#include "../fxh/Constants.fxh" #include "../fxh/Lighting.fxh" shared texture g_Texture0 : Texture0; shared float4 g_DirectionalLightAmbientSum; shared float4 g_DirectionalLightDiffuse[MAX_DIRECTIONAL_LIGHTS]; shared float3 g_DirectionalLightDirection[MAX_DIRECTIONAL_LIGHTS]; shared float4 g_DirectionalLightSpecular[MAX_DIRECTIONAL_LIGHTS]; shared int g_DirectionalLightCount; shared Material g_Material; shared float4x4 g_WorldViewProjection; shared float4x4 g_WorldView; shared float4x4 g_World; shared float4 g_TextureFactor; shared TextureBlendStage g_BlendStages[MAX_BLEND_STAGES]; shared int g_BlendStageCount; shared float3 g_CameraPosition; sampler g_ObjTextureSampler : register(s0) = sampler_state { Texture = ; MipFilter = LINEAR; MinFilter = LINEAR; MagFilter = LINEAR; }; // ======================================================= // Pixel and vertex lighting techniques // float4 CalculateDiffuse(float3 N, float3 L, float4 diffuseColor) { float NDotL = dot(N, L); float4 finalColor = 0; if (NDotL > 0.0f) { finalColor = max(0, NDotL * diffuseColor); } return finalColor; } float4 CalculateSpecular(float3 worldPos, float3 N, float3 L, float4 specularColor) { float4 finalColor = 0; if (g_Material.Power > 0) { float3 toEye = normalize(g_CameraPosition.xyz - worldPos); float3 halfway = normalize(toEye + L); float NDotH = saturate(dot(halfway, N)); finalColor = max(0, pow(NDotH, g_Material.Power) * specularColor); } return finalColor; } Lighting DoDirectionalLight(float3 worldPos, float3 N, int i) { Lighting Out; Out.Diffuse = CalculateDiffuse( N, -g_DirectionalLightDirection[i], g_DirectionalLightDiffuse[i]); Out.Specular = CalculateSpecular( worldPos, N, -g_DirectionalLightDirection[i], g_DirectionalLightSpecular[i]); return Out; } Lighting ComputeLighting(float3 worldPos, float3 N) { Lighting finalLighting = (Lighting)0; for (int i = 0; i < g_DirectionalLightCount; i++) { Lighting lighting = DoDirectionalLight(worldPos, N, i); finalLighting.Diffuse += lighting.Diffuse; finalLighting.Specular += lighting.Specular; } float4 ambient = g_Material.Ambient * g_DirectionalLightAmbientSum; float4 diffuse = g_Material.Diffuse * finalLighting.Diffuse; float4 specular = g_Material.Specular * finalLighting.Specular; finalLighting.Diffuse = saturate(ambient + diffuse + g_Material.Emissive); finalLighting.Specular = saturate(specular); return finalLighting; } struct PixelLightingVSOutput { float4 Pos : POSITION; float2 Tex0 : TEXCOORD0; float3 Normal : TEXCOORD1; float3 WorldPos : TEXCOORD2; }; PixelLightingVSOutput PixelLightingVS( float4 vPosition : POSITION0, float3 vNormal : NORMAL0, float2 tc : TEXCOORD0) { // Simple transform, pre-compute as much as we can for the pixel shader PixelLightingVSOutput output; output.Pos = mul(vPosition, g_WorldViewProjection); output.Normal = mul(normalize(vNormal), (float3x3)g_World); output.WorldPos = mul(vPosition, g_World); output.Tex0 = tc; return output; } float4 GetColorArg(int colorArg, float4 textureColor, float4 diffuseColor) { float4 result; if (colorArg == D3DTA_TEXTURE) result = textureColor; else if (colorArg == D3DTA_DIFFUSE) result = diffuseColor; else if (colorArg == D3DTA_TFACTOR) result = g_TextureFactor; else result = float4(1.f, 1.f, 1.f, 1.f); return result; } float4 Modulate(int stageIndex, float4 textureColor, float4 diffuseColor, float factor) { float4 left = GetColorArg(g_BlendStages[stageIndex].colorArg1, textureColor, diffuseColor); float4 right = GetColorArg(g_BlendStages[stageIndex].colorArg2, textureColor, diffuseColor); return (left * right) * factor; } float4 ProcessStages(float4 textureColor, float4 diffuseColor) { float4 output = 0; for (int i = 0; i < g_BlendStageCount; i++) { if (g_BlendStages[i].colorOp == D3DTOP_MODULATE4X) { output += Modulate(i, textureColor, diffuseColor, 4.0f); } else { output += Modulate(i, textureColor, diffuseColor, 1.0f); } } return output; } struct PixelLightingPSOutput { float4 Diffuse : COLOR0; }; PixelLightingPSOutput PixelLightingPS(PixelLightingVSOutput input) { float4 color = tex2D(g_ObjTextureSampler, input.Tex0); Lighting lighting = ComputeLighting(input.WorldPos, input.Normal); PixelLightingPSOutput output; output.Diffuse = ProcessStages(color, lighting.Diffuse) + lighting.Specular; return output; } technique PixelLighting { pass P0 { PixelShader = compile ps_3_0 PixelLightingPS(); VertexShader = compile vs_3_0 PixelLightingVS(); } } struct VertexLightingVSOutput { float4 Pos : POSITION; float4 Diffuse : COLOR0; float4 Specular : COLOR1; float2 Tex0 : TEXCOORD0; float4 BumpColor : TEXCOORD1; float Fog : FOG; }; float fFogStart = 25.f; float fFogEnd = 1525.f; VertexLightingVSOutput VertexLightingVS( float4 vPosition : POSITION0, float3 vNormal : NORMAL0, float4 color : COLOR0, float2 tc : TEXCOORD0) { VertexLightingVSOutput output; output.Pos = mul(vPosition, g_WorldViewProjection); output.Tex0 = tc; float4 worldPos = mul(vPosition, g_World); float3 normal = mul(normalize(vNormal), (float3x3)g_World); Lighting lighting = ComputeLighting(worldPos, normal); output.Diffuse = lighting.Diffuse; output.Specular = lighting.Specular; output.BumpColor = color; float3 P = mul(vPosition, g_WorldView); float d = length(P); output.Fog = saturate((fFogEnd - d) / (fFogEnd - fFogStart)); return output; } technique VertexLighting { pass P0 { VertexShader = compile vs_3_0 VertexLightingVS(); } } // ======================================================= // Color per vertex // struct ColorPerVertexVSOutput { float4 Pos : POSITION; float2 Tex0 : TEXCOORD0; float4 Color : COLOR0; float Fog : FOG; }; float4 ColorPerVertexPS(ColorPerVertexVSOutput input) : COLOR0 { float4 color = tex2D(g_ObjTextureSampler, input.Tex0); //* input.Color; return color; } ColorPerVertexVSOutput ColorPerVertexVS( float4 vPosition : POSITION0, float2 tc : TEXCOORD0, float4 color : COLOR0, float fog : FOG) { // Simple transform, pre-compute as much as we can for the pixel shader ColorPerVertexVSOutput output = (ColorPerVertexVSOutput)0; output.Pos = mul(vPosition, g_WorldViewProjection); output.Tex0 = tc; output.Color = color; float3 P = mul(vPosition, g_WorldView); //position in view space float d = length(P); output.Fog = saturate((fFogEnd - d) / (fFogEnd - fFogStart)); return output; } technique ColorPerVertex { pass P0 { //PixelShader = compile ps_3_0 ColorPerVertexPS(); VertexShader = compile vs_3_0 ColorPerVertexVS(); } }