1
0
mirror of https://github.com/ncblakely/GiantsTools synced 2024-12-23 15:57:22 +01:00
GiantsTools/Sdk/External/DirectXTK/Src/SpriteBatch.cpp
2021-01-23 15:40:09 -08:00

1201 lines
39 KiB
C++

//--------------------------------------------------------------------------------------
// File: SpriteBatch.cpp
//
// Copyright (c) Microsoft Corporation. All rights reserved.
// Licensed under the MIT License.
//
// http://go.microsoft.com/fwlink/?LinkId=248929
//--------------------------------------------------------------------------------------
#include "pch.h"
#include "SpriteBatch.h"
#include "BufferHelpers.h"
#include "CommonStates.h"
#include "DirectXHelpers.h"
#include "VertexTypes.h"
#include "AlignedNew.h"
#include "SharedResourcePool.h"
using namespace DirectX;
using Microsoft::WRL::ComPtr;
namespace
{
// Include the precompiled shader code.
#if defined(_XBOX_ONE) && defined(_TITLE)
#include "Shaders/Compiled/XboxOneSpriteEffect_SpriteVertexShader.inc"
#include "Shaders/Compiled/XboxOneSpriteEffect_SpritePixelShader.inc"
#else
#include "Shaders/Compiled/SpriteEffect_SpriteVertexShader.inc"
#include "Shaders/Compiled/SpriteEffect_SpritePixelShader.inc"
#endif
// Helper looks up the D3D device corresponding to a context interface.
inline ComPtr<ID3D11Device> GetDevice(_In_ ID3D11DeviceContext* deviceContext)
{
ComPtr<ID3D11Device> device;
deviceContext->GetDevice(&device);
return device;
}
// Helper converts a RECT to XMVECTOR.
inline XMVECTOR LoadRect(_In_ RECT const* rect)
{
XMVECTOR v = XMLoadInt4(reinterpret_cast<uint32_t const*>(rect));
v = XMConvertVectorIntToFloat(v, 0);
// Convert right/bottom to width/height.
v = XMVectorSubtract(v, XMVectorPermute<0, 1, 4, 5>(g_XMZero, v));
return v;
}
}
// Internal SpriteBatch implementation class.
__declspec(align(16)) class SpriteBatch::Impl : public AlignedNew<SpriteBatch::Impl>
{
public:
Impl(_In_ ID3D11DeviceContext* deviceContext);
void XM_CALLCONV Begin(SpriteSortMode sortMode,
_In_opt_ ID3D11BlendState* blendState,
_In_opt_ ID3D11SamplerState* samplerState,
_In_opt_ ID3D11DepthStencilState* depthStencilState,
_In_opt_ ID3D11RasterizerState* rasterizerState,
std::function<void()>& setCustomShaders,
FXMMATRIX transformMatrix);
void End();
void XM_CALLCONV Draw(_In_ ID3D11ShaderResourceView* texture,
FXMVECTOR destination,
_In_opt_ RECT const* sourceRectangle,
FXMVECTOR color,
FXMVECTOR originRotationDepth,
unsigned int flags);
// Info about a single sprite that is waiting to be drawn.
__declspec(align(16)) struct SpriteInfo : public AlignedNew<SpriteInfo>
{
XMFLOAT4A source;
XMFLOAT4A destination;
XMFLOAT4A color;
XMFLOAT4A originRotationDepth;
ID3D11ShaderResourceView* texture;
unsigned int flags;
// Combine values from the public SpriteEffects enum with these internal-only flags.
static const unsigned int SourceInTexels = 4;
static const unsigned int DestSizeInPixels = 8;
static_assert((SpriteEffects_FlipBoth & (SourceInTexels | DestSizeInPixels)) == 0, "Flag bits must not overlap");
};
DXGI_MODE_ROTATION mRotation;
bool mSetViewport;
D3D11_VIEWPORT mViewPort;
private:
// Implementation helper methods.
void GrowSpriteQueue();
void PrepareForRendering();
void FlushBatch();
void SortSprites();
void GrowSortedSprites();
void RenderBatch(_In_ ID3D11ShaderResourceView* texture, _In_reads_(count) SpriteInfo const* const* sprites, size_t count);
static void XM_CALLCONV RenderSprite(_In_ SpriteInfo const* sprite,
_Out_writes_(VerticesPerSprite) VertexPositionColorTexture* vertices,
FXMVECTOR textureSize,
FXMVECTOR inverseTextureSize);
static XMVECTOR GetTextureSize(_In_ ID3D11ShaderResourceView* texture);
XMMATRIX GetViewportTransform(_In_ ID3D11DeviceContext* deviceContext, DXGI_MODE_ROTATION rotation );
// Constants.
static const size_t MaxBatchSize = 2048;
static const size_t MinBatchSize = 128;
static const size_t InitialQueueSize = 64;
static const size_t VerticesPerSprite = 4;
static const size_t IndicesPerSprite = 6;
// Queue of sprites waiting to be drawn.
std::unique_ptr<SpriteInfo[]> mSpriteQueue;
size_t mSpriteQueueCount;
size_t mSpriteQueueArraySize;
// To avoid needlessly copying around bulky SpriteInfo structures, we leave that
// actual data alone and just sort this array of pointers instead. But we want contiguous
// memory for cache efficiency, so these pointers are just shortcuts into the single
// mSpriteQueue array, and we take care to keep them in order when sorting is disabled.
std::vector<SpriteInfo const*> mSortedSprites;
// If each SpriteInfo instance held a refcount on its texture, could end up with
// many redundant AddRef/Release calls on the same object, so instead we use
// this separate list to hold just a single refcount each time we change texture.
std::vector<ComPtr<ID3D11ShaderResourceView>> mSpriteTextureReferences;
// Mode settings from the last Begin call.
bool mInBeginEndPair;
SpriteSortMode mSortMode;
ComPtr<ID3D11BlendState> mBlendState;
ComPtr<ID3D11SamplerState> mSamplerState;
ComPtr<ID3D11DepthStencilState> mDepthStencilState;
ComPtr<ID3D11RasterizerState> mRasterizerState;
std::function<void()> mSetCustomShaders;
XMMATRIX mTransformMatrix;
// Only one of these helpers is allocated per D3D device, even if there are multiple SpriteBatch instances.
struct DeviceResources
{
DeviceResources(_In_ ID3D11Device* device);
ComPtr<ID3D11VertexShader> vertexShader;
ComPtr<ID3D11PixelShader> pixelShader;
ComPtr<ID3D11InputLayout> inputLayout;
ComPtr<ID3D11Buffer> indexBuffer;
CommonStates stateObjects;
private:
void CreateShaders(_In_ ID3D11Device* device);
void CreateIndexBuffer(_In_ ID3D11Device* device);
static std::vector<short> CreateIndexValues();
};
// Only one of these helpers is allocated per D3D device context, even if there are multiple SpriteBatch instances.
struct ContextResources
{
ContextResources(_In_ ID3D11DeviceContext* deviceContext);
#if defined(_XBOX_ONE) && defined(_TITLE)
ComPtr<ID3D11DeviceContextX> deviceContext;
#else
ComPtr<ID3D11DeviceContext> deviceContext;
#endif
ComPtr<ID3D11Buffer> vertexBuffer;
ConstantBuffer<XMMATRIX> constantBuffer;
size_t vertexBufferPosition;
bool inImmediateMode;
private:
void CreateVertexBuffer();
};
// Per-device and per-context data.
std::shared_ptr<DeviceResources> mDeviceResources;
std::shared_ptr<ContextResources> mContextResources;
static SharedResourcePool<ID3D11Device*, DeviceResources> deviceResourcesPool;
static SharedResourcePool<ID3D11DeviceContext*, ContextResources> contextResourcesPool;
};
// Global pools of per-device and per-context SpriteBatch resources.
SharedResourcePool<ID3D11Device*, SpriteBatch::Impl::DeviceResources> SpriteBatch::Impl::deviceResourcesPool;
SharedResourcePool<ID3D11DeviceContext*, SpriteBatch::Impl::ContextResources> SpriteBatch::Impl::contextResourcesPool;
// Constants.
const XMMATRIX SpriteBatch::MatrixIdentity = XMMatrixIdentity();
const XMFLOAT2 SpriteBatch::Float2Zero(0, 0);
// Per-device constructor.
SpriteBatch::Impl::DeviceResources::DeviceResources(_In_ ID3D11Device* device)
: stateObjects(device)
{
CreateShaders(device);
CreateIndexBuffer(device);
}
// Creates the SpriteBatch shaders and input layout.
void SpriteBatch::Impl::DeviceResources::CreateShaders(_In_ ID3D11Device* device)
{
ThrowIfFailed(
device->CreateVertexShader(SpriteEffect_SpriteVertexShader,
sizeof(SpriteEffect_SpriteVertexShader),
nullptr,
&vertexShader)
);
ThrowIfFailed(
device->CreatePixelShader(SpriteEffect_SpritePixelShader,
sizeof(SpriteEffect_SpritePixelShader),
nullptr,
&pixelShader)
);
ThrowIfFailed(
device->CreateInputLayout(VertexPositionColorTexture::InputElements,
VertexPositionColorTexture::InputElementCount,
SpriteEffect_SpriteVertexShader,
sizeof(SpriteEffect_SpriteVertexShader),
&inputLayout)
);
SetDebugObjectName(vertexShader.Get(), "DirectXTK:SpriteBatch");
SetDebugObjectName(pixelShader.Get(), "DirectXTK:SpriteBatch");
SetDebugObjectName(inputLayout.Get(), "DirectXTK:SpriteBatch");
}
// Creates the SpriteBatch index buffer.
void SpriteBatch::Impl::DeviceResources::CreateIndexBuffer(_In_ ID3D11Device* device)
{
D3D11_BUFFER_DESC indexBufferDesc = {};
static_assert((MaxBatchSize * VerticesPerSprite) < USHRT_MAX, "MaxBatchSize too large for 16-bit indices");
indexBufferDesc.ByteWidth = sizeof(short) * MaxBatchSize * IndicesPerSprite;
indexBufferDesc.BindFlags = D3D11_BIND_INDEX_BUFFER;
indexBufferDesc.Usage = D3D11_USAGE_DEFAULT;
auto indexValues = CreateIndexValues();
D3D11_SUBRESOURCE_DATA indexDataDesc = { indexValues.data(), 0, 0 };
ThrowIfFailed(
device->CreateBuffer(&indexBufferDesc, &indexDataDesc, &indexBuffer)
);
SetDebugObjectName(indexBuffer.Get(), "DirectXTK:SpriteBatch");
}
// Helper for populating the SpriteBatch index buffer.
std::vector<short> SpriteBatch::Impl::DeviceResources::CreateIndexValues()
{
std::vector<short> indices;
indices.reserve(MaxBatchSize * IndicesPerSprite);
for (size_t j = 0; j < MaxBatchSize * VerticesPerSprite; j += VerticesPerSprite)
{
short i = static_cast<short>(j);
indices.push_back(i);
indices.push_back(i + 1);
indices.push_back(i + 2);
indices.push_back(i + 1);
indices.push_back(i + 3);
indices.push_back(i + 2);
}
return indices;
}
// Per-context constructor.
SpriteBatch::Impl::ContextResources::ContextResources(_In_ ID3D11DeviceContext* context)
:constantBuffer(GetDevice(context).Get()),
vertexBufferPosition(0),
inImmediateMode(false)
{
#if defined(_XBOX_ONE) && defined(_TITLE)
ThrowIfFailed(context->QueryInterface(IID_GRAPHICS_PPV_ARGS(deviceContext.GetAddressOf())));
#else
deviceContext = context;
#endif
CreateVertexBuffer();
}
// Creates the SpriteBatch vertex buffer.
void SpriteBatch::Impl::ContextResources::CreateVertexBuffer()
{
#if defined(_XBOX_ONE) && defined(_TITLE)
D3D11_BUFFER_DESC vertexBufferDesc = {};
vertexBufferDesc.ByteWidth = sizeof(VertexPositionColorTexture) * MaxBatchSize * VerticesPerSprite;
vertexBufferDesc.BindFlags = D3D11_BIND_VERTEX_BUFFER;
vertexBufferDesc.Usage = D3D11_USAGE_DEFAULT;
vertexBufferDesc.CPUAccessFlags = D3D11_CPU_ACCESS_WRITE;
auto device = GetDevice(deviceContext.Get());
ComPtr<ID3D11DeviceX> deviceX;
ThrowIfFailed(device.As(&deviceX));
ThrowIfFailed(
deviceX->CreatePlacementBuffer(&vertexBufferDesc, nullptr, &vertexBuffer)
);
SetDebugObjectName(vertexBuffer.Get(), "DirectXTK:SpriteBatch");
#else
D3D11_BUFFER_DESC vertexBufferDesc = {};
vertexBufferDesc.ByteWidth = sizeof(VertexPositionColorTexture) * MaxBatchSize * VerticesPerSprite;
vertexBufferDesc.BindFlags = D3D11_BIND_VERTEX_BUFFER;
vertexBufferDesc.Usage = D3D11_USAGE_DYNAMIC;
vertexBufferDesc.CPUAccessFlags = D3D11_CPU_ACCESS_WRITE;
ThrowIfFailed(
GetDevice(deviceContext.Get())->CreateBuffer(&vertexBufferDesc, nullptr, &vertexBuffer)
);
SetDebugObjectName(vertexBuffer.Get(), "DirectXTK:SpriteBatch");
#endif
}
// Per-SpriteBatch constructor.
SpriteBatch::Impl::Impl(_In_ ID3D11DeviceContext* deviceContext)
: mRotation(DXGI_MODE_ROTATION_IDENTITY),
mSetViewport(false),
mViewPort{},
mSpriteQueueCount(0),
mSpriteQueueArraySize(0),
mInBeginEndPair(false),
mSortMode(SpriteSortMode_Deferred),
mTransformMatrix(MatrixIdentity),
mDeviceResources(deviceResourcesPool.DemandCreate(GetDevice(deviceContext).Get())),
mContextResources(contextResourcesPool.DemandCreate(deviceContext))
{
}
// Begins a batch of sprite drawing operations.
_Use_decl_annotations_
void XM_CALLCONV SpriteBatch::Impl::Begin(SpriteSortMode sortMode,
ID3D11BlendState* blendState,
ID3D11SamplerState* samplerState,
ID3D11DepthStencilState* depthStencilState,
ID3D11RasterizerState* rasterizerState,
std::function<void()>& setCustomShaders,
FXMMATRIX transformMatrix)
{
if (mInBeginEndPair)
throw std::exception("Cannot nest Begin calls on a single SpriteBatch");
mSortMode = sortMode;
mBlendState = blendState;
mSamplerState = samplerState;
mDepthStencilState = depthStencilState;
mRasterizerState = rasterizerState;
mSetCustomShaders = setCustomShaders;
mTransformMatrix = transformMatrix;
if (sortMode == SpriteSortMode_Immediate)
{
// If we are in immediate mode, set device state ready for drawing.
if (mContextResources->inImmediateMode)
throw std::exception("Only one SpriteBatch at a time can use SpriteSortMode_Immediate");
PrepareForRendering();
mContextResources->inImmediateMode = true;
}
mInBeginEndPair = true;
}
// Ends a batch of sprite drawing operations.
void SpriteBatch::Impl::End()
{
if (!mInBeginEndPair)
throw std::exception("Begin must be called before End");
if (mSortMode == SpriteSortMode_Immediate)
{
// If we are in immediate mode, sprites have already been drawn.
mContextResources->inImmediateMode = false;
}
else
{
// Draw the queued sprites now.
if (mContextResources->inImmediateMode)
throw std::exception("Cannot end one SpriteBatch while another is using SpriteSortMode_Immediate");
PrepareForRendering();
FlushBatch();
}
// Break circular reference chains, in case the state lambda closed
// over an object that holds a reference to this SpriteBatch.
mSetCustomShaders = nullptr;
mInBeginEndPair = false;
}
// Adds a single sprite to the queue.
_Use_decl_annotations_
void XM_CALLCONV SpriteBatch::Impl::Draw(ID3D11ShaderResourceView* texture,
FXMVECTOR destination,
RECT const* sourceRectangle,
FXMVECTOR color,
FXMVECTOR originRotationDepth,
unsigned int flags)
{
if (!texture)
throw std::exception("Texture cannot be null");
if (!mInBeginEndPair)
throw std::exception("Begin must be called before Draw");
// Get a pointer to the output sprite.
if (mSpriteQueueCount >= mSpriteQueueArraySize)
{
GrowSpriteQueue();
}
SpriteInfo* sprite = &mSpriteQueue[mSpriteQueueCount];
XMVECTOR dest = destination;
if (sourceRectangle)
{
// User specified an explicit source region.
XMVECTOR source = LoadRect(sourceRectangle);
XMStoreFloat4A(&sprite->source, source);
// If the destination size is relative to the source region, convert it to pixels.
if (!(flags & SpriteInfo::DestSizeInPixels))
{
dest = XMVectorPermute<0, 1, 6, 7>(dest, XMVectorMultiply(dest, source)); // dest.zw *= source.zw
}
flags |= SpriteInfo::SourceInTexels | SpriteInfo::DestSizeInPixels;
}
else
{
// No explicit source region, so use the entire texture.
static const XMVECTORF32 wholeTexture = { { { 0, 0, 1, 1 } } };
XMStoreFloat4A(&sprite->source, wholeTexture);
}
// Store sprite parameters.
XMStoreFloat4A(&sprite->destination, dest);
XMStoreFloat4A(&sprite->color, color);
XMStoreFloat4A(&sprite->originRotationDepth, originRotationDepth);
sprite->texture = texture;
sprite->flags = flags;
if (mSortMode == SpriteSortMode_Immediate)
{
// If we are in immediate mode, draw this sprite straight away.
RenderBatch(texture, &sprite, 1);
}
else
{
// Queue this sprite for later sorting and batched rendering.
mSpriteQueueCount++;
// Make sure we hold a refcount on this texture until the sprite has been drawn. Only checking the
// back of the vector means we will add duplicate references if the caller switches back and forth
// between multiple repeated textures, but calling AddRef more times than strictly necessary hurts
// nothing, and is faster than scanning the whole list or using a map to detect all duplicates.
if (mSpriteTextureReferences.empty() || texture != mSpriteTextureReferences.back().Get())
{
mSpriteTextureReferences.emplace_back(texture);
}
}
}
// Dynamically expands the array used to store pending sprite information.
void SpriteBatch::Impl::GrowSpriteQueue()
{
// Grow by a factor of 2.
size_t newSize = std::max(InitialQueueSize, mSpriteQueueArraySize * 2);
// Allocate the new array.
auto newArray = std::make_unique<SpriteInfo[]>(newSize);
// Copy over any existing sprites.
for (size_t i = 0; i < mSpriteQueueCount; i++)
{
newArray[i] = mSpriteQueue[i];
}
// Replace the previous array with the new one.
mSpriteQueue = std::move(newArray);
mSpriteQueueArraySize = newSize;
// Clear any dangling SpriteInfo pointers left over from previous rendering.
mSortedSprites.clear();
}
// Sets up D3D device state ready for drawing sprites.
void SpriteBatch::Impl::PrepareForRendering()
{
auto deviceContext = mContextResources->deviceContext.Get();
// Set state objects.
auto blendState = mBlendState ? mBlendState.Get() : mDeviceResources->stateObjects.AlphaBlend();
auto depthStencilState = mDepthStencilState ? mDepthStencilState.Get() : mDeviceResources->stateObjects.DepthNone();
auto rasterizerState = mRasterizerState ? mRasterizerState.Get() : mDeviceResources->stateObjects.CullCounterClockwise();
auto samplerState = mSamplerState ? mSamplerState.Get() : mDeviceResources->stateObjects.LinearClamp();
deviceContext->OMSetBlendState(blendState, nullptr, 0xFFFFFFFF);
deviceContext->OMSetDepthStencilState(depthStencilState, 0);
deviceContext->RSSetState(rasterizerState);
deviceContext->PSSetSamplers(0, 1, &samplerState);
// Set shaders.
deviceContext->IASetPrimitiveTopology(D3D11_PRIMITIVE_TOPOLOGY_TRIANGLELIST);
deviceContext->IASetInputLayout(mDeviceResources->inputLayout.Get());
deviceContext->VSSetShader(mDeviceResources->vertexShader.Get(), nullptr, 0);
deviceContext->PSSetShader(mDeviceResources->pixelShader.Get(), nullptr, 0);
// Set the vertex and index buffer.
#if !defined(_XBOX_ONE) || !defined(_TITLE)
auto vertexBuffer = mContextResources->vertexBuffer.Get();
UINT vertexStride = sizeof(VertexPositionColorTexture);
UINT vertexOffset = 0;
deviceContext->IASetVertexBuffers(0, 1, &vertexBuffer, &vertexStride, &vertexOffset);
#endif
deviceContext->IASetIndexBuffer(mDeviceResources->indexBuffer.Get(), DXGI_FORMAT_R16_UINT, 0);
// Set the transform matrix.
XMMATRIX transformMatrix = (mRotation == DXGI_MODE_ROTATION_UNSPECIFIED)
? mTransformMatrix
: (mTransformMatrix * GetViewportTransform(deviceContext, mRotation));
#if defined(_XBOX_ONE) && defined(_TITLE)
void* grfxMemory;
mContextResources->constantBuffer.SetData(deviceContext, transformMatrix, &grfxMemory);
deviceContext->VSSetPlacementConstantBuffer(0, mContextResources->constantBuffer.GetBuffer(), grfxMemory);
#else
mContextResources->constantBuffer.SetData(deviceContext, transformMatrix);
ID3D11Buffer* constantBuffer = mContextResources->constantBuffer.GetBuffer();
deviceContext->VSSetConstantBuffers(0, 1, &constantBuffer);
#endif
// If this is a deferred D3D context, reset position so the first Map call will use D3D11_MAP_WRITE_DISCARD.
if (deviceContext->GetType() == D3D11_DEVICE_CONTEXT_DEFERRED)
{
mContextResources->vertexBufferPosition = 0;
}
// Hook lets the caller replace our settings with their own custom shaders.
if (mSetCustomShaders)
{
mSetCustomShaders();
}
}
// Sends queued sprites to the graphics device.
void SpriteBatch::Impl::FlushBatch()
{
if (!mSpriteQueueCount)
return;
SortSprites();
// Walk through the sorted sprite list, looking for adjacent entries that share a texture.
ID3D11ShaderResourceView* batchTexture = nullptr;
size_t batchStart = 0;
for (size_t pos = 0; pos < mSpriteQueueCount; pos++)
{
ID3D11ShaderResourceView* texture = mSortedSprites[pos]->texture;
_Analysis_assume_(texture != nullptr);
// Flush whenever the texture changes.
if (texture != batchTexture)
{
if (pos > batchStart)
{
RenderBatch(batchTexture, &mSortedSprites[batchStart], pos - batchStart);
}
batchTexture = texture;
batchStart = pos;
}
}
// Flush the final batch.
RenderBatch(batchTexture, &mSortedSprites[batchStart], mSpriteQueueCount - batchStart);
// Reset the queue.
mSpriteQueueCount = 0;
mSpriteTextureReferences.clear();
// When sorting is disabled, we persist mSortedSprites data from one batch to the next, to avoid
// uneccessary work in GrowSortedSprites. But we never reuse these when sorting, because re-sorting
// previously sorted items gives unstable ordering if some sprites have identical sort keys.
if (mSortMode != SpriteSortMode_Deferred)
{
mSortedSprites.clear();
}
}
// Sorts the array of queued sprites.
void SpriteBatch::Impl::SortSprites()
{
// Fill the mSortedSprites vector.
if (mSortedSprites.size() < mSpriteQueueCount)
{
GrowSortedSprites();
}
switch (mSortMode)
{
case SpriteSortMode_Texture:
// Sort by texture.
std::sort(mSortedSprites.begin(), mSortedSprites.begin() + static_cast<int>(mSpriteQueueCount),
[](SpriteInfo const* x, SpriteInfo const* y) noexcept -> bool
{
return x->texture < y->texture;
});
break;
case SpriteSortMode_BackToFront:
// Sort back to front.
std::sort(mSortedSprites.begin(), mSortedSprites.begin() + static_cast<int>(mSpriteQueueCount),
[](SpriteInfo const* x, SpriteInfo const* y) noexcept -> bool
{
return x->originRotationDepth.w > y->originRotationDepth.w;
});
break;
case SpriteSortMode_FrontToBack:
// Sort front to back.
std::sort(mSortedSprites.begin(), mSortedSprites.begin() + static_cast<int>(mSpriteQueueCount),
[](SpriteInfo const* x, SpriteInfo const* y) noexcept -> bool
{
return x->originRotationDepth.w < y->originRotationDepth.w;
});
break;
default:
break;
}
}
// Populates the mSortedSprites vector with pointers to individual elements of the mSpriteQueue array.
void SpriteBatch::Impl::GrowSortedSprites()
{
size_t previousSize = mSortedSprites.size();
mSortedSprites.resize(mSpriteQueueCount);
for (size_t i = previousSize; i < mSpriteQueueCount; i++)
{
mSortedSprites[i] = &mSpriteQueue[i];
}
}
// Submits a batch of sprites to the GPU.
_Use_decl_annotations_
void SpriteBatch::Impl::RenderBatch(ID3D11ShaderResourceView* texture, SpriteInfo const* const* sprites, size_t count)
{
auto deviceContext = mContextResources->deviceContext.Get();
// Draw using the specified texture.
deviceContext->PSSetShaderResources(0, 1, &texture);
XMVECTOR textureSize = GetTextureSize(texture);
XMVECTOR inverseTextureSize = XMVectorReciprocal(textureSize);
while (count > 0)
{
// How many sprites do we want to draw?
size_t batchSize = count;
// How many sprites does the D3D vertex buffer have room for?
size_t remainingSpace = MaxBatchSize - mContextResources->vertexBufferPosition;
if (batchSize > remainingSpace)
{
if (remainingSpace < MinBatchSize)
{
// If we are out of room, or about to submit an excessively small batch, wrap back to the start of the vertex buffer.
mContextResources->vertexBufferPosition = 0;
batchSize = std::min(count, MaxBatchSize);
}
else
{
// Take however many sprites fit in what's left of the vertex buffer.
batchSize = remainingSpace;
}
}
#if defined(_XBOX_ONE) && defined(_TITLE)
void *grfxMemory = GraphicsMemory::Get().Allocate(deviceContext, sizeof(VertexPositionColorTexture) * batchSize * VerticesPerSprite, 64);
auto vertices = static_cast<VertexPositionColorTexture*>(grfxMemory);
#else
// Lock the vertex buffer.
D3D11_MAP mapType = (mContextResources->vertexBufferPosition == 0) ? D3D11_MAP_WRITE_DISCARD : D3D11_MAP_WRITE_NO_OVERWRITE;
D3D11_MAPPED_SUBRESOURCE mappedBuffer;
ThrowIfFailed(
deviceContext->Map(mContextResources->vertexBuffer.Get(), 0, mapType, 0, &mappedBuffer)
);
auto vertices = static_cast<VertexPositionColorTexture*>(mappedBuffer.pData) + mContextResources->vertexBufferPosition * VerticesPerSprite;
#endif
// Generate sprite vertex data.
for (size_t i = 0; i < batchSize; i++)
{
assert(i < count);
_Analysis_assume_(i < count);
RenderSprite(sprites[i], vertices, textureSize, inverseTextureSize);
vertices += VerticesPerSprite;
}
#if defined(_XBOX_ONE) && defined(_TITLE)
deviceContext->IASetPlacementVertexBuffer(0, mContextResources->vertexBuffer.Get(), grfxMemory, sizeof(VertexPositionColorTexture));
#else
deviceContext->Unmap(mContextResources->vertexBuffer.Get(), 0);
#endif
// Ok lads, the time has come for us draw ourselves some sprites!
auto startIndex = static_cast<UINT>(mContextResources->vertexBufferPosition * IndicesPerSprite);
auto indexCount = static_cast<UINT>(batchSize * IndicesPerSprite);
deviceContext->DrawIndexed(indexCount, startIndex, 0);
// Advance the buffer position.
#if !defined(_XBOX_ONE) || !defined(_TITLE)
mContextResources->vertexBufferPosition += batchSize;
#endif
sprites += batchSize;
count -= batchSize;
}
}
// Generates vertex data for drawing a single sprite.
_Use_decl_annotations_
void XM_CALLCONV SpriteBatch::Impl::RenderSprite(SpriteInfo const* sprite,
VertexPositionColorTexture* vertices,
FXMVECTOR textureSize,
FXMVECTOR inverseTextureSize)
{
// Load sprite parameters into SIMD registers.
XMVECTOR source = XMLoadFloat4A(&sprite->source);
XMVECTOR destination = XMLoadFloat4A(&sprite->destination);
XMVECTOR color = XMLoadFloat4A(&sprite->color);
XMVECTOR originRotationDepth = XMLoadFloat4A(&sprite->originRotationDepth);
float rotation = sprite->originRotationDepth.z;
unsigned int flags = sprite->flags;
// Extract the source and destination sizes into separate vectors.
XMVECTOR sourceSize = XMVectorSwizzle<2, 3, 2, 3>(source);
XMVECTOR destinationSize = XMVectorSwizzle<2, 3, 2, 3>(destination);
// Scale the origin offset by source size, taking care to avoid overflow if the source region is zero.
XMVECTOR isZeroMask = XMVectorEqual(sourceSize, XMVectorZero());
XMVECTOR nonZeroSourceSize = XMVectorSelect(sourceSize, g_XMEpsilon, isZeroMask);
XMVECTOR origin = XMVectorDivide(originRotationDepth, nonZeroSourceSize);
// Convert the source region from texels to mod-1 texture coordinate format.
if (flags & SpriteInfo::SourceInTexels)
{
source = XMVectorMultiply(source, inverseTextureSize);
sourceSize = XMVectorMultiply(sourceSize, inverseTextureSize);
}
else
{
origin = XMVectorMultiply(origin, inverseTextureSize);
}
// If the destination size is relative to the source region, convert it to pixels.
if (!(flags & SpriteInfo::DestSizeInPixels))
{
destinationSize = XMVectorMultiply(destinationSize, textureSize);
}
// Compute a 2x2 rotation matrix.
XMVECTOR rotationMatrix1;
XMVECTOR rotationMatrix2;
if (rotation != 0)
{
float sin, cos;
XMScalarSinCos(&sin, &cos, rotation);
XMVECTOR sinV = XMLoadFloat(&sin);
XMVECTOR cosV = XMLoadFloat(&cos);
rotationMatrix1 = XMVectorMergeXY(cosV, sinV);
rotationMatrix2 = XMVectorMergeXY(XMVectorNegate(sinV), cosV);
}
else
{
rotationMatrix1 = g_XMIdentityR0;
rotationMatrix2 = g_XMIdentityR1;
}
// The four corner vertices are computed by transforming these unit-square positions.
static XMVECTORF32 cornerOffsets[VerticesPerSprite] =
{
{ { { 0, 0, 0, 0 } } },
{ { { 1, 0, 0, 0 } } },
{ { { 0, 1, 0, 0 } } },
{ { { 1, 1, 0, 0 } } },
};
// Tricksy alert! Texture coordinates are computed from the same cornerOffsets
// table as vertex positions, but if the sprite is mirrored, this table
// must be indexed in a different order. This is done as follows:
//
// position = cornerOffsets[i]
// texcoord = cornerOffsets[i ^ SpriteEffects]
static_assert(SpriteEffects_FlipHorizontally == 1 &&
SpriteEffects_FlipVertically == 2, "If you change these enum values, the mirroring implementation must be updated to match");
const unsigned int mirrorBits = flags & 3u;
// Generate the four output vertices.
for (size_t i = 0; i < VerticesPerSprite; i++)
{
// Calculate position.
XMVECTOR cornerOffset = XMVectorMultiply(XMVectorSubtract(cornerOffsets[i], origin), destinationSize);
// Apply 2x2 rotation matrix.
XMVECTOR position1 = XMVectorMultiplyAdd(XMVectorSplatX(cornerOffset), rotationMatrix1, destination);
XMVECTOR position2 = XMVectorMultiplyAdd(XMVectorSplatY(cornerOffset), rotationMatrix2, position1);
// Set z = depth.
XMVECTOR position = XMVectorPermute<0, 1, 7, 6>(position2, originRotationDepth);
// Write position as a Float4, even though VertexPositionColor::position is an XMFLOAT3.
// This is faster, and harmless as we are just clobbering the first element of the
// following color field, which will immediately be overwritten with its correct value.
XMStoreFloat4(reinterpret_cast<XMFLOAT4*>(&vertices[i].position), position);
// Write the color.
XMStoreFloat4(&vertices[i].color, color);
// Compute and write the texture coordinate.
XMVECTOR textureCoordinate = XMVectorMultiplyAdd(cornerOffsets[static_cast<unsigned int>(i) ^ mirrorBits], sourceSize, source);
XMStoreFloat2(&vertices[i].textureCoordinate, textureCoordinate);
}
}
// Helper looks up the size of the specified texture.
XMVECTOR SpriteBatch::Impl::GetTextureSize(_In_ ID3D11ShaderResourceView* texture)
{
// Convert resource view to underlying resource.
ComPtr<ID3D11Resource> resource;
texture->GetResource(&resource);
// Cast to texture.
ComPtr<ID3D11Texture2D> texture2D;
if (FAILED(resource.As(&texture2D)))
{
throw std::exception("SpriteBatch can only draw Texture2D resources");
}
// Query the texture size.
D3D11_TEXTURE2D_DESC desc;
texture2D->GetDesc(&desc);
// Convert to vector format.
XMVECTOR size = XMVectorMergeXY(XMLoadInt(&desc.Width),
XMLoadInt(&desc.Height));
return XMConvertVectorUIntToFloat(size, 0);
}
// Generates a viewport transform matrix for rendering sprites using x-right y-down screen pixel coordinates.
XMMATRIX SpriteBatch::Impl::GetViewportTransform(_In_ ID3D11DeviceContext* deviceContext, DXGI_MODE_ROTATION rotation)
{
// Look up the current viewport.
if (!mSetViewport)
{
UINT viewportCount = 1;
deviceContext->RSGetViewports(&viewportCount, &mViewPort);
if (viewportCount != 1)
throw std::exception("No viewport is set");
}
// Compute the matrix.
float xScale = (mViewPort.Width > 0) ? 2.0f / mViewPort.Width : 0.0f;
float yScale = (mViewPort.Height > 0) ? 2.0f / mViewPort.Height : 0.0f;
switch (rotation)
{
case DXGI_MODE_ROTATION_ROTATE90:
return XMMATRIX
(
0, -yScale, 0, 0,
-xScale, 0, 0, 0,
0, 0, 1, 0,
1, 1, 0, 1
);
case DXGI_MODE_ROTATION_ROTATE270:
return XMMATRIX
(
0, yScale, 0, 0,
xScale, 0, 0, 0,
0, 0, 1, 0,
-1, -1, 0, 1
);
case DXGI_MODE_ROTATION_ROTATE180:
return XMMATRIX
(
-xScale, 0, 0, 0,
0, yScale, 0, 0,
0, 0, 1, 0,
1, -1, 0, 1
);
default:
return XMMATRIX
(
xScale, 0, 0, 0,
0, -yScale, 0, 0,
0, 0, 1, 0,
-1, 1, 0, 1
);
}
}
// Public constructor.
SpriteBatch::SpriteBatch(_In_ ID3D11DeviceContext* deviceContext)
: pImpl(std::make_unique<Impl>(deviceContext))
{
}
// Move constructor.
SpriteBatch::SpriteBatch(SpriteBatch&& moveFrom) noexcept
: pImpl(std::move(moveFrom.pImpl))
{
}
// Move assignment.
SpriteBatch& SpriteBatch::operator= (SpriteBatch&& moveFrom) noexcept
{
pImpl = std::move(moveFrom.pImpl);
return *this;
}
// Public destructor.
SpriteBatch::~SpriteBatch()
{
}
_Use_decl_annotations_
void XM_CALLCONV SpriteBatch::Begin(SpriteSortMode sortMode,
ID3D11BlendState* blendState,
ID3D11SamplerState* samplerState,
ID3D11DepthStencilState* depthStencilState,
ID3D11RasterizerState* rasterizerState,
std::function<void()> setCustomShaders,
FXMMATRIX transformMatrix)
{
pImpl->Begin(sortMode, blendState, samplerState, depthStencilState, rasterizerState, setCustomShaders, transformMatrix);
}
void SpriteBatch::End()
{
pImpl->End();
}
_Use_decl_annotations_
void XM_CALLCONV SpriteBatch::Draw(ID3D11ShaderResourceView* texture, XMFLOAT2 const& position, FXMVECTOR color)
{
XMVECTOR destination = XMVectorPermute<0, 1, 4, 5>(XMLoadFloat2(&position), g_XMOne); // x, y, 1, 1
pImpl->Draw(texture, destination, nullptr, color, g_XMZero, 0);
}
_Use_decl_annotations_
void XM_CALLCONV SpriteBatch::Draw(ID3D11ShaderResourceView* texture,
XMFLOAT2 const& position,
RECT const* sourceRectangle,
FXMVECTOR color,
float rotation,
XMFLOAT2 const& origin,
float scale,
SpriteEffects effects,
float layerDepth)
{
XMVECTOR destination = XMVectorPermute<0, 1, 4, 4>(XMLoadFloat2(&position), XMLoadFloat(&scale)); // x, y, scale, scale
XMVECTOR originRotationDepth = XMVectorSet(origin.x, origin.y, rotation, layerDepth);
pImpl->Draw(texture, destination, sourceRectangle, color, originRotationDepth, static_cast<unsigned int>(effects));
}
_Use_decl_annotations_
void XM_CALLCONV SpriteBatch::Draw(ID3D11ShaderResourceView* texture,
XMFLOAT2 const& position,
RECT const* sourceRectangle,
FXMVECTOR color,
float rotation,
XMFLOAT2 const& origin,
XMFLOAT2 const& scale,
SpriteEffects effects,
float layerDepth)
{
XMVECTOR destination = XMVectorPermute<0, 1, 4, 5>(XMLoadFloat2(&position), XMLoadFloat2(&scale)); // x, y, scale.x, scale.y
XMVECTOR originRotationDepth = XMVectorSet(origin.x, origin.y, rotation, layerDepth);
pImpl->Draw(texture, destination, sourceRectangle, color, originRotationDepth, static_cast<unsigned int>(effects));
}
_Use_decl_annotations_
void XM_CALLCONV SpriteBatch::Draw(ID3D11ShaderResourceView* texture, FXMVECTOR position, FXMVECTOR color)
{
XMVECTOR destination = XMVectorPermute<0, 1, 4, 5>(position, g_XMOne); // x, y, 1, 1
pImpl->Draw(texture, destination, nullptr, color, g_XMZero, 0);
}
_Use_decl_annotations_
void XM_CALLCONV SpriteBatch::Draw(ID3D11ShaderResourceView* texture,
FXMVECTOR position,
RECT const* sourceRectangle,
FXMVECTOR color,
float rotation,
FXMVECTOR origin,
float scale,
SpriteEffects effects,
float layerDepth)
{
XMVECTOR destination = XMVectorPermute<0, 1, 4, 4>(position, XMLoadFloat(&scale)); // x, y, scale, scale
XMVECTOR rotationDepth = XMVectorMergeXY(XMVectorReplicate(rotation), XMVectorReplicate(layerDepth));
XMVECTOR originRotationDepth = XMVectorPermute<0, 1, 4, 5>(origin, rotationDepth);
pImpl->Draw(texture, destination, sourceRectangle, color, originRotationDepth, static_cast<unsigned int>(effects));
}
_Use_decl_annotations_
void XM_CALLCONV SpriteBatch::Draw(ID3D11ShaderResourceView* texture,
FXMVECTOR position,
RECT const* sourceRectangle,
FXMVECTOR color,
float rotation,
FXMVECTOR origin,
GXMVECTOR scale,
SpriteEffects effects,
float layerDepth)
{
XMVECTOR destination = XMVectorPermute<0, 1, 4, 5>(position, scale); // x, y, scale.x, scale.y
XMVECTOR rotationDepth = XMVectorMergeXY(XMVectorReplicate(rotation), XMVectorReplicate(layerDepth));
XMVECTOR originRotationDepth = XMVectorPermute<0, 1, 4, 5>(origin, rotationDepth);
pImpl->Draw(texture, destination, sourceRectangle, color, originRotationDepth, static_cast<unsigned int>(effects));
}
_Use_decl_annotations_
void XM_CALLCONV SpriteBatch::Draw(ID3D11ShaderResourceView* texture, RECT const& destinationRectangle, FXMVECTOR color)
{
XMVECTOR destination = LoadRect(&destinationRectangle); // x, y, w, h
pImpl->Draw(texture, destination, nullptr, color, g_XMZero, Impl::SpriteInfo::DestSizeInPixels);
}
_Use_decl_annotations_
void XM_CALLCONV SpriteBatch::Draw(ID3D11ShaderResourceView* texture,
RECT const& destinationRectangle,
RECT const* sourceRectangle,
FXMVECTOR color,
float rotation,
XMFLOAT2 const& origin,
SpriteEffects effects,
float layerDepth)
{
XMVECTOR destination = LoadRect(&destinationRectangle); // x, y, w, h
XMVECTOR originRotationDepth = XMVectorSet(origin.x, origin.y, rotation, layerDepth);
pImpl->Draw(texture, destination, sourceRectangle, color, originRotationDepth, static_cast<unsigned int>(effects) | Impl::SpriteInfo::DestSizeInPixels);
}
void SpriteBatch::SetRotation(DXGI_MODE_ROTATION mode)
{
pImpl->mRotation = mode;
}
DXGI_MODE_ROTATION SpriteBatch::GetRotation() const noexcept
{
return pImpl->mRotation;
}
void SpriteBatch::SetViewport(const D3D11_VIEWPORT& viewPort)
{
pImpl->mSetViewport = true;
pImpl->mViewPort = viewPort;
}