result);
Result = XMVectorMultiplyAdd(X, row0, Result);
#ifdef _PREFAST_
#pragma prefast(push)
#pragma prefast(disable : 26015, "PREfast noise: Esp:1307" )
#endif
XMStoreFloat4(reinterpret_cast<XMFLOAT4*>(pOutputVector), Result);
#ifdef _PREFAST_
#pragma prefast(pop)
#endif
pInputVector += InputStride;
pOutputVector += OutputStride;
}
return pOutputStream;
#elif defined(_XM_ARM_NEON_INTRINSICS_)
auto pInputVector = reinterpret_cast<const uint8_t*>(pInputStream);
auto pOutputVector = reinterpret_cast<uint8_t*>(pOutputStream);
const XMVECTOR row0 = M.r[0];
const XMVECTOR row1 = M.r[1];
const XMVECTOR row2 = M.r[2];
const XMVECTOR row3 = M.r[3];
size_t i = 0;
size_t four = VectorCount >> 2;
if (four > 0)
{
if ((InputStride == sizeof(XMFLOAT4)) && (OutputStride == sizeof(XMFLOAT4)))
{
for (size_t j = 0; j < four; ++j)
{
float32x4x4_t V = vld4q_f32(reinterpret_cast<const float*>(pInputVector));
pInputVector += sizeof(XMFLOAT4) * 4;
float32x2_t r = vget_low_f32(row0);
XMVECTOR vResult0 = vmulq_lane_f32(V.val[0], r, 0); // Ax
XMVECTOR vResult1 = vmulq_lane_f32(V.val[0], r, 1); // Bx
XM_PREFETCH(pInputVector);
r = vget_high_f32(row0);
XMVECTOR vResult2 = vmulq_lane_f32(V.val[0], r, 0); // Cx
XMVECTOR vResult3 = vmulq_lane_f32(V.val[0], r, 1); // Dx
XM_PREFETCH(pInputVector + XM_CACHE_LINE_SIZE);
r = vget_low_f32(row1);
vResult0 = vmlaq_lane_f32(vResult0, V.val[1], r, 0); // Ax+Ey
vResult1 = vmlaq_lane_f32(vResult1, V.val[1], r, 1); // Bx+Fy
XM_PREFETCH(pInputVector + (XM_CACHE_LINE_SIZE * 2));
r = vget_high_f32(row1);
vResult2 = vmlaq_lane_f32(vResult2, V.val[1], r, 0); // Cx+Gy
vResult3 = vmlaq_lane_f32(vResult3, V.val[1], r, 1); // Dx+Hy
XM_PREFETCH(pInputVector + (XM_CACHE_LINE_SIZE * 3));
r = vget_low_f32(row2);
vResult0 = vmlaq_lane_f32(vResult0, V.val[2], r, 0); // Ax+Ey+Iz
vResult1 = vmlaq_lane_f32(vResult1, V.val[2], r, 1); // Bx+Fy+Jz
XM_PREFETCH(pInputVector + (XM_CACHE_LINE_SIZE * 4));
r = vget_high_f32(row2);
vResult2 = vmlaq_lane_f32(vResult2, V.val[2], r, 0); // Cx+Gy+Kz
vResult3 = vmlaq_lane_f32(vResult3, V.val[2], r, 1); // Dx+Hy+Lz
XM_PREFETCH(pInputVector + (XM_CACHE_LINE_SIZE * 5));
r = vget_low_f32(row3);
vResult0 = vmlaq_lane_f32(vResult0, V.val[3], r, 0); // Ax+Ey+Iz+Mw
vResult1 = vmlaq_lane_f32(vResult1, V.val[3], r, 1); // Bx+Fy+Jz+Nw
XM_PREFETCH(pInputVector + (XM_CACHE_LINE_SIZE * 6));
r = vget_high_f32(row3);
vResult2 = vmlaq_lane_f32(vResult2, V.val[3], r, 0); // Cx+Gy+Kz+Ow
vResult3 = vmlaq_lane_f32(vResult3, V.val[3], r, 1); // Dx+Hy+Lz+Pw
XM_PREFETCH(pInputVector + (XM_CACHE_LINE_SIZE * 7));
V.val[0] = vResult0;
V.val[1] = vResult1;
V.val[2] = vResult2;
V.val[3] = vResult3;
vst4q_f32(reinterpret_cast<float*>(pOutputVector), V);
pOutputVector += sizeof(XMFLOAT4) * 4;
i += 4;
}
}
}
for (; i < VectorCount; i++)
{
XMVECTOR V = vld1q_f32(reinterpret_cast<const float*>(pInputVector));
pInputVector += InputStride;
float32x2_t VL = vget_low_f32(V);
XMVECTOR vResult = vmulq_lane_f32(row0, VL, 0); // X
vResult = vmlaq_lane_f32(vResult, row1, VL, 1); // Y
float32x2_t VH = vget_high_f32(V);
vResult = vmlaq_lane_f32(vResult, row2, VH, 0); // Z
vResult = vmlaq_lane_f32(vResult, row3, VH, 1); // W
vst1q_f32(reinterpret_cast<float*>(pOutputVector), vResult);
pOutputVector += OutputStride;
}
return pOutputStream;
#elif defined(_XM_AVX2_INTRINSICS_)
auto pInputVector = reinterpret_cast<const uint8_t*>(pInputStream);
auto pOutputVector = reinterpret_cast<uint8_t*>(pOutputStream);
size_t i = 0;
size_t two = VectorCount >> 1;
if (two > 0)
{
__m256 row0 = _mm256_broadcast_ps(&M.r[0]);
__m256 row1 = _mm256_broadcast_ps(&M.r[1]);
__m256 row2 = _mm256_broadcast_ps(&M.r[2]);
__m256 row3 = _mm256_broadcast_ps(&M.r[3]);
if (InputStride == sizeof(XMFLOAT4))
{
if (OutputStride == sizeof(XMFLOAT4))
{
if (!(reinterpret_cast<uintptr_t>(pOutputStream) & 0x1F))
{
// Packed input, aligned & packed output
for (size_t j = 0; j < two; ++j)
{
__m256 VV = _mm256_loadu_ps(reinterpret_cast<const float*>(pInputVector));
pInputVector += sizeof(XMFLOAT4) * 2;
__m256 vTempX = _mm256_shuffle_ps(VV, VV, _MM_SHUFFLE(0, 0, 0, 0));
__m256 vTempY = _mm256_shuffle_ps(VV, VV, _MM_SHUFFLE(1, 1, 1, 1));
__m256 vTempZ = _mm256_shuffle_ps(VV, VV, _MM_SHUFFLE(2, 2, 2, 2));
__m256 vTempW = _mm256_shuffle_ps(VV, VV, _MM_SHUFFLE(3, 3, 3, 3));
vTempX = _mm256_mul_ps(vTempX, row0);
vTempY = _mm256_mul_ps(vTempY, row1);
vTempZ = _mm256_fmadd_ps(vTempZ, row2, vTempX);
vTempW = _mm256_fmadd_ps(vTempW, row3, vTempY);
vTempX = _mm256_add_ps(vTempZ, vTempW);
XM256_STREAM_PS(reinterpret_cast<float*>(pOutputVector), vTempX);
pOutputVector += sizeof(XMFLOAT4) * 2;
i += 2;
}
}
else
{
// Packed input, packed output
for (size_t j = 0; j < two; ++j)
{
__m256 VV = _mm256_loadu_ps(reinterpret_cast<const float*>(pInputVector));
pInputVector += sizeof(XMFLOAT4) * 2;
__m256 vTempX = _mm256_shuffle_ps(VV, VV, _MM_SHUFFLE(0, 0, 0, 0));
__m256 vTempY = _mm256_shuffle_ps(VV, VV, _MM_SHUFFLE(1, 1, 1, 1));
__m256 vTempZ = _mm256_shuffle_ps(VV, VV, _MM_SHUFFLE(2, 2, 2, 2));
__m256 vTempW = _mm256_shuffle_ps(VV, VV, _MM_SHUFFLE(3, 3, 3, 3));
vTempX = _mm256_mul_ps(vTempX, row0);
vTempY = _mm256_mul_ps(vTempY, row1);
vTempZ = _mm256_fmadd_ps(vTempZ, row2, vTempX);
vTempW = _mm256_fmadd_ps(vTempW, row3, vTempY);
vTempX = _mm256_add_ps(vTempZ, vTempW);
_mm256_storeu_ps(reinterpret_cast<float*>(pOutputVector), vTempX);
pOutputVector += sizeof(XMFLOAT4) * 2;
i += 2;
}
}
}
else
{
// Packed input, unpacked output
for (size_t j = 0; j < two; ++j)
{
__m256 VV = _mm256_loadu_ps(reinterpret_cast<const float*>(pInputVector));
pInputVector += sizeof(XMFLOAT4) * 2;
__m256 vTempX = _mm256_shuffle_ps(VV, VV, _MM_SHUFFLE(0, 0, 0, 0));
__m256 vTempY = _mm256_shuffle_ps(VV, VV, _MM_SHUFFLE(1, 1, 1, 1));
__m256 vTempZ = _mm256_shuffle_ps(VV, VV, _MM_SHUFFLE(2, 2, 2, 2));
__m256 vTempW = _mm256_shuffle_ps(VV, VV, _MM_SHUFFLE(3, 3, 3, 3));
vTempX = _mm256_mul_ps(vTempX, row0);
vTempY = _mm256_mul_ps(vTempY, row1);
vTempZ = _mm256_fmadd_ps(vTempZ, row2, vTempX);
vTempW = _mm256_fmadd_ps(vTempW, row3, vTempY);
vTempX = _mm256_add_ps(vTempZ, vTempW);
_mm_storeu_ps(reinterpret_cast<float*>(pOutputVector), _mm256_castps256_ps128(vTempX));
pOutputVector += OutputStride;
_mm_storeu_ps(reinterpret_cast<float*>(pOutputVector), _mm256_extractf128_ps(vTempX, 1));
pOutputVector += OutputStride;
i += 2;
}
}
}
}
if (i < VectorCount)
{
const XMVECTOR row0 = M.r[0];
const XMVECTOR row1 = M.r[1];
const XMVECTOR row2 = M.r[2];
const XMVECTOR row3 = M.r[3];
for (; i < VectorCount; i++)
{
__m128 V = _mm_loadu_ps(reinterpret_cast<const float*>(pInputVector));
pInputVector += InputStride;
XMVECTOR vTempX = XM_PERMUTE_PS(V, _MM_SHUFFLE(0, 0, 0, 0));
XMVECTOR vTempY = XM_PERMUTE_PS(V, _MM_SHUFFLE(1, 1, 1, 1));
XMVECTOR vTempZ = XM_PERMUTE_PS(V, _MM_SHUFFLE(2, 2, 2, 2));
XMVECTOR vTempW = XM_PERMUTE_PS(V, _MM_SHUFFLE(3, 3, 3, 3));
vTempX = _mm_mul_ps(vTempX, row0);
vTempY = _mm_mul_ps(vTempY, row1);
vTempZ = XM_FMADD_PS(vTempZ, row2, vTempX);
vTempW = XM_FMADD_PS(vTempW, row3, vTempY);
vTempX = _mm_add_ps(vTempZ, vTempW);
_mm_storeu_ps(reinterpret_cast<float*>(pOutputVector), vTempX);
pOutputVector += OutputStride;
}
}
XM_SFENCE();
return pOutputStream;
#elif defined(_XM_SSE_INTRINSICS_)
auto pInputVector = reinterpret_cast<const uint8_t*>(pInputStream);
auto pOutputVector = reinterpret_cast<uint8_t*>(pOutputStream);
const XMVECTOR row0 = M.r[0];
const XMVECTOR row1 = M.r[1];
const XMVECTOR row2 = M.r[2];
const XMVECTOR row3 = M.r[3];
if (!(reinterpret_cast<uintptr_t>(pOutputStream) & 0xF) && !(OutputStride & 0xF))
{
if (!(reinterpret_cast<uintptr_t>(pInputStream) & 0xF) && !(InputStride & 0xF))
{
// Aligned input, aligned output
for (size_t i = 0; i < VectorCount; i++)
{
__m128 V = _mm_load_ps(reinterpret_cast<const float*>(pInputVector));
pInputVector += InputStride;
XMVECTOR vTempX = XM_PERMUTE_PS(V, _MM_SHUFFLE(0, 0, 0, 0));
XMVECTOR vTempY = XM_PERMUTE_PS(V, _MM_SHUFFLE(1, 1, 1, 1));
XMVECTOR vTempZ = XM_PERMUTE_PS(V, _MM_SHUFFLE(2, 2, 2, 2));
XMVECTOR vTempW = XM_PERMUTE_PS(V, _MM_SHUFFLE(3, 3, 3, 3));
vTempX = _mm_mul_ps(vTempX, row0);
vTempY = _mm_mul_ps(vTempY, row1);
vTempZ = XM_FMADD_PS(vTempZ, row2, vTempX);
vTempW = XM_FMADD_PS(vTempW, row3, vTempY);
vTempX = _mm_add_ps(vTempZ, vTempW);
XM_STREAM_PS(reinterpret_cast<float*>(pOutputVector), vTempX);
pOutputVector += OutputStride;
}
}
else
{
// Unaligned input, aligned output
for (size_t i = 0; i < VectorCount; i++)
{
__m128 V = _mm_loadu_ps(reinterpret_cast<const float*>(pInputVector));
pInputVector += InputStride;
XMVECTOR vTempX = XM_PERMUTE_PS(V, _MM_SHUFFLE(0, 0, 0, 0));
XMVECTOR vTempY = XM_PERMUTE_PS(V, _MM_SHUFFLE(1, 1, 1, 1));
XMVECTOR vTempZ = XM_PERMUTE_PS(V, _MM_SHUFFLE(2, 2, 2, 2));
XMVECTOR vTempW = XM_PERMUTE_PS(V, _MM_SHUFFLE(3, 3, 3, 3));
vTempX = _mm_mul_ps(vTempX, row0);
vTempY = _mm_mul_ps(vTempY, row1);
vTempZ = XM_FMADD_PS(vTempZ, row2, vTempX);
vTempW = XM_FMADD_PS(vTempW, row3, vTempY);
vTempX = _mm_add_ps(vTempZ, vTempW);
XM_STREAM_PS(reinterpret_cast<float*>(pOutputVector), vTempX);
pOutputVector += OutputStride;
}
}
}
else
{
if (!(reinterpret_cast<uintptr_t>(pInputStream) & 0xF) && !(InputStride & 0xF))
{
// Aligned input, unaligned output
for (size_t i = 0; i < VectorCount; i++)
{
__m128 V = _mm_load_ps(reinterpret_cast<const float*>(pInputVector));
pInputVector += InputStride;
XMVECTOR vTempX = XM_PERMUTE_PS(V, _MM_SHUFFLE(0, 0, 0, 0));
XMVECTOR vTempY = XM_PERMUTE_PS(V, _MM_SHUFFLE(1, 1, 1, 1));
XMVECTOR vTempZ = XM_PERMUTE_PS(V, _MM_SHUFFLE(2, 2, 2, 2));
XMVECTOR vTempW = XM_PERMUTE_PS(V, _MM_SHUFFLE(3, 3, 3, 3));
vTempX = _mm_mul_ps(vTempX, row0);
vTempY = _mm_mul_ps(vTempY, row1);
vTempZ = XM_FMADD_PS(vTempZ, row2, vTempX);
vTempW = XM_FMADD_PS(vTempW, row3, vTempY);
vTempX = _mm_add_ps(vTempZ, vTempW);
_mm_storeu_ps(reinterpret_cast<float*>(pOutputVector), vTempX);
pOutputVector += OutputStride;
}
}
else
{
// Unaligned input, unaligned output
for (size_t i = 0; i < VectorCount; i++)
{
__m128 V = _mm_loadu_ps(reinterpret_cast<const float*>(pInputVector));
pInputVector += InputStride;
XMVECTOR vTempX = XM_PERMUTE_PS(V, _MM_SHUFFLE(0, 0, 0, 0));
XMVECTOR vTempY = XM_PERMUTE_PS(V, _MM_SHUFFLE(1, 1, 1, 1));
XMVECTOR vTempZ = XM_PERMUTE_PS(V, _MM_SHUFFLE(2, 2, 2, 2));
XMVECTOR vTempW = XM_PERMUTE_PS(V, _MM_SHUFFLE(3, 3, 3, 3));
vTempX = _mm_mul_ps(vTempX, row0);
vTempY = _mm_mul_ps(vTempY, row1);
vTempZ = XM_FMADD_PS(vTempZ, row2, vTempX);
vTempW = XM_FMADD_PS(vTempW, row3, vTempY);
vTempX = _mm_add_ps(vTempZ, vTempW);
_mm_storeu_ps(reinterpret_cast<float*>(pOutputVector), vTempX);
pOutputVector += OutputStride;
}
}
}
XM_SFENCE();
return pOutputStream;
#endif
}
/****************************************************************************
*
* XMVECTOR operators
*
****************************************************************************/
#ifndef _XM_NO_XMVECTOR_OVERLOADS_
//------------------------------------------------------------------------------
inline XMVECTOR XM_CALLCONV operator+ (FXMVECTOR V) noexcept
{
return V;
}
//------------------------------------------------------------------------------
inline XMVECTOR XM_CALLCONV operator- (FXMVECTOR V) noexcept
{
return XMVectorNegate(V);
}
//------------------------------------------------------------------------------
inline XMVECTOR& XM_CALLCONV operator+=
(
XMVECTOR& V1,
FXMVECTOR V2
) noexcept
{
V1 = XMVectorAdd(V1, V2);
return V1;
}
//------------------------------------------------------------------------------
inline XMVECTOR& XM_CALLCONV operator-=
(
XMVECTOR& V1,
FXMVECTOR V2
) noexcept
{
V1 = XMVectorSubtract(V1, V2);
return V1;
}
//------------------------------------------------------------------------------
inline XMVECTOR& XM_CALLCONV operator*=
(
XMVECTOR& V1,
FXMVECTOR V2
) noexcept
{
V1 = XMVectorMultiply(V1, V2);
return V1;
}
//------------------------------------------------------------------------------
inline XMVECTOR& XM_CALLCONV operator/=
(
XMVECTOR& V1,
FXMVECTOR V2
) noexcept
{
V1 = XMVectorDivide(V1, V2);
return V1;
}
//------------------------------------------------------------------------------
inline XMVECTOR& operator*=
(
XMVECTOR& V,
const float S
) noexcept
{
V = XMVectorScale(V, S);
return V;
}
//------------------------------------------------------------------------------
inline XMVECTOR& operator/=
(
XMVECTOR& V,
const float S
) noexcept
{
XMVECTOR vS = XMVectorReplicate(S);
V = XMVectorDivide(V, vS);
return V;
}
//------------------------------------------------------------------------------
inline XMVECTOR XM_CALLCONV operator+
(
FXMVECTOR V1,
FXMVECTOR V2
) noexcept
{
return XMVectorAdd(V1, V2);
}
//------------------------------------------------------------------------------
inline XMVECTOR XM_CALLCONV operator-
(
FXMVECTOR V1,
FXMVECTOR V2
) noexcept
{
return XMVectorSubtract(V1, V2);
}
//------------------------------------------------------------------------------
inline XMVECTOR XM_CALLCONV operator*
(
FXMVECTOR V1,
FXMVECTOR V2
) noexcept
{
return XMVectorMultiply(V1, V2);
}
//------------------------------------------------------------------------------
inline XMVECTOR XM_CALLCONV operator/
(
FXMVECTOR V1,
FXMVECTOR V2
) noexcept
{
return XMVectorDivide(V1, V2);
}
//------------------------------------------------------------------------------
inline XMVECTOR XM_CALLCONV operator*
(
FXMVECTOR V,
const float S
) noexcept
{
return XMVectorScale(V, S);
}
//------------------------------------------------------------------------------
inline XMVECTOR XM_CALLCONV operator/
(
FXMVECTOR V,
const float S
) noexcept
{
XMVECTOR vS = XMVectorReplicate(S);
return XMVectorDivide(V, vS);
}
//------------------------------------------------------------------------------
inline XMVECTOR XM_CALLCONV operator*
(
float S,
FXMVECTOR V
) noexcept
{
return XMVectorScale(V, S);
}
#endif /* !_XM_NO_XMVECTOR_OVERLOADS_ */
#if defined(_XM_NO_INTRINSICS_)
#undef XMISNAN
#undef XMISINF
#endif
#if defined(_XM_SSE_INTRINSICS_)
#undef XM3UNPACK3INTO4
#undef XM3PACK4INTO3
#endif