// // Copyright (c) 2009-2010 Mikko Mononen memon@inside.org // // This software is provided 'as-is', without any express or implied // warranty. In no event will the authors be held liable for any damages // arising from the use of this software. // Permission is granted to anyone to use this software for any purpose, // including commercial applications, and to alter it and redistribute it // freely, subject to the following restrictions: // 1. The origin of this software must not be misrepresented; you must not // claim that you wrote the original software. If you use this software // in a product, an acknowledgment in the product documentation would be // appreciated but is not required. // 2. Altered source versions must be plainly marked as such, and must not be // misrepresented as being the original software. // 3. This notice may not be removed or altered from any source distribution. // #include "ChunkyTriMesh.h" #include #include #include struct BoundsItem { float bmin[2]; float bmax[2]; int i; }; static int compareItemX(const void* va, const void* vb) { const BoundsItem* a = (const BoundsItem*)va; const BoundsItem* b = (const BoundsItem*)vb; if (a->bmin[0] < b->bmin[0]) return -1; if (a->bmin[0] > b->bmin[0]) return 1; return 0; } static int compareItemY(const void* va, const void* vb) { const BoundsItem* a = (const BoundsItem*)va; const BoundsItem* b = (const BoundsItem*)vb; if (a->bmin[1] < b->bmin[1]) return -1; if (a->bmin[1] > b->bmin[1]) return 1; return 0; } static void calcExtends(const BoundsItem* items, const int /*nitems*/, const int imin, const int imax, float* bmin, float* bmax) { bmin[0] = items[imin].bmin[0]; bmin[1] = items[imin].bmin[1]; bmax[0] = items[imin].bmax[0]; bmax[1] = items[imin].bmax[1]; for (int i = imin+1; i < imax; ++i) { const BoundsItem& it = items[i]; if (it.bmin[0] < bmin[0]) bmin[0] = it.bmin[0]; if (it.bmin[1] < bmin[1]) bmin[1] = it.bmin[1]; if (it.bmax[0] > bmax[0]) bmax[0] = it.bmax[0]; if (it.bmax[1] > bmax[1]) bmax[1] = it.bmax[1]; } } inline int longestAxis(float x, float y) { return y > x ? 1 : 0; } static void subdivide(BoundsItem* items, int nitems, int imin, int imax, int trisPerChunk, int& curNode, rcChunkyTriMeshNode* nodes, const int maxNodes, int& curTri, int* outTris, const int* inTris) { int inum = imax - imin; int icur = curNode; if (curNode >= maxNodes) return; rcChunkyTriMeshNode& node = nodes[curNode++]; if (inum <= trisPerChunk) { // Leaf calcExtends(items, nitems, imin, imax, node.bmin, node.bmax); // Copy triangles. node.i = curTri; node.n = inum; for (int i = imin; i < imax; ++i) { const int* src = &inTris[items[i].i*3]; int* dst = &outTris[curTri*3]; curTri++; dst[0] = src[0]; dst[1] = src[1]; dst[2] = src[2]; } } else { // Split calcExtends(items, nitems, imin, imax, node.bmin, node.bmax); int axis = longestAxis(node.bmax[0] - node.bmin[0], node.bmax[1] - node.bmin[1]); if (axis == 0) { // Sort along x-axis qsort(items+imin, static_cast(inum), sizeof(BoundsItem), compareItemX); } else if (axis == 1) { // Sort along y-axis qsort(items+imin, static_cast(inum), sizeof(BoundsItem), compareItemY); } int isplit = imin+inum/2; // Left subdivide(items, nitems, imin, isplit, trisPerChunk, curNode, nodes, maxNodes, curTri, outTris, inTris); // Right subdivide(items, nitems, isplit, imax, trisPerChunk, curNode, nodes, maxNodes, curTri, outTris, inTris); int iescape = curNode - icur; // Negative index means escape. node.i = -iescape; } } bool rcCreateChunkyTriMesh(const float* verts, const int* tris, int ntris, int trisPerChunk, rcChunkyTriMesh* cm) { int nchunks = (ntris + trisPerChunk-1) / trisPerChunk; cm->nodes = new rcChunkyTriMeshNode[nchunks*4]; if (!cm->nodes) return false; cm->tris = new int[ntris*3]; if (!cm->tris) return false; cm->ntris = ntris; // Build tree BoundsItem* items = new BoundsItem[ntris]; if (!items) return false; for (int i = 0; i < ntris; i++) { const int* t = &tris[i*3]; BoundsItem& it = items[i]; it.i = i; // Calc triangle XZ bounds. it.bmin[0] = it.bmax[0] = verts[t[0]*3+0]; it.bmin[1] = it.bmax[1] = verts[t[0]*3+2]; for (int j = 1; j < 3; ++j) { const float* v = &verts[t[j]*3]; if (v[0] < it.bmin[0]) it.bmin[0] = v[0]; if (v[2] < it.bmin[1]) it.bmin[1] = v[2]; if (v[0] > it.bmax[0]) it.bmax[0] = v[0]; if (v[2] > it.bmax[1]) it.bmax[1] = v[2]; } } int curTri = 0; int curNode = 0; subdivide(items, ntris, 0, ntris, trisPerChunk, curNode, cm->nodes, nchunks*4, curTri, cm->tris, tris); delete [] items; cm->nnodes = curNode; // Calc max tris per node. cm->maxTrisPerChunk = 0; for (int i = 0; i < cm->nnodes; ++i) { rcChunkyTriMeshNode& node = cm->nodes[i]; const bool isLeaf = node.i >= 0; if (!isLeaf) continue; if (node.n > cm->maxTrisPerChunk) cm->maxTrisPerChunk = node.n; } return true; } inline bool checkOverlapRect(const float amin[2], const float amax[2], const float bmin[2], const float bmax[2]) { bool overlap = true; overlap = (amin[0] > bmax[0] || amax[0] < bmin[0]) ? false : overlap; overlap = (amin[1] > bmax[1] || amax[1] < bmin[1]) ? false : overlap; return overlap; } int rcGetChunksOverlappingRect(const rcChunkyTriMesh* cm, float bmin[2], float bmax[2], int* ids, const int maxIds) { // Traverse tree int i = 0; int n = 0; while (i < cm->nnodes) { const rcChunkyTriMeshNode* node = &cm->nodes[i]; const bool overlap = checkOverlapRect(bmin, bmax, node->bmin, node->bmax); const bool isLeafNode = node->i >= 0; if (isLeafNode && overlap) { if (n < maxIds) { ids[n] = i; n++; } } if (overlap || isLeafNode) i++; else { const int escapeIndex = -node->i; i += escapeIndex; } } return n; } static bool checkOverlapSegment(const float p[2], const float q[2], const float bmin[2], const float bmax[2]) { static const float EPSILON = 1e-6f; float tmin = 0; float tmax = 1; float d[2]; d[0] = q[0] - p[0]; d[1] = q[1] - p[1]; for (int i = 0; i < 2; i++) { if (fabsf(d[i]) < EPSILON) { // Ray is parallel to slab. No hit if origin not within slab if (p[i] < bmin[i] || p[i] > bmax[i]) return false; } else { // Compute intersection t value of ray with near and far plane of slab float ood = 1.0f / d[i]; float t1 = (bmin[i] - p[i]) * ood; float t2 = (bmax[i] - p[i]) * ood; if (t1 > t2) { float tmp = t1; t1 = t2; t2 = tmp; } if (t1 > tmin) tmin = t1; if (t2 < tmax) tmax = t2; if (tmin > tmax) return false; } } return true; } int rcGetChunksOverlappingSegment(const rcChunkyTriMesh* cm, float p[2], float q[2], int* ids, const int maxIds) { // Traverse tree int i = 0; int n = 0; while (i < cm->nnodes) { const rcChunkyTriMeshNode* node = &cm->nodes[i]; const bool overlap = checkOverlapSegment(p, q, node->bmin, node->bmax); const bool isLeafNode = node->i >= 0; if (isLeafNode && overlap) { if (n < maxIds) { ids[n] = i; n++; } } if (overlap || isLeafNode) i++; else { const int escapeIndex = -node->i; i += escapeIndex; } } return n; }