1
0
mirror of https://github.com/ncblakely/GiantsTools synced 2024-11-16 19:55:36 +01:00
GiantsTools/NavMeshGenerator/Framework/ChunkyTriMesh.cpp

316 lines
7.3 KiB
C++

//
// Copyright (c) 2009-2010 Mikko Mononen memon@inside.org
//
// This software is provided 'as-is', without any express or implied
// warranty. In no event will the authors be held liable for any damages
// arising from the use of this software.
// Permission is granted to anyone to use this software for any purpose,
// including commercial applications, and to alter it and redistribute it
// freely, subject to the following restrictions:
// 1. The origin of this software must not be misrepresented; you must not
// claim that you wrote the original software. If you use this software
// in a product, an acknowledgment in the product documentation would be
// appreciated but is not required.
// 2. Altered source versions must be plainly marked as such, and must not be
// misrepresented as being the original software.
// 3. This notice may not be removed or altered from any source distribution.
//
#include "ChunkyTriMesh.h"
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
struct BoundsItem
{
float bmin[2];
float bmax[2];
int i;
};
static int compareItemX(const void* va, const void* vb)
{
const BoundsItem* a = (const BoundsItem*)va;
const BoundsItem* b = (const BoundsItem*)vb;
if (a->bmin[0] < b->bmin[0])
return -1;
if (a->bmin[0] > b->bmin[0])
return 1;
return 0;
}
static int compareItemY(const void* va, const void* vb)
{
const BoundsItem* a = (const BoundsItem*)va;
const BoundsItem* b = (const BoundsItem*)vb;
if (a->bmin[1] < b->bmin[1])
return -1;
if (a->bmin[1] > b->bmin[1])
return 1;
return 0;
}
static void calcExtends(const BoundsItem* items, const int /*nitems*/,
const int imin, const int imax,
float* bmin, float* bmax)
{
bmin[0] = items[imin].bmin[0];
bmin[1] = items[imin].bmin[1];
bmax[0] = items[imin].bmax[0];
bmax[1] = items[imin].bmax[1];
for (int i = imin+1; i < imax; ++i)
{
const BoundsItem& it = items[i];
if (it.bmin[0] < bmin[0]) bmin[0] = it.bmin[0];
if (it.bmin[1] < bmin[1]) bmin[1] = it.bmin[1];
if (it.bmax[0] > bmax[0]) bmax[0] = it.bmax[0];
if (it.bmax[1] > bmax[1]) bmax[1] = it.bmax[1];
}
}
inline int longestAxis(float x, float y)
{
return y > x ? 1 : 0;
}
static void subdivide(BoundsItem* items, int nitems, int imin, int imax, int trisPerChunk,
int& curNode, rcChunkyTriMeshNode* nodes, const int maxNodes,
int& curTri, int* outTris, const int* inTris)
{
int inum = imax - imin;
int icur = curNode;
if (curNode >= maxNodes)
return;
rcChunkyTriMeshNode& node = nodes[curNode++];
if (inum <= trisPerChunk)
{
// Leaf
calcExtends(items, nitems, imin, imax, node.bmin, node.bmax);
// Copy triangles.
node.i = curTri;
node.n = inum;
for (int i = imin; i < imax; ++i)
{
const int* src = &inTris[items[i].i*3];
int* dst = &outTris[curTri*3];
curTri++;
dst[0] = src[0];
dst[1] = src[1];
dst[2] = src[2];
}
}
else
{
// Split
calcExtends(items, nitems, imin, imax, node.bmin, node.bmax);
int axis = longestAxis(node.bmax[0] - node.bmin[0],
node.bmax[1] - node.bmin[1]);
if (axis == 0)
{
// Sort along x-axis
qsort(items+imin, static_cast<size_t>(inum), sizeof(BoundsItem), compareItemX);
}
else if (axis == 1)
{
// Sort along y-axis
qsort(items+imin, static_cast<size_t>(inum), sizeof(BoundsItem), compareItemY);
}
int isplit = imin+inum/2;
// Left
subdivide(items, nitems, imin, isplit, trisPerChunk, curNode, nodes, maxNodes, curTri, outTris, inTris);
// Right
subdivide(items, nitems, isplit, imax, trisPerChunk, curNode, nodes, maxNodes, curTri, outTris, inTris);
int iescape = curNode - icur;
// Negative index means escape.
node.i = -iescape;
}
}
bool rcCreateChunkyTriMesh(const float* verts, const int* tris, int ntris,
int trisPerChunk, rcChunkyTriMesh* cm)
{
int nchunks = (ntris + trisPerChunk-1) / trisPerChunk;
cm->nodes = new rcChunkyTriMeshNode[nchunks*4];
if (!cm->nodes)
return false;
cm->tris = new int[ntris*3];
if (!cm->tris)
return false;
cm->ntris = ntris;
// Build tree
BoundsItem* items = new BoundsItem[ntris];
if (!items)
return false;
for (int i = 0; i < ntris; i++)
{
const int* t = &tris[i*3];
BoundsItem& it = items[i];
it.i = i;
// Calc triangle XZ bounds.
it.bmin[0] = it.bmax[0] = verts[t[0]*3+0];
it.bmin[1] = it.bmax[1] = verts[t[0]*3+2];
for (int j = 1; j < 3; ++j)
{
const float* v = &verts[t[j]*3];
if (v[0] < it.bmin[0]) it.bmin[0] = v[0];
if (v[2] < it.bmin[1]) it.bmin[1] = v[2];
if (v[0] > it.bmax[0]) it.bmax[0] = v[0];
if (v[2] > it.bmax[1]) it.bmax[1] = v[2];
}
}
int curTri = 0;
int curNode = 0;
subdivide(items, ntris, 0, ntris, trisPerChunk, curNode, cm->nodes, nchunks*4, curTri, cm->tris, tris);
delete [] items;
cm->nnodes = curNode;
// Calc max tris per node.
cm->maxTrisPerChunk = 0;
for (int i = 0; i < cm->nnodes; ++i)
{
rcChunkyTriMeshNode& node = cm->nodes[i];
const bool isLeaf = node.i >= 0;
if (!isLeaf) continue;
if (node.n > cm->maxTrisPerChunk)
cm->maxTrisPerChunk = node.n;
}
return true;
}
inline bool checkOverlapRect(const float amin[2], const float amax[2],
const float bmin[2], const float bmax[2])
{
bool overlap = true;
overlap = (amin[0] > bmax[0] || amax[0] < bmin[0]) ? false : overlap;
overlap = (amin[1] > bmax[1] || amax[1] < bmin[1]) ? false : overlap;
return overlap;
}
int rcGetChunksOverlappingRect(const rcChunkyTriMesh* cm,
float bmin[2], float bmax[2],
int* ids, const int maxIds)
{
// Traverse tree
int i = 0;
int n = 0;
while (i < cm->nnodes)
{
const rcChunkyTriMeshNode* node = &cm->nodes[i];
const bool overlap = checkOverlapRect(bmin, bmax, node->bmin, node->bmax);
const bool isLeafNode = node->i >= 0;
if (isLeafNode && overlap)
{
if (n < maxIds)
{
ids[n] = i;
n++;
}
}
if (overlap || isLeafNode)
i++;
else
{
const int escapeIndex = -node->i;
i += escapeIndex;
}
}
return n;
}
static bool checkOverlapSegment(const float p[2], const float q[2],
const float bmin[2], const float bmax[2])
{
static const float EPSILON = 1e-6f;
float tmin = 0;
float tmax = 1;
float d[2];
d[0] = q[0] - p[0];
d[1] = q[1] - p[1];
for (int i = 0; i < 2; i++)
{
if (fabsf(d[i]) < EPSILON)
{
// Ray is parallel to slab. No hit if origin not within slab
if (p[i] < bmin[i] || p[i] > bmax[i])
return false;
}
else
{
// Compute intersection t value of ray with near and far plane of slab
float ood = 1.0f / d[i];
float t1 = (bmin[i] - p[i]) * ood;
float t2 = (bmax[i] - p[i]) * ood;
if (t1 > t2) { float tmp = t1; t1 = t2; t2 = tmp; }
if (t1 > tmin) tmin = t1;
if (t2 < tmax) tmax = t2;
if (tmin > tmax) return false;
}
}
return true;
}
int rcGetChunksOverlappingSegment(const rcChunkyTriMesh* cm,
float p[2], float q[2],
int* ids, const int maxIds)
{
// Traverse tree
int i = 0;
int n = 0;
while (i < cm->nnodes)
{
const rcChunkyTriMeshNode* node = &cm->nodes[i];
const bool overlap = checkOverlapSegment(p, q, node->bmin, node->bmax);
const bool isLeafNode = node->i >= 0;
if (isLeafNode && overlap)
{
if (n < maxIds)
{
ids[n] = i;
n++;
}
}
if (overlap || isLeafNode)
i++;
else
{
const int escapeIndex = -node->i;
i += escapeIndex;
}
}
return n;
}