1
0
mirror of https://github.com/ncblakely/GiantsTools synced 2025-01-08 01:01:12 +01:00
GiantsTools/Sdk/External/DirectXMath/SHMath/DirectXSHD3D12.cpp
2021-01-23 15:40:09 -08:00

335 lines
12 KiB
C++

//-------------------------------------------------------------------------------------
// DirectXSHD3D12.cpp -- C++ Spherical Harmonics Math Library
//
// Copyright (c) Microsoft Corporation. All rights reserved.
// Licensed under the MIT License.
//
// http://go.microsoft.com/fwlink/p/?LinkId=262885
//-------------------------------------------------------------------------------------
#pragma warning( disable : 4616 4619 4061 4265 4626 5039 )
// C4616/C4619 #pragma warning warnings
// C4061 numerator 'identifier' in switch of enum 'enumeration' is not explicitly handled by a case label
// C4265 class has virtual functions, but destructor is not virtual
// C4626 assignment operator was implicitly defined as deleted
// C5039 pointer or reference to potentially throwing function passed to extern C function under - EHc
#include <d3d12.h>
#include "DirectXSH.h"
#include <DirectXPackedVector.h>
#include <cassert>
#include <memory>
#include <malloc.h>
#include <wrl/client.h>
#ifdef __clang__
#pragma clang diagnostic ignored "-Wcovered-switch-default"
#pragma clang diagnostic ignored "-Wswitch-enum"
#endif
using namespace DirectX;
using Microsoft::WRL::ComPtr;
namespace
{
struct aligned_deleter { void operator()(void* p) { _aligned_free(p); } };
using ScopedAlignedArrayXMVECTOR = std::unique_ptr<DirectX::XMVECTOR, aligned_deleter>;
//-------------------------------------------------------------------------------------
// This code is lifted from DirectXTex http://go.microsoft.com/fwlink/?LinkId=248926
// If you need additional DXGI format support, see DirectXTexConvert.cpp
//-------------------------------------------------------------------------------------
#define LOAD_SCANLINE( type, func )\
if ( size >= sizeof(type) )\
{\
const type * __restrict sPtr = reinterpret_cast<const type*>(pSource);\
for( size_t icount = 0; icount < ( size - sizeof(type) + 1 ); icount += sizeof(type) )\
{\
if ( dPtr >= ePtr ) break;\
*(dPtr++) = func( sPtr++ );\
}\
return true;\
}\
return false;
#define LOAD_SCANLINE3( type, func, defvec )\
if ( size >= sizeof(type) )\
{\
const type * __restrict sPtr = reinterpret_cast<const type*>(pSource);\
for( size_t icount = 0; icount < ( size - sizeof(type) + 1 ); icount += sizeof(type) )\
{\
XMVECTOR v = func( sPtr++ );\
if ( dPtr >= ePtr ) break;\
*(dPtr++) = XMVectorSelect( defvec, v, g_XMSelect1110 );\
}\
return true;\
}\
return false;
#define LOAD_SCANLINE2( type, func, defvec )\
if ( size >= sizeof(type) )\
{\
const type * __restrict sPtr = reinterpret_cast<const type*>(pSource);\
for( size_t icount = 0; icount < ( size - sizeof(type) + 1 ); icount += sizeof(type) )\
{\
XMVECTOR v = func( sPtr++ );\
if ( dPtr >= ePtr ) break;\
*(dPtr++) = XMVectorSelect( defvec, v, g_XMSelect1100 );\
}\
return true;\
}\
return false;
#pragma warning(push)
#pragma warning(disable : 6101)
_Success_(return)
bool _LoadScanline(
_Out_writes_(count) DirectX::XMVECTOR* pDestination,
size_t count,
_In_reads_bytes_(size) LPCVOID pSource,
size_t size,
DXGI_FORMAT format)
{
assert(pDestination && count > 0 && ((reinterpret_cast<uintptr_t>(pDestination) & 0xF) == 0));
assert(pSource && size > 0);
using namespace DirectX::PackedVector;
XMVECTOR* __restrict dPtr = pDestination;
if (!dPtr)
return false;
const XMVECTOR* ePtr = pDestination + count;
switch (format)
{
case DXGI_FORMAT_R32G32B32A32_FLOAT:
{
size_t msize = (size > (sizeof(XMVECTOR)*count)) ? (sizeof(XMVECTOR)*count) : size;
memcpy_s(dPtr, sizeof(XMVECTOR)*count, pSource, msize);
}
return true;
case DXGI_FORMAT_R32G32B32_FLOAT:
LOAD_SCANLINE3(XMFLOAT3, XMLoadFloat3, g_XMIdentityR3)
case DXGI_FORMAT_R16G16B16A16_FLOAT:
LOAD_SCANLINE(XMHALF4, XMLoadHalf4)
case DXGI_FORMAT_R32G32_FLOAT:
LOAD_SCANLINE2(XMFLOAT2, XMLoadFloat2, g_XMIdentityR3)
case DXGI_FORMAT_R11G11B10_FLOAT:
LOAD_SCANLINE3(XMFLOAT3PK, XMLoadFloat3PK, g_XMIdentityR3)
case DXGI_FORMAT_R16G16_FLOAT:
LOAD_SCANLINE2(XMHALF2, XMLoadHalf2, g_XMIdentityR3)
case DXGI_FORMAT_R32_FLOAT:
if (size >= sizeof(float))
{
const float* __restrict sPtr = reinterpret_cast<const float*>(pSource);
for (size_t icount = 0; icount < size; icount += sizeof(float))
{
XMVECTOR v = XMLoadFloat(sPtr++);
if (dPtr >= ePtr) break;
*(dPtr++) = XMVectorSelect(g_XMIdentityR3, v, g_XMSelect1000);
}
return true;
}
return false;
case DXGI_FORMAT_R16_FLOAT:
if (size >= sizeof(HALF))
{
const HALF * __restrict sPtr = reinterpret_cast<const HALF*>(pSource);
for (size_t icount = 0; icount < size; icount += sizeof(HALF))
{
if (dPtr >= ePtr) break;
*(dPtr++) = XMVectorSet(XMConvertHalfToFloat(*sPtr++), 0.f, 0.f, 1.f);
}
return true;
}
return false;
default:
return false;
}
}
#pragma warning(pop)
} // namespace anonymous
//-------------------------------------------------------------------------------------
// Projects a function represented in a cube map into spherical harmonics.
//
// http://msdn.microsoft.com/en-us/library/windows/desktop/ff476300.aspx
//-------------------------------------------------------------------------------------
_Use_decl_annotations_
HRESULT DirectX::SHProjectCubeMap(
size_t order,
const D3D12_RESOURCE_DESC& desc,
const D3D12_SUBRESOURCE_DATA cubeMap[6],
float *resultR,
float *resultG,
float *resultB) noexcept
{
if (order < XM_SH_MINORDER || order > XM_SH_MAXORDER)
return E_INVALIDARG;
if (desc.Dimension != D3D12_RESOURCE_DIMENSION_TEXTURE2D
|| (desc.DepthOrArraySize != 6)
|| (desc.Width != desc.Height)
|| (desc.SampleDesc.Count > 1))
return E_FAIL;
switch (desc.Format)
{
case DXGI_FORMAT_R32G32B32A32_FLOAT:
case DXGI_FORMAT_R32G32B32_FLOAT:
case DXGI_FORMAT_R16G16B16A16_FLOAT:
case DXGI_FORMAT_R32G32_FLOAT:
case DXGI_FORMAT_R11G11B10_FLOAT:
case DXGI_FORMAT_R16G16_FLOAT:
case DXGI_FORMAT_R32_FLOAT:
case DXGI_FORMAT_R16_FLOAT:
// See _LoadScanline to support more pixel formats
break;
default:
return E_FAIL;
}
//--- Setup for SH projection
ScopedAlignedArrayXMVECTOR scanline(reinterpret_cast<XMVECTOR*>(_aligned_malloc(static_cast<size_t>(sizeof(XMVECTOR)*desc.Width), 16)));
if (!scanline)
return E_OUTOFMEMORY;
assert(desc.Width > 0);
float fSize = static_cast<float>(desc.Width);
float fPicSize = 1.0f / fSize;
// index from [0,W-1], f(0) maps to -1 + 1/W, f(W-1) maps to 1 - 1/w
// linear function x*S +B, 1st constraint means B is (-1+1/W), plug into
// second and solve for S: S = 2*(1-1/W)/(W-1). The old code that did
// this was incorrect - but only for computing the differential solid
// angle, where the final value was 1.0 instead of 1-1/w...
float fB = -1.0f + 1.0f / fSize;
float fS = (desc.Width > 1) ? (2.0f*(1.0f - 1.0f / fSize) / (fSize - 1.0f)) : 0.f;
// clear out accumulation variables
float fWt = 0.0f;
if (resultR)
memset(resultR, 0, sizeof(float)*order*order);
if (resultG)
memset(resultG, 0, sizeof(float)*order*order);
if (resultB)
memset(resultB, 0, sizeof(float)*order*order);
float shBuff[XM_SH_MAXORDER*XM_SH_MAXORDER] = {};
float shBuffB[XM_SH_MAXORDER*XM_SH_MAXORDER] = {};
//--- Process each face of the cubemap
for (UINT face = 0; face < 6; ++face)
{
if (!cubeMap[face].pData)
return E_POINTER;
const uint8_t *pSrc = reinterpret_cast<const uint8_t*>(cubeMap[face].pData);
for (UINT y = 0; y < desc.Height; ++y)
{
XMVECTOR* ptr = scanline.get();
if (!_LoadScanline(ptr, static_cast<size_t>(desc.Width), pSrc, static_cast<size_t>(cubeMap[face].RowPitch), desc.Format))
{
return E_FAIL;
}
const float v = float(y) * fS + fB;
XMVECTOR* pixel = ptr;
for (UINT x = 0; x < desc.Width; ++x, ++pixel)
{
const float u = float(x) * fS + fB;
float ix, iy, iz;
switch (face)
{
case 0: // Positive X
iz = 1.0f - (2.0f * float(x) + 1.0f) * fPicSize;
iy = 1.0f - (2.0f * float(y) + 1.0f) * fPicSize;
ix = 1.0f;
break;
case 1: // Negative X
iz = -1.0f + (2.0f * float(x) + 1.0f) * fPicSize;
iy = 1.0f - (2.0f * float(y) + 1.0f) * fPicSize;
ix = -1;
break;
case 2: // Positive Y
iz = -1.0f + (2.0f * float(y) + 1.0f) * fPicSize;
iy = 1.0f;
ix = -1.0f + (2.0f * float(x) + 1.0f) * fPicSize;
break;
case 3: // Negative Y
iz = 1.0f - (2.0f * float(y) + 1.0f) * fPicSize;
iy = -1.0f;
ix = -1.0f + (2.0f * float(x) + 1.0f) * fPicSize;
break;
case 4: // Positive Z
iz = 1.0f;
iy = 1.0f - (2.0f * float(y) + 1.0f) * fPicSize;
ix = -1.0f + (2.0f * float(x) + 1.0f) * fPicSize;
break;
case 5: // Negative Z
iz = -1.0f;
iy = 1.0f - (2.0f * float(y) + 1.0f) * fPicSize;
ix = 1.0f - (2.0f * float(x) + 1.0f) * fPicSize;
break;
default:
ix = iy = iz = 0.f;
assert(false);
break;
}
XMVECTOR dir = XMVectorSet(ix, iy, iz, 0);
dir = XMVector3Normalize(dir);
const float fDiffSolid = 4.0f / ((1.0f + u * u + v * v)*sqrtf(1.0f + u * u + v * v));
fWt += fDiffSolid;
XMSHEvalDirection(shBuff, order, dir);
XMFLOAT3A clr;
XMStoreFloat3A(&clr, *pixel);
if (resultR) XMSHAdd(resultR, order, resultR, XMSHScale(shBuffB, order, shBuff, clr.x*fDiffSolid));
if (resultG) XMSHAdd(resultG, order, resultG, XMSHScale(shBuffB, order, shBuff, clr.y*fDiffSolid));
if (resultB) XMSHAdd(resultB, order, resultB, XMSHScale(shBuffB, order, shBuff, clr.z*fDiffSolid));
}
pSrc += cubeMap[face].RowPitch;
}
}
const float fNormProj = (4.0f*XM_PI) / fWt;
if (resultR) XMSHScale(resultR, order, resultR, fNormProj);
if (resultG) XMSHScale(resultG, order, resultG, fNormProj);
if (resultB) XMSHScale(resultB, order, resultB, fNormProj);
return S_OK;
}