1
0
mirror of https://github.com/ncblakely/GiantsTools synced 2024-11-25 07:35:36 +01:00
GiantsTools/Sdk/External/DirectXTK/Src/Shaders/PBREffect.fx

273 lines
9.4 KiB
HLSL
Raw Normal View History

2021-01-24 00:40:09 +01:00
// Copyright (c) Microsoft Corporation. All rights reserved.
// Licensed under the MIT License.
//
// http://go.microsoft.com/fwlink/?LinkId=248929
Texture2D<float4> AlbedoTexture : register(t0);
Texture2D<float3> NormalTexture : register(t1);
Texture2D<float3> RMATexture : register(t2);
Texture2D<float3> EmissiveTexture : register(t3);
TextureCube<float3> RadianceTexture : register(t4);
TextureCube<float3> IrradianceTexture : register(t5);
sampler SurfaceSampler : register(s0);
sampler IBLSampler : register(s1);
cbuffer Constants : register(b0)
{
float3 EyePosition : packoffset(c0);
float4x4 World : packoffset(c1);
float3x3 WorldInverseTranspose : packoffset(c5);
float4x4 WorldViewProj : packoffset(c8);
float4x4 PrevWorldViewProj : packoffset(c12);
float3 LightDirection[3] : packoffset(c16);
float3 LightColor[3] : packoffset(c19); // "Specular and diffuse light" in PBR
float3 ConstantAlbedo : packoffset(c22); // Constant values if not a textured effect
float Alpha : packoffset(c22.w);
float ConstantMetallic : packoffset(c23.x);
float ConstantRoughness : packoffset(c23.y);
int NumRadianceMipLevels : packoffset(c23.z);
// Size of render target
float TargetWidth : packoffset(c23.w);
float TargetHeight : packoffset(c24.x);
};
#include "Structures.fxh"
#include "PBRCommon.fxh"
#include "Utilities.fxh"
// Vertex shader: pbr
VSOutputPixelLightingTx VSConstant(VSInputNmTx vin)
{
VSOutputPixelLightingTx vout;
CommonVSOutputPixelLighting cout = ComputeCommonVSOutputPixelLighting(vin.Position, vin.Normal);
vout.PositionPS = cout.Pos_ps;
vout.PositionWS = float4(cout.Pos_ws, 1);
vout.NormalWS = cout.Normal_ws;
vout.Diffuse = float4(ConstantAlbedo, Alpha);
vout.TexCoord = vin.TexCoord;
return vout;
}
// Vertex shader: pbr + velocity
VSOut_Velocity VSConstantVelocity(VSInputNmTx vin)
{
VSOut_Velocity vout;
CommonVSOutputPixelLighting cout = ComputeCommonVSOutputPixelLighting(vin.Position, vin.Normal);
vout.current.PositionPS = cout.Pos_ps;
vout.current.PositionWS = float4(cout.Pos_ws, 1);
vout.current.NormalWS = cout.Normal_ws;
vout.current.Diffuse = float4(ConstantAlbedo, Alpha);
vout.current.TexCoord = vin.TexCoord;
vout.prevPosition = mul(vin.Position, PrevWorldViewProj);
return vout;
}
// Vertex shader: pbr (biased normal)
VSOutputPixelLightingTx VSConstantBn(VSInputNmTx vin)
{
VSOutputPixelLightingTx vout;
float3 normal = BiasX2(vin.Normal);
CommonVSOutputPixelLighting cout = ComputeCommonVSOutputPixelLighting(vin.Position, normal);
vout.PositionPS = cout.Pos_ps;
vout.PositionWS = float4(cout.Pos_ws, 1);
vout.NormalWS = cout.Normal_ws;
vout.Diffuse = float4(ConstantAlbedo, Alpha);
vout.TexCoord = vin.TexCoord;
return vout;
}
// Vertex shader: pbr + velocity (biased normal)
VSOut_Velocity VSConstantVelocityBn(VSInputNmTx vin)
{
VSOut_Velocity vout;
float3 normal = BiasX2(vin.Normal);
CommonVSOutputPixelLighting cout = ComputeCommonVSOutputPixelLighting(vin.Position, normal);
vout.current.PositionPS = cout.Pos_ps;
vout.current.PositionWS = float4(cout.Pos_ws, 1);
vout.current.NormalWS = cout.Normal_ws;
vout.current.Diffuse = float4(ConstantAlbedo, Alpha);
vout.current.TexCoord = vin.TexCoord;
vout.prevPosition = mul(vin.Position, PrevWorldViewProj);
return vout;
}
// Pixel shader: pbr (constants) + image-based lighting
float4 PSConstant(PSInputPixelLightingTx pin) : SV_Target0
{
// vectors
const float3 V = normalize(EyePosition - pin.PositionWS.xyz); // view vector
const float3 N = normalize(pin.NormalWS); // surface normal
const float AO = 1; // ambient term
float3 color = LightSurface(V, N, 3,
LightColor, LightDirection,
ConstantAlbedo, ConstantRoughness, ConstantMetallic, AO);
return float4(color, Alpha);
}
// Pixel shader: pbr (textures) + image-based lighting
float4 PSTextured(PSInputPixelLightingTx pin) : SV_Target0
{
const float3 V = normalize(EyePosition - pin.PositionWS.xyz); // view vector
const float3 L = normalize(-LightDirection[0]); // light vector ("to light" opposite of light's direction)
// Before lighting, peturb the surface's normal by the one given in normal map.
float3 localNormal = TwoChannelNormalX2(NormalTexture.Sample(SurfaceSampler, pin.TexCoord).xy);
float3 N = PeturbNormal(localNormal, pin.PositionWS.xyz, pin.NormalWS, pin.TexCoord);
// Get albedo
float4 albedo = AlbedoTexture.Sample(SurfaceSampler, pin.TexCoord);
// Get roughness, metalness, and ambient occlusion
float3 RMA = RMATexture.Sample(SurfaceSampler, pin.TexCoord);
// glTF2 defines metalness as B channel, roughness as G channel, and occlusion as R channel
// Shade surface
float3 color = LightSurface(V, N, 3, LightColor, LightDirection, albedo.rgb, RMA.g, RMA.b, RMA.r);
return float4(color, albedo.w * Alpha);
}
// Pixel shader: pbr (textures) + emissive + image-based lighting
float4 PSTexturedEmissive(PSInputPixelLightingTx pin) : SV_Target0
{
const float3 V = normalize(EyePosition - pin.PositionWS.xyz); // view vector
const float3 L = normalize(-LightDirection[0]); // light vector ("to light" opposite of light's direction)
// Before lighting, peturb the surface's normal by the one given in normal map.
float3 localNormal = TwoChannelNormalX2(NormalTexture.Sample(SurfaceSampler, pin.TexCoord).xy);
float3 N = PeturbNormal(localNormal, pin.PositionWS.xyz, pin.NormalWS, pin.TexCoord);
// Get albedo
float4 albedo = AlbedoTexture.Sample(SurfaceSampler, pin.TexCoord);
// Get roughness, metalness, and ambient occlusion
float3 RMA = RMATexture.Sample(SurfaceSampler, pin.TexCoord);
// glTF2 defines metalness as B channel, roughness as G channel, and occlusion as R channel
// Shade surface
float3 color = LightSurface(V, N, 3, LightColor, LightDirection, albedo.rgb, RMA.g, RMA.b, RMA.r);
color += EmissiveTexture.Sample(SurfaceSampler, pin.TexCoord).rgb;
return float4(color, albedo.w * Alpha);
}
// Pixel shader: pbr (textures) + image-based lighting + velocity
#include "PixelPacking_Velocity.hlsli"
struct PSOut_Velocity
{
float4 color : SV_Target0;
packed_velocity_t velocity : SV_Target1;
};
PSOut_Velocity PSTexturedVelocity(VSOut_Velocity pin)
{
PSOut_Velocity output;
const float3 V = normalize(EyePosition - pin.current.PositionWS.xyz); // view vector
const float3 L = normalize(-LightDirection[0]); // light vector ("to light" opposite of light's direction)
// Before lighting, peturb the surface's normal by the one given in normal map.
float3 localNormal = TwoChannelNormalX2(NormalTexture.Sample(SurfaceSampler, pin.current.TexCoord).xy);
float3 N = PeturbNormal(localNormal, pin.current.PositionWS.xyz, pin.current.NormalWS, pin.current.TexCoord);
// Get albedo
float4 albedo = AlbedoTexture.Sample(SurfaceSampler, pin.current.TexCoord);
// Get roughness, metalness, and ambient occlusion
float3 RMA = RMATexture.Sample(SurfaceSampler, pin.current.TexCoord);
// glTF2 defines metalness as B channel, roughness as G channel, and occlusion as R channel
// Shade surface
float3 color = LightSurface(V, N, 3, LightColor, LightDirection, albedo.rgb, RMA.g, RMA.b, RMA.r);
output.color = float4(color, albedo.w * Alpha);
// Calculate velocity of this point
float4 prevPos = pin.prevPosition;
prevPos.xyz /= prevPos.w;
prevPos.xy *= float2(0.5f, -0.5f);
prevPos.xy += 0.5f;
prevPos.xy *= float2(TargetWidth, TargetHeight);
output.velocity = PackVelocity(prevPos.xyz - pin.current.PositionPS.xyz);
return output;
}
PSOut_Velocity PSTexturedEmissiveVelocity(VSOut_Velocity pin)
{
PSOut_Velocity output;
const float3 V = normalize(EyePosition - pin.current.PositionWS.xyz); // view vector
const float3 L = normalize(-LightDirection[0]); // light vector ("to light" opposite of light's direction)
// Before lighting, peturb the surface's normal by the one given in normal map.
float3 localNormal = TwoChannelNormalX2(NormalTexture.Sample(SurfaceSampler, pin.current.TexCoord).xy);
float3 N = PeturbNormal(localNormal, pin.current.PositionWS.xyz, pin.current.NormalWS, pin.current.TexCoord);
// Get albedo
float4 albedo = AlbedoTexture.Sample(SurfaceSampler, pin.current.TexCoord);
// Get roughness, metalness, and ambient occlusion
float3 RMA = RMATexture.Sample(SurfaceSampler, pin.current.TexCoord);
// glTF2 defines metalness as B channel, roughness as G channel, and occlusion as R channel
// Shade surface
float3 color = LightSurface(V, N, 3, LightColor, LightDirection, albedo.rgb, RMA.g, RMA.b, RMA.r);
color += EmissiveTexture.Sample(SurfaceSampler, pin.current.TexCoord).rgb;
output.color = float4(color, albedo.w * Alpha);
// Calculate velocity of this point
float4 prevPos = pin.prevPosition;
prevPos.xyz /= prevPos.w;
prevPos.xy *= float2(0.5f, -0.5f);
prevPos.xy += 0.5f;
prevPos.xy *= float2(TargetWidth, TargetHeight);
output.velocity = PackVelocity(prevPos.xyz - pin.current.PositionPS.xyz);
return output;
}