mirror of
https://github.com/ncblakely/GiantsTools
synced 2024-11-24 23:25:37 +01:00
4817 lines
190 KiB
Plaintext
4817 lines
190 KiB
Plaintext
|
//-------------------------------------------------------------------------------------
|
||
|
// DirectXCollision.inl -- C++ Collision Math library
|
||
|
//
|
||
|
// Copyright (c) Microsoft Corporation. All rights reserved.
|
||
|
// Licensed under the MIT License.
|
||
|
//
|
||
|
// http://go.microsoft.com/fwlink/?LinkID=615560
|
||
|
//-------------------------------------------------------------------------------------
|
||
|
|
||
|
#pragma once
|
||
|
|
||
|
XMGLOBALCONST XMVECTORF32 g_BoxOffset[8] =
|
||
|
{
|
||
|
{ { { -1.0f, -1.0f, 1.0f, 0.0f } } },
|
||
|
{ { { 1.0f, -1.0f, 1.0f, 0.0f } } },
|
||
|
{ { { 1.0f, 1.0f, 1.0f, 0.0f } } },
|
||
|
{ { { -1.0f, 1.0f, 1.0f, 0.0f } } },
|
||
|
{ { { -1.0f, -1.0f, -1.0f, 0.0f } } },
|
||
|
{ { { 1.0f, -1.0f, -1.0f, 0.0f } } },
|
||
|
{ { { 1.0f, 1.0f, -1.0f, 0.0f } } },
|
||
|
{ { { -1.0f, 1.0f, -1.0f, 0.0f } } },
|
||
|
};
|
||
|
|
||
|
XMGLOBALCONST XMVECTORF32 g_RayEpsilon = { { { 1e-20f, 1e-20f, 1e-20f, 1e-20f } } };
|
||
|
XMGLOBALCONST XMVECTORF32 g_RayNegEpsilon = { { { -1e-20f, -1e-20f, -1e-20f, -1e-20f } } };
|
||
|
XMGLOBALCONST XMVECTORF32 g_FltMin = { { { -FLT_MAX, -FLT_MAX, -FLT_MAX, -FLT_MAX } } };
|
||
|
XMGLOBALCONST XMVECTORF32 g_FltMax = { { { FLT_MAX, FLT_MAX, FLT_MAX, FLT_MAX } } };
|
||
|
|
||
|
namespace Internal
|
||
|
{
|
||
|
|
||
|
//-----------------------------------------------------------------------------
|
||
|
// Return true if any of the elements of a 3 vector are equal to 0xffffffff.
|
||
|
// Slightly more efficient than using XMVector3EqualInt.
|
||
|
//-----------------------------------------------------------------------------
|
||
|
inline bool XMVector3AnyTrue(_In_ FXMVECTOR V) noexcept
|
||
|
{
|
||
|
// Duplicate the fourth element from the first element.
|
||
|
XMVECTOR C = XMVectorSwizzle<XM_SWIZZLE_X, XM_SWIZZLE_Y, XM_SWIZZLE_Z, XM_SWIZZLE_X>(V);
|
||
|
|
||
|
return XMComparisonAnyTrue(XMVector4EqualIntR(C, XMVectorTrueInt()));
|
||
|
}
|
||
|
|
||
|
|
||
|
//-----------------------------------------------------------------------------
|
||
|
// Return true if all of the elements of a 3 vector are equal to 0xffffffff.
|
||
|
// Slightly more efficient than using XMVector3EqualInt.
|
||
|
//-----------------------------------------------------------------------------
|
||
|
inline bool XMVector3AllTrue(_In_ FXMVECTOR V) noexcept
|
||
|
{
|
||
|
// Duplicate the fourth element from the first element.
|
||
|
XMVECTOR C = XMVectorSwizzle<XM_SWIZZLE_X, XM_SWIZZLE_Y, XM_SWIZZLE_Z, XM_SWIZZLE_X>(V);
|
||
|
|
||
|
return XMComparisonAllTrue(XMVector4EqualIntR(C, XMVectorTrueInt()));
|
||
|
}
|
||
|
|
||
|
#if defined(_PREFAST_) || !defined(NDEBUG)
|
||
|
|
||
|
XMGLOBALCONST XMVECTORF32 g_UnitVectorEpsilon = { { { 1.0e-4f, 1.0e-4f, 1.0e-4f, 1.0e-4f } } };
|
||
|
XMGLOBALCONST XMVECTORF32 g_UnitQuaternionEpsilon = { { { 1.0e-4f, 1.0e-4f, 1.0e-4f, 1.0e-4f } } };
|
||
|
XMGLOBALCONST XMVECTORF32 g_UnitPlaneEpsilon = { { { 1.0e-4f, 1.0e-4f, 1.0e-4f, 1.0e-4f } } };
|
||
|
|
||
|
//-----------------------------------------------------------------------------
|
||
|
// Return true if the vector is a unit vector (length == 1).
|
||
|
//-----------------------------------------------------------------------------
|
||
|
inline bool XMVector3IsUnit(_In_ FXMVECTOR V) noexcept
|
||
|
{
|
||
|
XMVECTOR Difference = XMVectorSubtract(XMVector3Length(V), XMVectorSplatOne());
|
||
|
return XMVector4Less(XMVectorAbs(Difference), g_UnitVectorEpsilon);
|
||
|
}
|
||
|
|
||
|
//-----------------------------------------------------------------------------
|
||
|
// Return true if the quaterion is a unit quaternion.
|
||
|
//-----------------------------------------------------------------------------
|
||
|
inline bool XMQuaternionIsUnit(_In_ FXMVECTOR Q) noexcept
|
||
|
{
|
||
|
XMVECTOR Difference = XMVectorSubtract(XMVector4Length(Q), XMVectorSplatOne());
|
||
|
return XMVector4Less(XMVectorAbs(Difference), g_UnitQuaternionEpsilon);
|
||
|
}
|
||
|
|
||
|
//-----------------------------------------------------------------------------
|
||
|
// Return true if the plane is a unit plane.
|
||
|
//-----------------------------------------------------------------------------
|
||
|
inline bool XMPlaneIsUnit(_In_ FXMVECTOR Plane) noexcept
|
||
|
{
|
||
|
XMVECTOR Difference = XMVectorSubtract(XMVector3Length(Plane), XMVectorSplatOne());
|
||
|
return XMVector4Less(XMVectorAbs(Difference), g_UnitPlaneEpsilon);
|
||
|
}
|
||
|
|
||
|
#endif // _PREFAST_ || !NDEBUG
|
||
|
|
||
|
//-----------------------------------------------------------------------------
|
||
|
inline XMVECTOR XMPlaneTransform(_In_ FXMVECTOR Plane, _In_ FXMVECTOR Rotation, _In_ FXMVECTOR Translation) noexcept
|
||
|
{
|
||
|
XMVECTOR vNormal = XMVector3Rotate(Plane, Rotation);
|
||
|
XMVECTOR vD = XMVectorSubtract(XMVectorSplatW(Plane), XMVector3Dot(vNormal, Translation));
|
||
|
|
||
|
return XMVectorInsert<0, 0, 0, 0, 1>(vNormal, vD);
|
||
|
}
|
||
|
|
||
|
//-----------------------------------------------------------------------------
|
||
|
// Return the point on the line segement (S1, S2) nearest the point P.
|
||
|
//-----------------------------------------------------------------------------
|
||
|
inline XMVECTOR PointOnLineSegmentNearestPoint(_In_ FXMVECTOR S1, _In_ FXMVECTOR S2, _In_ FXMVECTOR P) noexcept
|
||
|
{
|
||
|
XMVECTOR Dir = XMVectorSubtract(S2, S1);
|
||
|
XMVECTOR Projection = XMVectorSubtract(XMVector3Dot(P, Dir), XMVector3Dot(S1, Dir));
|
||
|
XMVECTOR LengthSq = XMVector3Dot(Dir, Dir);
|
||
|
|
||
|
XMVECTOR t = XMVectorMultiply(Projection, XMVectorReciprocal(LengthSq));
|
||
|
XMVECTOR Point = XMVectorMultiplyAdd(t, Dir, S1);
|
||
|
|
||
|
// t < 0
|
||
|
XMVECTOR SelectS1 = XMVectorLess(Projection, XMVectorZero());
|
||
|
Point = XMVectorSelect(Point, S1, SelectS1);
|
||
|
|
||
|
// t > 1
|
||
|
XMVECTOR SelectS2 = XMVectorGreater(Projection, LengthSq);
|
||
|
Point = XMVectorSelect(Point, S2, SelectS2);
|
||
|
|
||
|
return Point;
|
||
|
}
|
||
|
|
||
|
//-----------------------------------------------------------------------------
|
||
|
// Test if the point (P) on the plane of the triangle is inside the triangle
|
||
|
// (V0, V1, V2).
|
||
|
//-----------------------------------------------------------------------------
|
||
|
inline XMVECTOR XM_CALLCONV PointOnPlaneInsideTriangle(_In_ FXMVECTOR P, _In_ FXMVECTOR V0, _In_ FXMVECTOR V1, _In_ GXMVECTOR V2) noexcept
|
||
|
{
|
||
|
// Compute the triangle normal.
|
||
|
XMVECTOR N = XMVector3Cross(XMVectorSubtract(V2, V0), XMVectorSubtract(V1, V0));
|
||
|
|
||
|
// Compute the cross products of the vector from the base of each edge to
|
||
|
// the point with each edge vector.
|
||
|
XMVECTOR C0 = XMVector3Cross(XMVectorSubtract(P, V0), XMVectorSubtract(V1, V0));
|
||
|
XMVECTOR C1 = XMVector3Cross(XMVectorSubtract(P, V1), XMVectorSubtract(V2, V1));
|
||
|
XMVECTOR C2 = XMVector3Cross(XMVectorSubtract(P, V2), XMVectorSubtract(V0, V2));
|
||
|
|
||
|
// If the cross product points in the same direction as the normal the the
|
||
|
// point is inside the edge (it is zero if is on the edge).
|
||
|
XMVECTOR Zero = XMVectorZero();
|
||
|
XMVECTOR Inside0 = XMVectorGreaterOrEqual(XMVector3Dot(C0, N), Zero);
|
||
|
XMVECTOR Inside1 = XMVectorGreaterOrEqual(XMVector3Dot(C1, N), Zero);
|
||
|
XMVECTOR Inside2 = XMVectorGreaterOrEqual(XMVector3Dot(C2, N), Zero);
|
||
|
|
||
|
// If the point inside all of the edges it is inside.
|
||
|
return XMVectorAndInt(XMVectorAndInt(Inside0, Inside1), Inside2);
|
||
|
}
|
||
|
|
||
|
//-----------------------------------------------------------------------------
|
||
|
inline bool SolveCubic(_In_ float e, _In_ float f, _In_ float g, _Out_ float* t, _Out_ float* u, _Out_ float* v) noexcept
|
||
|
{
|
||
|
float p, q, h, rc, d, theta, costh3, sinth3;
|
||
|
|
||
|
p = f - e * e / 3.0f;
|
||
|
q = g - e * f / 3.0f + e * e * e * 2.0f / 27.0f;
|
||
|
h = q * q / 4.0f + p * p * p / 27.0f;
|
||
|
|
||
|
if (h > 0)
|
||
|
{
|
||
|
*t = *u = *v = 0.f;
|
||
|
return false; // only one real root
|
||
|
}
|
||
|
|
||
|
if ((h == 0) && (q == 0)) // all the same root
|
||
|
{
|
||
|
*t = -e / 3;
|
||
|
*u = -e / 3;
|
||
|
*v = -e / 3;
|
||
|
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
d = sqrtf(q * q / 4.0f - h);
|
||
|
if (d < 0)
|
||
|
rc = -powf(-d, 1.0f / 3.0f);
|
||
|
else
|
||
|
rc = powf(d, 1.0f / 3.0f);
|
||
|
|
||
|
theta = XMScalarACos(-q / (2.0f * d));
|
||
|
costh3 = XMScalarCos(theta / 3.0f);
|
||
|
sinth3 = sqrtf(3.0f) * XMScalarSin(theta / 3.0f);
|
||
|
*t = 2.0f * rc * costh3 - e / 3.0f;
|
||
|
*u = -rc * (costh3 + sinth3) - e / 3.0f;
|
||
|
*v = -rc * (costh3 - sinth3) - e / 3.0f;
|
||
|
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
//-----------------------------------------------------------------------------
|
||
|
inline XMVECTOR CalculateEigenVector(_In_ float m11, _In_ float m12, _In_ float m13,
|
||
|
_In_ float m22, _In_ float m23, _In_ float m33, _In_ float e) noexcept
|
||
|
{
|
||
|
float fTmp[3];
|
||
|
fTmp[0] = m12 * m23 - m13 * (m22 - e);
|
||
|
fTmp[1] = m13 * m12 - m23 * (m11 - e);
|
||
|
fTmp[2] = (m11 - e) * (m22 - e) - m12 * m12;
|
||
|
|
||
|
XMVECTOR vTmp = XMLoadFloat3(reinterpret_cast<const XMFLOAT3*>(fTmp));
|
||
|
|
||
|
if (XMVector3Equal(vTmp, XMVectorZero())) // planar or linear
|
||
|
{
|
||
|
float f1, f2, f3;
|
||
|
|
||
|
// we only have one equation - find a valid one
|
||
|
if ((m11 - e != 0) || (m12 != 0) || (m13 != 0))
|
||
|
{
|
||
|
f1 = m11 - e; f2 = m12; f3 = m13;
|
||
|
}
|
||
|
else if ((m12 != 0) || (m22 - e != 0) || (m23 != 0))
|
||
|
{
|
||
|
f1 = m12; f2 = m22 - e; f3 = m23;
|
||
|
}
|
||
|
else if ((m13 != 0) || (m23 != 0) || (m33 - e != 0))
|
||
|
{
|
||
|
f1 = m13; f2 = m23; f3 = m33 - e;
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
// error, we'll just make something up - we have NO context
|
||
|
f1 = 1.0f; f2 = 0.0f; f3 = 0.0f;
|
||
|
}
|
||
|
|
||
|
if (f1 == 0)
|
||
|
vTmp = XMVectorSetX(vTmp, 0.0f);
|
||
|
else
|
||
|
vTmp = XMVectorSetX(vTmp, 1.0f);
|
||
|
|
||
|
if (f2 == 0)
|
||
|
vTmp = XMVectorSetY(vTmp, 0.0f);
|
||
|
else
|
||
|
vTmp = XMVectorSetY(vTmp, 1.0f);
|
||
|
|
||
|
if (f3 == 0)
|
||
|
{
|
||
|
vTmp = XMVectorSetZ(vTmp, 0.0f);
|
||
|
// recalculate y to make equation work
|
||
|
if (m12 != 0)
|
||
|
vTmp = XMVectorSetY(vTmp, -f1 / f2);
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
vTmp = XMVectorSetZ(vTmp, (f2 - f1) / f3);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
if (XMVectorGetX(XMVector3LengthSq(vTmp)) > 1e-5f)
|
||
|
{
|
||
|
return XMVector3Normalize(vTmp);
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
// Multiply by a value large enough to make the vector non-zero.
|
||
|
vTmp = XMVectorScale(vTmp, 1e5f);
|
||
|
return XMVector3Normalize(vTmp);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
//-----------------------------------------------------------------------------
|
||
|
inline bool CalculateEigenVectors(_In_ float m11, _In_ float m12, _In_ float m13,
|
||
|
_In_ float m22, _In_ float m23, _In_ float m33,
|
||
|
_In_ float e1, _In_ float e2, _In_ float e3,
|
||
|
_Out_ XMVECTOR* pV1, _Out_ XMVECTOR* pV2, _Out_ XMVECTOR* pV3) noexcept
|
||
|
{
|
||
|
*pV1 = DirectX::Internal::CalculateEigenVector(m11, m12, m13, m22, m23, m33, e1);
|
||
|
*pV2 = DirectX::Internal::CalculateEigenVector(m11, m12, m13, m22, m23, m33, e2);
|
||
|
*pV3 = DirectX::Internal::CalculateEigenVector(m11, m12, m13, m22, m23, m33, e3);
|
||
|
|
||
|
bool v1z = false;
|
||
|
bool v2z = false;
|
||
|
bool v3z = false;
|
||
|
|
||
|
XMVECTOR Zero = XMVectorZero();
|
||
|
|
||
|
if (XMVector3Equal(*pV1, Zero))
|
||
|
v1z = true;
|
||
|
|
||
|
if (XMVector3Equal(*pV2, Zero))
|
||
|
v2z = true;
|
||
|
|
||
|
if (XMVector3Equal(*pV3, Zero))
|
||
|
v3z = true;
|
||
|
|
||
|
bool e12 = (fabsf(XMVectorGetX(XMVector3Dot(*pV1, *pV2))) > 0.1f); // check for non-orthogonal vectors
|
||
|
bool e13 = (fabsf(XMVectorGetX(XMVector3Dot(*pV1, *pV3))) > 0.1f);
|
||
|
bool e23 = (fabsf(XMVectorGetX(XMVector3Dot(*pV2, *pV3))) > 0.1f);
|
||
|
|
||
|
if ((v1z && v2z && v3z) || (e12 && e13 && e23) ||
|
||
|
(e12 && v3z) || (e13 && v2z) || (e23 && v1z)) // all eigenvectors are 0- any basis set
|
||
|
{
|
||
|
*pV1 = g_XMIdentityR0.v;
|
||
|
*pV2 = g_XMIdentityR1.v;
|
||
|
*pV3 = g_XMIdentityR2.v;
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
if (v1z && v2z)
|
||
|
{
|
||
|
XMVECTOR vTmp = XMVector3Cross(g_XMIdentityR1, *pV3);
|
||
|
if (XMVectorGetX(XMVector3LengthSq(vTmp)) < 1e-5f)
|
||
|
{
|
||
|
vTmp = XMVector3Cross(g_XMIdentityR0, *pV3);
|
||
|
}
|
||
|
*pV1 = XMVector3Normalize(vTmp);
|
||
|
*pV2 = XMVector3Cross(*pV3, *pV1);
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
if (v3z && v1z)
|
||
|
{
|
||
|
XMVECTOR vTmp = XMVector3Cross(g_XMIdentityR1, *pV2);
|
||
|
if (XMVectorGetX(XMVector3LengthSq(vTmp)) < 1e-5f)
|
||
|
{
|
||
|
vTmp = XMVector3Cross(g_XMIdentityR0, *pV2);
|
||
|
}
|
||
|
*pV3 = XMVector3Normalize(vTmp);
|
||
|
*pV1 = XMVector3Cross(*pV2, *pV3);
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
if (v2z && v3z)
|
||
|
{
|
||
|
XMVECTOR vTmp = XMVector3Cross(g_XMIdentityR1, *pV1);
|
||
|
if (XMVectorGetX(XMVector3LengthSq(vTmp)) < 1e-5f)
|
||
|
{
|
||
|
vTmp = XMVector3Cross(g_XMIdentityR0, *pV1);
|
||
|
}
|
||
|
*pV2 = XMVector3Normalize(vTmp);
|
||
|
*pV3 = XMVector3Cross(*pV1, *pV2);
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
if ((v1z) || e12)
|
||
|
{
|
||
|
*pV1 = XMVector3Cross(*pV2, *pV3);
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
if ((v2z) || e23)
|
||
|
{
|
||
|
*pV2 = XMVector3Cross(*pV3, *pV1);
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
if ((v3z) || e13)
|
||
|
{
|
||
|
*pV3 = XMVector3Cross(*pV1, *pV2);
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
//-----------------------------------------------------------------------------
|
||
|
inline bool CalculateEigenVectorsFromCovarianceMatrix(_In_ float Cxx, _In_ float Cyy, _In_ float Czz,
|
||
|
_In_ float Cxy, _In_ float Cxz, _In_ float Cyz,
|
||
|
_Out_ XMVECTOR* pV1, _Out_ XMVECTOR* pV2, _Out_ XMVECTOR* pV3) noexcept
|
||
|
{
|
||
|
// Calculate the eigenvalues by solving a cubic equation.
|
||
|
float e = -(Cxx + Cyy + Czz);
|
||
|
float f = Cxx * Cyy + Cyy * Czz + Czz * Cxx - Cxy * Cxy - Cxz * Cxz - Cyz * Cyz;
|
||
|
float g = Cxy * Cxy * Czz + Cxz * Cxz * Cyy + Cyz * Cyz * Cxx - Cxy * Cyz * Cxz * 2.0f - Cxx * Cyy * Czz;
|
||
|
|
||
|
float ev1, ev2, ev3;
|
||
|
if (!DirectX::Internal::SolveCubic(e, f, g, &ev1, &ev2, &ev3))
|
||
|
{
|
||
|
// set them to arbitrary orthonormal basis set
|
||
|
*pV1 = g_XMIdentityR0.v;
|
||
|
*pV2 = g_XMIdentityR1.v;
|
||
|
*pV3 = g_XMIdentityR2.v;
|
||
|
return false;
|
||
|
}
|
||
|
|
||
|
return DirectX::Internal::CalculateEigenVectors(Cxx, Cxy, Cxz, Cyy, Cyz, Czz, ev1, ev2, ev3, pV1, pV2, pV3);
|
||
|
}
|
||
|
|
||
|
//-----------------------------------------------------------------------------
|
||
|
inline void XM_CALLCONV FastIntersectTrianglePlane(
|
||
|
FXMVECTOR V0, FXMVECTOR V1, FXMVECTOR V2,
|
||
|
GXMVECTOR Plane,
|
||
|
XMVECTOR& Outside, XMVECTOR& Inside) noexcept
|
||
|
{
|
||
|
// Plane0
|
||
|
XMVECTOR Dist0 = XMVector4Dot(V0, Plane);
|
||
|
XMVECTOR Dist1 = XMVector4Dot(V1, Plane);
|
||
|
XMVECTOR Dist2 = XMVector4Dot(V2, Plane);
|
||
|
|
||
|
XMVECTOR MinDist = XMVectorMin(Dist0, Dist1);
|
||
|
MinDist = XMVectorMin(MinDist, Dist2);
|
||
|
|
||
|
XMVECTOR MaxDist = XMVectorMax(Dist0, Dist1);
|
||
|
MaxDist = XMVectorMax(MaxDist, Dist2);
|
||
|
|
||
|
XMVECTOR Zero = XMVectorZero();
|
||
|
|
||
|
// Outside the plane?
|
||
|
Outside = XMVectorGreater(MinDist, Zero);
|
||
|
|
||
|
// Fully inside the plane?
|
||
|
Inside = XMVectorLess(MaxDist, Zero);
|
||
|
}
|
||
|
|
||
|
//-----------------------------------------------------------------------------
|
||
|
inline void FastIntersectSpherePlane(_In_ FXMVECTOR Center, _In_ FXMVECTOR Radius, _In_ FXMVECTOR Plane,
|
||
|
_Out_ XMVECTOR& Outside, _Out_ XMVECTOR& Inside) noexcept
|
||
|
{
|
||
|
XMVECTOR Dist = XMVector4Dot(Center, Plane);
|
||
|
|
||
|
// Outside the plane?
|
||
|
Outside = XMVectorGreater(Dist, Radius);
|
||
|
|
||
|
// Fully inside the plane?
|
||
|
Inside = XMVectorLess(Dist, XMVectorNegate(Radius));
|
||
|
}
|
||
|
|
||
|
//-----------------------------------------------------------------------------
|
||
|
inline void FastIntersectAxisAlignedBoxPlane(_In_ FXMVECTOR Center, _In_ FXMVECTOR Extents, _In_ FXMVECTOR Plane,
|
||
|
_Out_ XMVECTOR& Outside, _Out_ XMVECTOR& Inside) noexcept
|
||
|
{
|
||
|
// Compute the distance to the center of the box.
|
||
|
XMVECTOR Dist = XMVector4Dot(Center, Plane);
|
||
|
|
||
|
// Project the axes of the box onto the normal of the plane. Half the
|
||
|
// length of the projection (sometime called the "radius") is equal to
|
||
|
// h(u) * abs(n dot b(u))) + h(v) * abs(n dot b(v)) + h(w) * abs(n dot b(w))
|
||
|
// where h(i) are extents of the box, n is the plane normal, and b(i) are the
|
||
|
// axes of the box. In this case b(i) = [(1,0,0), (0,1,0), (0,0,1)].
|
||
|
XMVECTOR Radius = XMVector3Dot(Extents, XMVectorAbs(Plane));
|
||
|
|
||
|
// Outside the plane?
|
||
|
Outside = XMVectorGreater(Dist, Radius);
|
||
|
|
||
|
// Fully inside the plane?
|
||
|
Inside = XMVectorLess(Dist, XMVectorNegate(Radius));
|
||
|
}
|
||
|
|
||
|
//-----------------------------------------------------------------------------
|
||
|
inline void XM_CALLCONV FastIntersectOrientedBoxPlane(
|
||
|
_In_ FXMVECTOR Center, _In_ FXMVECTOR Extents, _In_ FXMVECTOR Axis0,
|
||
|
_In_ GXMVECTOR Axis1,
|
||
|
_In_ HXMVECTOR Axis2, _In_ HXMVECTOR Plane,
|
||
|
_Out_ XMVECTOR& Outside, _Out_ XMVECTOR& Inside) noexcept
|
||
|
{
|
||
|
// Compute the distance to the center of the box.
|
||
|
XMVECTOR Dist = XMVector4Dot(Center, Plane);
|
||
|
|
||
|
// Project the axes of the box onto the normal of the plane. Half the
|
||
|
// length of the projection (sometime called the "radius") is equal to
|
||
|
// h(u) * abs(n dot b(u))) + h(v) * abs(n dot b(v)) + h(w) * abs(n dot b(w))
|
||
|
// where h(i) are extents of the box, n is the plane normal, and b(i) are the
|
||
|
// axes of the box.
|
||
|
XMVECTOR Radius = XMVector3Dot(Plane, Axis0);
|
||
|
Radius = XMVectorInsert<0, 0, 1, 0, 0>(Radius, XMVector3Dot(Plane, Axis1));
|
||
|
Radius = XMVectorInsert<0, 0, 0, 1, 0>(Radius, XMVector3Dot(Plane, Axis2));
|
||
|
Radius = XMVector3Dot(Extents, XMVectorAbs(Radius));
|
||
|
|
||
|
// Outside the plane?
|
||
|
Outside = XMVectorGreater(Dist, Radius);
|
||
|
|
||
|
// Fully inside the plane?
|
||
|
Inside = XMVectorLess(Dist, XMVectorNegate(Radius));
|
||
|
}
|
||
|
|
||
|
//-----------------------------------------------------------------------------
|
||
|
inline void XM_CALLCONV FastIntersectFrustumPlane(
|
||
|
_In_ FXMVECTOR Point0, _In_ FXMVECTOR Point1, _In_ FXMVECTOR Point2,
|
||
|
_In_ GXMVECTOR Point3,
|
||
|
_In_ HXMVECTOR Point4, _In_ HXMVECTOR Point5,
|
||
|
_In_ CXMVECTOR Point6, _In_ CXMVECTOR Point7, _In_ CXMVECTOR Plane,
|
||
|
_Out_ XMVECTOR& Outside, _Out_ XMVECTOR& Inside) noexcept
|
||
|
{
|
||
|
// Find the min/max projection of the frustum onto the plane normal.
|
||
|
XMVECTOR Min, Max, Dist;
|
||
|
|
||
|
Min = Max = XMVector3Dot(Plane, Point0);
|
||
|
|
||
|
Dist = XMVector3Dot(Plane, Point1);
|
||
|
Min = XMVectorMin(Min, Dist);
|
||
|
Max = XMVectorMax(Max, Dist);
|
||
|
|
||
|
Dist = XMVector3Dot(Plane, Point2);
|
||
|
Min = XMVectorMin(Min, Dist);
|
||
|
Max = XMVectorMax(Max, Dist);
|
||
|
|
||
|
Dist = XMVector3Dot(Plane, Point3);
|
||
|
Min = XMVectorMin(Min, Dist);
|
||
|
Max = XMVectorMax(Max, Dist);
|
||
|
|
||
|
Dist = XMVector3Dot(Plane, Point4);
|
||
|
Min = XMVectorMin(Min, Dist);
|
||
|
Max = XMVectorMax(Max, Dist);
|
||
|
|
||
|
Dist = XMVector3Dot(Plane, Point5);
|
||
|
Min = XMVectorMin(Min, Dist);
|
||
|
Max = XMVectorMax(Max, Dist);
|
||
|
|
||
|
Dist = XMVector3Dot(Plane, Point6);
|
||
|
Min = XMVectorMin(Min, Dist);
|
||
|
Max = XMVectorMax(Max, Dist);
|
||
|
|
||
|
Dist = XMVector3Dot(Plane, Point7);
|
||
|
Min = XMVectorMin(Min, Dist);
|
||
|
Max = XMVectorMax(Max, Dist);
|
||
|
|
||
|
XMVECTOR PlaneDist = XMVectorNegate(XMVectorSplatW(Plane));
|
||
|
|
||
|
// Outside the plane?
|
||
|
Outside = XMVectorGreater(Min, PlaneDist);
|
||
|
|
||
|
// Fully inside the plane?
|
||
|
Inside = XMVectorLess(Max, PlaneDist);
|
||
|
}
|
||
|
|
||
|
} // namespace Internal
|
||
|
|
||
|
|
||
|
/****************************************************************************
|
||
|
*
|
||
|
* BoundingSphere
|
||
|
*
|
||
|
****************************************************************************/
|
||
|
|
||
|
//-----------------------------------------------------------------------------
|
||
|
// Transform a sphere by an angle preserving transform.
|
||
|
//-----------------------------------------------------------------------------
|
||
|
_Use_decl_annotations_
|
||
|
inline void XM_CALLCONV BoundingSphere::Transform(BoundingSphere& Out, FXMMATRIX M) const noexcept
|
||
|
{
|
||
|
// Load the center of the sphere.
|
||
|
XMVECTOR vCenter = XMLoadFloat3(&Center);
|
||
|
|
||
|
// Transform the center of the sphere.
|
||
|
XMVECTOR C = XMVector3Transform(vCenter, M);
|
||
|
|
||
|
XMVECTOR dX = XMVector3Dot(M.r[0], M.r[0]);
|
||
|
XMVECTOR dY = XMVector3Dot(M.r[1], M.r[1]);
|
||
|
XMVECTOR dZ = XMVector3Dot(M.r[2], M.r[2]);
|
||
|
|
||
|
XMVECTOR d = XMVectorMax(dX, XMVectorMax(dY, dZ));
|
||
|
|
||
|
// Store the center sphere.
|
||
|
XMStoreFloat3(&Out.Center, C);
|
||
|
|
||
|
// Scale the radius of the pshere.
|
||
|
float Scale = sqrtf(XMVectorGetX(d));
|
||
|
Out.Radius = Radius * Scale;
|
||
|
}
|
||
|
|
||
|
_Use_decl_annotations_
|
||
|
inline void XM_CALLCONV BoundingSphere::Transform(BoundingSphere& Out, float Scale, FXMVECTOR Rotation, FXMVECTOR Translation) const noexcept
|
||
|
{
|
||
|
// Load the center of the sphere.
|
||
|
XMVECTOR vCenter = XMLoadFloat3(&Center);
|
||
|
|
||
|
// Transform the center of the sphere.
|
||
|
vCenter = XMVectorAdd(XMVector3Rotate(XMVectorScale(vCenter, Scale), Rotation), Translation);
|
||
|
|
||
|
// Store the center sphere.
|
||
|
XMStoreFloat3(&Out.Center, vCenter);
|
||
|
|
||
|
// Scale the radius of the pshere.
|
||
|
Out.Radius = Radius * Scale;
|
||
|
}
|
||
|
|
||
|
|
||
|
//-----------------------------------------------------------------------------
|
||
|
// Point in sphere test.
|
||
|
//-----------------------------------------------------------------------------
|
||
|
_Use_decl_annotations_
|
||
|
inline ContainmentType XM_CALLCONV BoundingSphere::Contains(FXMVECTOR Point) const noexcept
|
||
|
{
|
||
|
XMVECTOR vCenter = XMLoadFloat3(&Center);
|
||
|
XMVECTOR vRadius = XMVectorReplicatePtr(&Radius);
|
||
|
|
||
|
XMVECTOR DistanceSquared = XMVector3LengthSq(XMVectorSubtract(Point, vCenter));
|
||
|
XMVECTOR RadiusSquared = XMVectorMultiply(vRadius, vRadius);
|
||
|
|
||
|
return XMVector3LessOrEqual(DistanceSquared, RadiusSquared) ? CONTAINS : DISJOINT;
|
||
|
}
|
||
|
|
||
|
|
||
|
//-----------------------------------------------------------------------------
|
||
|
// Triangle in sphere test
|
||
|
//-----------------------------------------------------------------------------
|
||
|
_Use_decl_annotations_
|
||
|
inline ContainmentType XM_CALLCONV BoundingSphere::Contains(FXMVECTOR V0, FXMVECTOR V1, FXMVECTOR V2) const noexcept
|
||
|
{
|
||
|
if (!Intersects(V0, V1, V2))
|
||
|
return DISJOINT;
|
||
|
|
||
|
XMVECTOR vCenter = XMLoadFloat3(&Center);
|
||
|
XMVECTOR vRadius = XMVectorReplicatePtr(&Radius);
|
||
|
XMVECTOR RadiusSquared = XMVectorMultiply(vRadius, vRadius);
|
||
|
|
||
|
XMVECTOR DistanceSquared = XMVector3LengthSq(XMVectorSubtract(V0, vCenter));
|
||
|
XMVECTOR Inside = XMVectorLessOrEqual(DistanceSquared, RadiusSquared);
|
||
|
|
||
|
DistanceSquared = XMVector3LengthSq(XMVectorSubtract(V1, vCenter));
|
||
|
Inside = XMVectorAndInt(Inside, XMVectorLessOrEqual(DistanceSquared, RadiusSquared));
|
||
|
|
||
|
DistanceSquared = XMVector3LengthSq(XMVectorSubtract(V2, vCenter));
|
||
|
Inside = XMVectorAndInt(Inside, XMVectorLessOrEqual(DistanceSquared, RadiusSquared));
|
||
|
|
||
|
return (XMVector3EqualInt(Inside, XMVectorTrueInt())) ? CONTAINS : INTERSECTS;
|
||
|
}
|
||
|
|
||
|
|
||
|
//-----------------------------------------------------------------------------
|
||
|
// Sphere in sphere test.
|
||
|
//-----------------------------------------------------------------------------
|
||
|
_Use_decl_annotations_
|
||
|
inline ContainmentType BoundingSphere::Contains(const BoundingSphere& sh) const noexcept
|
||
|
{
|
||
|
XMVECTOR Center1 = XMLoadFloat3(&Center);
|
||
|
float r1 = Radius;
|
||
|
|
||
|
XMVECTOR Center2 = XMLoadFloat3(&sh.Center);
|
||
|
float r2 = sh.Radius;
|
||
|
|
||
|
XMVECTOR V = XMVectorSubtract(Center2, Center1);
|
||
|
|
||
|
XMVECTOR Dist = XMVector3Length(V);
|
||
|
|
||
|
float d = XMVectorGetX(Dist);
|
||
|
|
||
|
return (r1 + r2 >= d) ? ((r1 - r2 >= d) ? CONTAINS : INTERSECTS) : DISJOINT;
|
||
|
}
|
||
|
|
||
|
|
||
|
//-----------------------------------------------------------------------------
|
||
|
// Axis-aligned box in sphere test
|
||
|
//-----------------------------------------------------------------------------
|
||
|
_Use_decl_annotations_
|
||
|
inline ContainmentType BoundingSphere::Contains(const BoundingBox& box) const noexcept
|
||
|
{
|
||
|
if (!box.Intersects(*this))
|
||
|
return DISJOINT;
|
||
|
|
||
|
XMVECTOR vCenter = XMLoadFloat3(&Center);
|
||
|
XMVECTOR vRadius = XMVectorReplicatePtr(&Radius);
|
||
|
XMVECTOR RadiusSq = XMVectorMultiply(vRadius, vRadius);
|
||
|
|
||
|
XMVECTOR boxCenter = XMLoadFloat3(&box.Center);
|
||
|
XMVECTOR boxExtents = XMLoadFloat3(&box.Extents);
|
||
|
|
||
|
XMVECTOR InsideAll = XMVectorTrueInt();
|
||
|
|
||
|
XMVECTOR offset = XMVectorSubtract(boxCenter, vCenter);
|
||
|
|
||
|
for (size_t i = 0; i < BoundingBox::CORNER_COUNT; ++i)
|
||
|
{
|
||
|
XMVECTOR C = XMVectorMultiplyAdd(boxExtents, g_BoxOffset[i], offset);
|
||
|
XMVECTOR d = XMVector3LengthSq(C);
|
||
|
InsideAll = XMVectorAndInt(InsideAll, XMVectorLessOrEqual(d, RadiusSq));
|
||
|
}
|
||
|
|
||
|
return (XMVector3EqualInt(InsideAll, XMVectorTrueInt())) ? CONTAINS : INTERSECTS;
|
||
|
}
|
||
|
|
||
|
|
||
|
//-----------------------------------------------------------------------------
|
||
|
// Oriented box in sphere test
|
||
|
//-----------------------------------------------------------------------------
|
||
|
_Use_decl_annotations_
|
||
|
inline ContainmentType BoundingSphere::Contains(const BoundingOrientedBox& box) const noexcept
|
||
|
{
|
||
|
if (!box.Intersects(*this))
|
||
|
return DISJOINT;
|
||
|
|
||
|
XMVECTOR vCenter = XMLoadFloat3(&Center);
|
||
|
XMVECTOR vRadius = XMVectorReplicatePtr(&Radius);
|
||
|
XMVECTOR RadiusSq = XMVectorMultiply(vRadius, vRadius);
|
||
|
|
||
|
XMVECTOR boxCenter = XMLoadFloat3(&box.Center);
|
||
|
XMVECTOR boxExtents = XMLoadFloat3(&box.Extents);
|
||
|
XMVECTOR boxOrientation = XMLoadFloat4(&box.Orientation);
|
||
|
|
||
|
assert(DirectX::Internal::XMQuaternionIsUnit(boxOrientation));
|
||
|
|
||
|
XMVECTOR InsideAll = XMVectorTrueInt();
|
||
|
|
||
|
for (size_t i = 0; i < BoundingOrientedBox::CORNER_COUNT; ++i)
|
||
|
{
|
||
|
XMVECTOR C = XMVectorAdd(XMVector3Rotate(XMVectorMultiply(boxExtents, g_BoxOffset[i]), boxOrientation), boxCenter);
|
||
|
XMVECTOR d = XMVector3LengthSq(XMVectorSubtract(vCenter, C));
|
||
|
InsideAll = XMVectorAndInt(InsideAll, XMVectorLessOrEqual(d, RadiusSq));
|
||
|
}
|
||
|
|
||
|
return (XMVector3EqualInt(InsideAll, XMVectorTrueInt())) ? CONTAINS : INTERSECTS;
|
||
|
|
||
|
}
|
||
|
|
||
|
|
||
|
//-----------------------------------------------------------------------------
|
||
|
// Frustum in sphere test
|
||
|
//-----------------------------------------------------------------------------
|
||
|
_Use_decl_annotations_
|
||
|
inline ContainmentType BoundingSphere::Contains(const BoundingFrustum& fr) const noexcept
|
||
|
{
|
||
|
if (!fr.Intersects(*this))
|
||
|
return DISJOINT;
|
||
|
|
||
|
XMVECTOR vCenter = XMLoadFloat3(&Center);
|
||
|
XMVECTOR vRadius = XMVectorReplicatePtr(&Radius);
|
||
|
XMVECTOR RadiusSq = XMVectorMultiply(vRadius, vRadius);
|
||
|
|
||
|
XMVECTOR vOrigin = XMLoadFloat3(&fr.Origin);
|
||
|
XMVECTOR vOrientation = XMLoadFloat4(&fr.Orientation);
|
||
|
|
||
|
assert(DirectX::Internal::XMQuaternionIsUnit(vOrientation));
|
||
|
|
||
|
// Build the corners of the frustum.
|
||
|
XMVECTOR vRightTop = XMVectorSet(fr.RightSlope, fr.TopSlope, 1.0f, 0.0f);
|
||
|
XMVECTOR vRightBottom = XMVectorSet(fr.RightSlope, fr.BottomSlope, 1.0f, 0.0f);
|
||
|
XMVECTOR vLeftTop = XMVectorSet(fr.LeftSlope, fr.TopSlope, 1.0f, 0.0f);
|
||
|
XMVECTOR vLeftBottom = XMVectorSet(fr.LeftSlope, fr.BottomSlope, 1.0f, 0.0f);
|
||
|
XMVECTOR vNear = XMVectorReplicatePtr(&fr.Near);
|
||
|
XMVECTOR vFar = XMVectorReplicatePtr(&fr.Far);
|
||
|
|
||
|
XMVECTOR Corners[BoundingFrustum::CORNER_COUNT];
|
||
|
Corners[0] = XMVectorMultiply(vRightTop, vNear);
|
||
|
Corners[1] = XMVectorMultiply(vRightBottom, vNear);
|
||
|
Corners[2] = XMVectorMultiply(vLeftTop, vNear);
|
||
|
Corners[3] = XMVectorMultiply(vLeftBottom, vNear);
|
||
|
Corners[4] = XMVectorMultiply(vRightTop, vFar);
|
||
|
Corners[5] = XMVectorMultiply(vRightBottom, vFar);
|
||
|
Corners[6] = XMVectorMultiply(vLeftTop, vFar);
|
||
|
Corners[7] = XMVectorMultiply(vLeftBottom, vFar);
|
||
|
|
||
|
XMVECTOR InsideAll = XMVectorTrueInt();
|
||
|
for (size_t i = 0; i < BoundingFrustum::CORNER_COUNT; ++i)
|
||
|
{
|
||
|
XMVECTOR C = XMVectorAdd(XMVector3Rotate(Corners[i], vOrientation), vOrigin);
|
||
|
XMVECTOR d = XMVector3LengthSq(XMVectorSubtract(vCenter, C));
|
||
|
InsideAll = XMVectorAndInt(InsideAll, XMVectorLessOrEqual(d, RadiusSq));
|
||
|
}
|
||
|
|
||
|
return (XMVector3EqualInt(InsideAll, XMVectorTrueInt())) ? CONTAINS : INTERSECTS;
|
||
|
}
|
||
|
|
||
|
|
||
|
//-----------------------------------------------------------------------------
|
||
|
// Sphere vs. sphere test.
|
||
|
//-----------------------------------------------------------------------------
|
||
|
_Use_decl_annotations_
|
||
|
inline bool BoundingSphere::Intersects(const BoundingSphere& sh) const noexcept
|
||
|
{
|
||
|
// Load A.
|
||
|
XMVECTOR vCenterA = XMLoadFloat3(&Center);
|
||
|
XMVECTOR vRadiusA = XMVectorReplicatePtr(&Radius);
|
||
|
|
||
|
// Load B.
|
||
|
XMVECTOR vCenterB = XMLoadFloat3(&sh.Center);
|
||
|
XMVECTOR vRadiusB = XMVectorReplicatePtr(&sh.Radius);
|
||
|
|
||
|
// Distance squared between centers.
|
||
|
XMVECTOR Delta = XMVectorSubtract(vCenterB, vCenterA);
|
||
|
XMVECTOR DistanceSquared = XMVector3LengthSq(Delta);
|
||
|
|
||
|
// Sum of the radii squared.
|
||
|
XMVECTOR RadiusSquared = XMVectorAdd(vRadiusA, vRadiusB);
|
||
|
RadiusSquared = XMVectorMultiply(RadiusSquared, RadiusSquared);
|
||
|
|
||
|
return XMVector3LessOrEqual(DistanceSquared, RadiusSquared);
|
||
|
}
|
||
|
|
||
|
|
||
|
//-----------------------------------------------------------------------------
|
||
|
// Box vs. sphere test.
|
||
|
//-----------------------------------------------------------------------------
|
||
|
_Use_decl_annotations_
|
||
|
inline bool BoundingSphere::Intersects(const BoundingBox& box) const noexcept
|
||
|
{
|
||
|
return box.Intersects(*this);
|
||
|
}
|
||
|
|
||
|
_Use_decl_annotations_
|
||
|
inline bool BoundingSphere::Intersects(const BoundingOrientedBox& box) const noexcept
|
||
|
{
|
||
|
return box.Intersects(*this);
|
||
|
}
|
||
|
|
||
|
|
||
|
//-----------------------------------------------------------------------------
|
||
|
// Frustum vs. sphere test.
|
||
|
//-----------------------------------------------------------------------------
|
||
|
_Use_decl_annotations_
|
||
|
inline bool BoundingSphere::Intersects(const BoundingFrustum& fr) const noexcept
|
||
|
{
|
||
|
return fr.Intersects(*this);
|
||
|
}
|
||
|
|
||
|
|
||
|
//-----------------------------------------------------------------------------
|
||
|
// Triangle vs sphere test
|
||
|
//-----------------------------------------------------------------------------
|
||
|
_Use_decl_annotations_
|
||
|
inline bool XM_CALLCONV BoundingSphere::Intersects(FXMVECTOR V0, FXMVECTOR V1, FXMVECTOR V2) const noexcept
|
||
|
{
|
||
|
// Load the sphere.
|
||
|
XMVECTOR vCenter = XMLoadFloat3(&Center);
|
||
|
XMVECTOR vRadius = XMVectorReplicatePtr(&Radius);
|
||
|
|
||
|
// Compute the plane of the triangle (has to be normalized).
|
||
|
XMVECTOR N = XMVector3Normalize(XMVector3Cross(XMVectorSubtract(V1, V0), XMVectorSubtract(V2, V0)));
|
||
|
|
||
|
// Assert that the triangle is not degenerate.
|
||
|
assert(!XMVector3Equal(N, XMVectorZero()));
|
||
|
|
||
|
// Find the nearest feature on the triangle to the sphere.
|
||
|
XMVECTOR Dist = XMVector3Dot(XMVectorSubtract(vCenter, V0), N);
|
||
|
|
||
|
// If the center of the sphere is farther from the plane of the triangle than
|
||
|
// the radius of the sphere, then there cannot be an intersection.
|
||
|
XMVECTOR NoIntersection = XMVectorLess(Dist, XMVectorNegate(vRadius));
|
||
|
NoIntersection = XMVectorOrInt(NoIntersection, XMVectorGreater(Dist, vRadius));
|
||
|
|
||
|
// Project the center of the sphere onto the plane of the triangle.
|
||
|
XMVECTOR Point = XMVectorNegativeMultiplySubtract(N, Dist, vCenter);
|
||
|
|
||
|
// Is it inside all the edges? If so we intersect because the distance
|
||
|
// to the plane is less than the radius.
|
||
|
XMVECTOR Intersection = DirectX::Internal::PointOnPlaneInsideTriangle(Point, V0, V1, V2);
|
||
|
|
||
|
// Find the nearest point on each edge.
|
||
|
XMVECTOR RadiusSq = XMVectorMultiply(vRadius, vRadius);
|
||
|
|
||
|
// Edge 0,1
|
||
|
Point = DirectX::Internal::PointOnLineSegmentNearestPoint(V0, V1, vCenter);
|
||
|
|
||
|
// If the distance to the center of the sphere to the point is less than
|
||
|
// the radius of the sphere then it must intersect.
|
||
|
Intersection = XMVectorOrInt(Intersection, XMVectorLessOrEqual(XMVector3LengthSq(XMVectorSubtract(vCenter, Point)), RadiusSq));
|
||
|
|
||
|
// Edge 1,2
|
||
|
Point = DirectX::Internal::PointOnLineSegmentNearestPoint(V1, V2, vCenter);
|
||
|
|
||
|
// If the distance to the center of the sphere to the point is less than
|
||
|
// the radius of the sphere then it must intersect.
|
||
|
Intersection = XMVectorOrInt(Intersection, XMVectorLessOrEqual(XMVector3LengthSq(XMVectorSubtract(vCenter, Point)), RadiusSq));
|
||
|
|
||
|
// Edge 2,0
|
||
|
Point = DirectX::Internal::PointOnLineSegmentNearestPoint(V2, V0, vCenter);
|
||
|
|
||
|
// If the distance to the center of the sphere to the point is less than
|
||
|
// the radius of the sphere then it must intersect.
|
||
|
Intersection = XMVectorOrInt(Intersection, XMVectorLessOrEqual(XMVector3LengthSq(XMVectorSubtract(vCenter, Point)), RadiusSq));
|
||
|
|
||
|
return XMVector4EqualInt(XMVectorAndCInt(Intersection, NoIntersection), XMVectorTrueInt());
|
||
|
}
|
||
|
|
||
|
|
||
|
//-----------------------------------------------------------------------------
|
||
|
// Sphere-plane intersection
|
||
|
//-----------------------------------------------------------------------------
|
||
|
_Use_decl_annotations_
|
||
|
inline PlaneIntersectionType XM_CALLCONV BoundingSphere::Intersects(FXMVECTOR Plane) const noexcept
|
||
|
{
|
||
|
assert(DirectX::Internal::XMPlaneIsUnit(Plane));
|
||
|
|
||
|
// Load the sphere.
|
||
|
XMVECTOR vCenter = XMLoadFloat3(&Center);
|
||
|
XMVECTOR vRadius = XMVectorReplicatePtr(&Radius);
|
||
|
|
||
|
// Set w of the center to one so we can dot4 with a plane.
|
||
|
vCenter = XMVectorInsert<0, 0, 0, 0, 1>(vCenter, XMVectorSplatOne());
|
||
|
|
||
|
XMVECTOR Outside, Inside;
|
||
|
DirectX::Internal::FastIntersectSpherePlane(vCenter, vRadius, Plane, Outside, Inside);
|
||
|
|
||
|
// If the sphere is outside any plane it is outside.
|
||
|
if (XMVector4EqualInt(Outside, XMVectorTrueInt()))
|
||
|
return FRONT;
|
||
|
|
||
|
// If the sphere is inside all planes it is inside.
|
||
|
if (XMVector4EqualInt(Inside, XMVectorTrueInt()))
|
||
|
return BACK;
|
||
|
|
||
|
// The sphere is not inside all planes or outside a plane it intersects.
|
||
|
return INTERSECTING;
|
||
|
}
|
||
|
|
||
|
|
||
|
//-----------------------------------------------------------------------------
|
||
|
// Compute the intersection of a ray (Origin, Direction) with a sphere.
|
||
|
//-----------------------------------------------------------------------------
|
||
|
_Use_decl_annotations_
|
||
|
inline bool XM_CALLCONV BoundingSphere::Intersects(FXMVECTOR Origin, FXMVECTOR Direction, float& Dist) const noexcept
|
||
|
{
|
||
|
assert(DirectX::Internal::XMVector3IsUnit(Direction));
|
||
|
|
||
|
XMVECTOR vCenter = XMLoadFloat3(&Center);
|
||
|
XMVECTOR vRadius = XMVectorReplicatePtr(&Radius);
|
||
|
|
||
|
// l is the vector from the ray origin to the center of the sphere.
|
||
|
XMVECTOR l = XMVectorSubtract(vCenter, Origin);
|
||
|
|
||
|
// s is the projection of the l onto the ray direction.
|
||
|
XMVECTOR s = XMVector3Dot(l, Direction);
|
||
|
|
||
|
XMVECTOR l2 = XMVector3Dot(l, l);
|
||
|
|
||
|
XMVECTOR r2 = XMVectorMultiply(vRadius, vRadius);
|
||
|
|
||
|
// m2 is squared distance from the center of the sphere to the projection.
|
||
|
XMVECTOR m2 = XMVectorNegativeMultiplySubtract(s, s, l2);
|
||
|
|
||
|
XMVECTOR NoIntersection;
|
||
|
|
||
|
// If the ray origin is outside the sphere and the center of the sphere is
|
||
|
// behind the ray origin there is no intersection.
|
||
|
NoIntersection = XMVectorAndInt(XMVectorLess(s, XMVectorZero()), XMVectorGreater(l2, r2));
|
||
|
|
||
|
// If the squared distance from the center of the sphere to the projection
|
||
|
// is greater than the radius squared the ray will miss the sphere.
|
||
|
NoIntersection = XMVectorOrInt(NoIntersection, XMVectorGreater(m2, r2));
|
||
|
|
||
|
// The ray hits the sphere, compute the nearest intersection point.
|
||
|
XMVECTOR q = XMVectorSqrt(XMVectorSubtract(r2, m2));
|
||
|
XMVECTOR t1 = XMVectorSubtract(s, q);
|
||
|
XMVECTOR t2 = XMVectorAdd(s, q);
|
||
|
|
||
|
XMVECTOR OriginInside = XMVectorLessOrEqual(l2, r2);
|
||
|
XMVECTOR t = XMVectorSelect(t1, t2, OriginInside);
|
||
|
|
||
|
if (XMVector4NotEqualInt(NoIntersection, XMVectorTrueInt()))
|
||
|
{
|
||
|
// Store the x-component to *pDist.
|
||
|
XMStoreFloat(&Dist, t);
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
Dist = 0.f;
|
||
|
return false;
|
||
|
}
|
||
|
|
||
|
|
||
|
//-----------------------------------------------------------------------------
|
||
|
// Test a sphere vs 6 planes (typically forming a frustum).
|
||
|
//-----------------------------------------------------------------------------
|
||
|
_Use_decl_annotations_
|
||
|
inline ContainmentType XM_CALLCONV BoundingSphere::ContainedBy(
|
||
|
FXMVECTOR Plane0, FXMVECTOR Plane1, FXMVECTOR Plane2,
|
||
|
GXMVECTOR Plane3,
|
||
|
HXMVECTOR Plane4, HXMVECTOR Plane5) const noexcept
|
||
|
{
|
||
|
// Load the sphere.
|
||
|
XMVECTOR vCenter = XMLoadFloat3(&Center);
|
||
|
XMVECTOR vRadius = XMVectorReplicatePtr(&Radius);
|
||
|
|
||
|
// Set w of the center to one so we can dot4 with a plane.
|
||
|
vCenter = XMVectorInsert<0, 0, 0, 0, 1>(vCenter, XMVectorSplatOne());
|
||
|
|
||
|
XMVECTOR Outside, Inside;
|
||
|
|
||
|
// Test against each plane.
|
||
|
DirectX::Internal::FastIntersectSpherePlane(vCenter, vRadius, Plane0, Outside, Inside);
|
||
|
|
||
|
XMVECTOR AnyOutside = Outside;
|
||
|
XMVECTOR AllInside = Inside;
|
||
|
|
||
|
DirectX::Internal::FastIntersectSpherePlane(vCenter, vRadius, Plane1, Outside, Inside);
|
||
|
AnyOutside = XMVectorOrInt(AnyOutside, Outside);
|
||
|
AllInside = XMVectorAndInt(AllInside, Inside);
|
||
|
|
||
|
DirectX::Internal::FastIntersectSpherePlane(vCenter, vRadius, Plane2, Outside, Inside);
|
||
|
AnyOutside = XMVectorOrInt(AnyOutside, Outside);
|
||
|
AllInside = XMVectorAndInt(AllInside, Inside);
|
||
|
|
||
|
DirectX::Internal::FastIntersectSpherePlane(vCenter, vRadius, Plane3, Outside, Inside);
|
||
|
AnyOutside = XMVectorOrInt(AnyOutside, Outside);
|
||
|
AllInside = XMVectorAndInt(AllInside, Inside);
|
||
|
|
||
|
DirectX::Internal::FastIntersectSpherePlane(vCenter, vRadius, Plane4, Outside, Inside);
|
||
|
AnyOutside = XMVectorOrInt(AnyOutside, Outside);
|
||
|
AllInside = XMVectorAndInt(AllInside, Inside);
|
||
|
|
||
|
DirectX::Internal::FastIntersectSpherePlane(vCenter, vRadius, Plane5, Outside, Inside);
|
||
|
AnyOutside = XMVectorOrInt(AnyOutside, Outside);
|
||
|
AllInside = XMVectorAndInt(AllInside, Inside);
|
||
|
|
||
|
// If the sphere is outside any plane it is outside.
|
||
|
if (XMVector4EqualInt(AnyOutside, XMVectorTrueInt()))
|
||
|
return DISJOINT;
|
||
|
|
||
|
// If the sphere is inside all planes it is inside.
|
||
|
if (XMVector4EqualInt(AllInside, XMVectorTrueInt()))
|
||
|
return CONTAINS;
|
||
|
|
||
|
// The sphere is not inside all planes or outside a plane, it may intersect.
|
||
|
return INTERSECTS;
|
||
|
}
|
||
|
|
||
|
|
||
|
//-----------------------------------------------------------------------------
|
||
|
// Creates a bounding sphere that contains two other bounding spheres
|
||
|
//-----------------------------------------------------------------------------
|
||
|
_Use_decl_annotations_
|
||
|
inline void BoundingSphere::CreateMerged(BoundingSphere& Out, const BoundingSphere& S1, const BoundingSphere& S2) noexcept
|
||
|
{
|
||
|
XMVECTOR Center1 = XMLoadFloat3(&S1.Center);
|
||
|
float r1 = S1.Radius;
|
||
|
|
||
|
XMVECTOR Center2 = XMLoadFloat3(&S2.Center);
|
||
|
float r2 = S2.Radius;
|
||
|
|
||
|
XMVECTOR V = XMVectorSubtract(Center2, Center1);
|
||
|
|
||
|
XMVECTOR Dist = XMVector3Length(V);
|
||
|
|
||
|
float d = XMVectorGetX(Dist);
|
||
|
|
||
|
if (r1 + r2 >= d)
|
||
|
{
|
||
|
if (r1 - r2 >= d)
|
||
|
{
|
||
|
Out = S1;
|
||
|
return;
|
||
|
}
|
||
|
else if (r2 - r1 >= d)
|
||
|
{
|
||
|
Out = S2;
|
||
|
return;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
XMVECTOR N = XMVectorDivide(V, Dist);
|
||
|
|
||
|
float t1 = XMMin(-r1, d - r2);
|
||
|
float t2 = XMMax(r1, d + r2);
|
||
|
float t_5 = (t2 - t1) * 0.5f;
|
||
|
|
||
|
XMVECTOR NCenter = XMVectorAdd(Center1, XMVectorMultiply(N, XMVectorReplicate(t_5 + t1)));
|
||
|
|
||
|
XMStoreFloat3(&Out.Center, NCenter);
|
||
|
Out.Radius = t_5;
|
||
|
}
|
||
|
|
||
|
|
||
|
//-----------------------------------------------------------------------------
|
||
|
// Create sphere enscribing bounding box
|
||
|
//-----------------------------------------------------------------------------
|
||
|
_Use_decl_annotations_
|
||
|
inline void BoundingSphere::CreateFromBoundingBox(BoundingSphere& Out, const BoundingBox& box) noexcept
|
||
|
{
|
||
|
Out.Center = box.Center;
|
||
|
XMVECTOR vExtents = XMLoadFloat3(&box.Extents);
|
||
|
Out.Radius = XMVectorGetX(XMVector3Length(vExtents));
|
||
|
}
|
||
|
|
||
|
_Use_decl_annotations_
|
||
|
inline void BoundingSphere::CreateFromBoundingBox(BoundingSphere& Out, const BoundingOrientedBox& box) noexcept
|
||
|
{
|
||
|
// Bounding box orientation is irrelevant because a sphere is rotationally invariant
|
||
|
Out.Center = box.Center;
|
||
|
XMVECTOR vExtents = XMLoadFloat3(&box.Extents);
|
||
|
Out.Radius = XMVectorGetX(XMVector3Length(vExtents));
|
||
|
}
|
||
|
|
||
|
|
||
|
//-----------------------------------------------------------------------------
|
||
|
// Find the approximate smallest enclosing bounding sphere for a set of
|
||
|
// points. Exact computation of the smallest enclosing bounding sphere is
|
||
|
// possible but is slower and requires a more complex algorithm.
|
||
|
// The algorithm is based on Jack Ritter, "An Efficient Bounding Sphere",
|
||
|
// Graphics Gems.
|
||
|
//-----------------------------------------------------------------------------
|
||
|
_Use_decl_annotations_
|
||
|
inline void BoundingSphere::CreateFromPoints(BoundingSphere& Out, size_t Count, const XMFLOAT3* pPoints, size_t Stride) noexcept
|
||
|
{
|
||
|
assert(Count > 0);
|
||
|
assert(pPoints);
|
||
|
|
||
|
// Find the points with minimum and maximum x, y, and z
|
||
|
XMVECTOR MinX, MaxX, MinY, MaxY, MinZ, MaxZ;
|
||
|
|
||
|
MinX = MaxX = MinY = MaxY = MinZ = MaxZ = XMLoadFloat3(pPoints);
|
||
|
|
||
|
for (size_t i = 1; i < Count; ++i)
|
||
|
{
|
||
|
XMVECTOR Point = XMLoadFloat3(reinterpret_cast<const XMFLOAT3*>(reinterpret_cast<const uint8_t*>(pPoints) + i * Stride));
|
||
|
|
||
|
float px = XMVectorGetX(Point);
|
||
|
float py = XMVectorGetY(Point);
|
||
|
float pz = XMVectorGetZ(Point);
|
||
|
|
||
|
if (px < XMVectorGetX(MinX))
|
||
|
MinX = Point;
|
||
|
|
||
|
if (px > XMVectorGetX(MaxX))
|
||
|
MaxX = Point;
|
||
|
|
||
|
if (py < XMVectorGetY(MinY))
|
||
|
MinY = Point;
|
||
|
|
||
|
if (py > XMVectorGetY(MaxY))
|
||
|
MaxY = Point;
|
||
|
|
||
|
if (pz < XMVectorGetZ(MinZ))
|
||
|
MinZ = Point;
|
||
|
|
||
|
if (pz > XMVectorGetZ(MaxZ))
|
||
|
MaxZ = Point;
|
||
|
}
|
||
|
|
||
|
// Use the min/max pair that are farthest apart to form the initial sphere.
|
||
|
XMVECTOR DeltaX = XMVectorSubtract(MaxX, MinX);
|
||
|
XMVECTOR DistX = XMVector3Length(DeltaX);
|
||
|
|
||
|
XMVECTOR DeltaY = XMVectorSubtract(MaxY, MinY);
|
||
|
XMVECTOR DistY = XMVector3Length(DeltaY);
|
||
|
|
||
|
XMVECTOR DeltaZ = XMVectorSubtract(MaxZ, MinZ);
|
||
|
XMVECTOR DistZ = XMVector3Length(DeltaZ);
|
||
|
|
||
|
XMVECTOR vCenter;
|
||
|
XMVECTOR vRadius;
|
||
|
|
||
|
if (XMVector3Greater(DistX, DistY))
|
||
|
{
|
||
|
if (XMVector3Greater(DistX, DistZ))
|
||
|
{
|
||
|
// Use min/max x.
|
||
|
vCenter = XMVectorLerp(MaxX, MinX, 0.5f);
|
||
|
vRadius = XMVectorScale(DistX, 0.5f);
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
// Use min/max z.
|
||
|
vCenter = XMVectorLerp(MaxZ, MinZ, 0.5f);
|
||
|
vRadius = XMVectorScale(DistZ, 0.5f);
|
||
|
}
|
||
|
}
|
||
|
else // Y >= X
|
||
|
{
|
||
|
if (XMVector3Greater(DistY, DistZ))
|
||
|
{
|
||
|
// Use min/max y.
|
||
|
vCenter = XMVectorLerp(MaxY, MinY, 0.5f);
|
||
|
vRadius = XMVectorScale(DistY, 0.5f);
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
// Use min/max z.
|
||
|
vCenter = XMVectorLerp(MaxZ, MinZ, 0.5f);
|
||
|
vRadius = XMVectorScale(DistZ, 0.5f);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// Add any points not inside the sphere.
|
||
|
for (size_t i = 0; i < Count; ++i)
|
||
|
{
|
||
|
XMVECTOR Point = XMLoadFloat3(reinterpret_cast<const XMFLOAT3*>(reinterpret_cast<const uint8_t*>(pPoints) + i * Stride));
|
||
|
|
||
|
XMVECTOR Delta = XMVectorSubtract(Point, vCenter);
|
||
|
|
||
|
XMVECTOR Dist = XMVector3Length(Delta);
|
||
|
|
||
|
if (XMVector3Greater(Dist, vRadius))
|
||
|
{
|
||
|
// Adjust sphere to include the new point.
|
||
|
vRadius = XMVectorScale(XMVectorAdd(vRadius, Dist), 0.5f);
|
||
|
vCenter = XMVectorAdd(vCenter, XMVectorMultiply(XMVectorSubtract(XMVectorReplicate(1.0f), XMVectorDivide(vRadius, Dist)), Delta));
|
||
|
}
|
||
|
}
|
||
|
|
||
|
XMStoreFloat3(&Out.Center, vCenter);
|
||
|
XMStoreFloat(&Out.Radius, vRadius);
|
||
|
}
|
||
|
|
||
|
|
||
|
//-----------------------------------------------------------------------------
|
||
|
// Create sphere containing frustum
|
||
|
//-----------------------------------------------------------------------------
|
||
|
_Use_decl_annotations_
|
||
|
inline void BoundingSphere::CreateFromFrustum(BoundingSphere& Out, const BoundingFrustum& fr) noexcept
|
||
|
{
|
||
|
XMFLOAT3 Corners[BoundingFrustum::CORNER_COUNT];
|
||
|
fr.GetCorners(Corners);
|
||
|
CreateFromPoints(Out, BoundingFrustum::CORNER_COUNT, Corners, sizeof(XMFLOAT3));
|
||
|
}
|
||
|
|
||
|
|
||
|
/****************************************************************************
|
||
|
*
|
||
|
* BoundingBox
|
||
|
*
|
||
|
****************************************************************************/
|
||
|
|
||
|
//-----------------------------------------------------------------------------
|
||
|
// Transform an axis aligned box by an angle preserving transform.
|
||
|
//-----------------------------------------------------------------------------
|
||
|
_Use_decl_annotations_
|
||
|
inline void XM_CALLCONV BoundingBox::Transform(BoundingBox& Out, FXMMATRIX M) const noexcept
|
||
|
{
|
||
|
// Load center and extents.
|
||
|
XMVECTOR vCenter = XMLoadFloat3(&Center);
|
||
|
XMVECTOR vExtents = XMLoadFloat3(&Extents);
|
||
|
|
||
|
// Compute and transform the corners and find new min/max bounds.
|
||
|
XMVECTOR Corner = XMVectorMultiplyAdd(vExtents, g_BoxOffset[0], vCenter);
|
||
|
Corner = XMVector3Transform(Corner, M);
|
||
|
|
||
|
XMVECTOR Min, Max;
|
||
|
Min = Max = Corner;
|
||
|
|
||
|
for (size_t i = 1; i < CORNER_COUNT; ++i)
|
||
|
{
|
||
|
Corner = XMVectorMultiplyAdd(vExtents, g_BoxOffset[i], vCenter);
|
||
|
Corner = XMVector3Transform(Corner, M);
|
||
|
|
||
|
Min = XMVectorMin(Min, Corner);
|
||
|
Max = XMVectorMax(Max, Corner);
|
||
|
}
|
||
|
|
||
|
// Store center and extents.
|
||
|
XMStoreFloat3(&Out.Center, XMVectorScale(XMVectorAdd(Min, Max), 0.5f));
|
||
|
XMStoreFloat3(&Out.Extents, XMVectorScale(XMVectorSubtract(Max, Min), 0.5f));
|
||
|
}
|
||
|
|
||
|
_Use_decl_annotations_
|
||
|
inline void XM_CALLCONV BoundingBox::Transform(BoundingBox& Out, float Scale, FXMVECTOR Rotation, FXMVECTOR Translation) const noexcept
|
||
|
{
|
||
|
assert(DirectX::Internal::XMQuaternionIsUnit(Rotation));
|
||
|
|
||
|
// Load center and extents.
|
||
|
XMVECTOR vCenter = XMLoadFloat3(&Center);
|
||
|
XMVECTOR vExtents = XMLoadFloat3(&Extents);
|
||
|
|
||
|
XMVECTOR VectorScale = XMVectorReplicate(Scale);
|
||
|
|
||
|
// Compute and transform the corners and find new min/max bounds.
|
||
|
XMVECTOR Corner = XMVectorMultiplyAdd(vExtents, g_BoxOffset[0], vCenter);
|
||
|
Corner = XMVectorAdd(XMVector3Rotate(XMVectorMultiply(Corner, VectorScale), Rotation), Translation);
|
||
|
|
||
|
XMVECTOR Min, Max;
|
||
|
Min = Max = Corner;
|
||
|
|
||
|
for (size_t i = 1; i < CORNER_COUNT; ++i)
|
||
|
{
|
||
|
Corner = XMVectorMultiplyAdd(vExtents, g_BoxOffset[i], vCenter);
|
||
|
Corner = XMVectorAdd(XMVector3Rotate(XMVectorMultiply(Corner, VectorScale), Rotation), Translation);
|
||
|
|
||
|
Min = XMVectorMin(Min, Corner);
|
||
|
Max = XMVectorMax(Max, Corner);
|
||
|
}
|
||
|
|
||
|
// Store center and extents.
|
||
|
XMStoreFloat3(&Out.Center, XMVectorScale(XMVectorAdd(Min, Max), 0.5f));
|
||
|
XMStoreFloat3(&Out.Extents, XMVectorScale(XMVectorSubtract(Max, Min), 0.5f));
|
||
|
}
|
||
|
|
||
|
|
||
|
//-----------------------------------------------------------------------------
|
||
|
// Get the corner points of the box
|
||
|
//-----------------------------------------------------------------------------
|
||
|
_Use_decl_annotations_
|
||
|
inline void BoundingBox::GetCorners(XMFLOAT3* Corners) const noexcept
|
||
|
{
|
||
|
assert(Corners != nullptr);
|
||
|
|
||
|
// Load the box
|
||
|
XMVECTOR vCenter = XMLoadFloat3(&Center);
|
||
|
XMVECTOR vExtents = XMLoadFloat3(&Extents);
|
||
|
|
||
|
for (size_t i = 0; i < CORNER_COUNT; ++i)
|
||
|
{
|
||
|
XMVECTOR C = XMVectorMultiplyAdd(vExtents, g_BoxOffset[i], vCenter);
|
||
|
XMStoreFloat3(&Corners[i], C);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
|
||
|
//-----------------------------------------------------------------------------
|
||
|
// Point in axis-aligned box test
|
||
|
//-----------------------------------------------------------------------------
|
||
|
_Use_decl_annotations_
|
||
|
inline ContainmentType XM_CALLCONV BoundingBox::Contains(FXMVECTOR Point) const noexcept
|
||
|
{
|
||
|
XMVECTOR vCenter = XMLoadFloat3(&Center);
|
||
|
XMVECTOR vExtents = XMLoadFloat3(&Extents);
|
||
|
|
||
|
return XMVector3InBounds(XMVectorSubtract(Point, vCenter), vExtents) ? CONTAINS : DISJOINT;
|
||
|
}
|
||
|
|
||
|
|
||
|
//-----------------------------------------------------------------------------
|
||
|
// Triangle in axis-aligned box test
|
||
|
//-----------------------------------------------------------------------------
|
||
|
_Use_decl_annotations_
|
||
|
inline ContainmentType XM_CALLCONV BoundingBox::Contains(FXMVECTOR V0, FXMVECTOR V1, FXMVECTOR V2) const noexcept
|
||
|
{
|
||
|
if (!Intersects(V0, V1, V2))
|
||
|
return DISJOINT;
|
||
|
|
||
|
XMVECTOR vCenter = XMLoadFloat3(&Center);
|
||
|
XMVECTOR vExtents = XMLoadFloat3(&Extents);
|
||
|
|
||
|
XMVECTOR d = XMVectorAbs(XMVectorSubtract(V0, vCenter));
|
||
|
XMVECTOR Inside = XMVectorLessOrEqual(d, vExtents);
|
||
|
|
||
|
d = XMVectorAbs(XMVectorSubtract(V1, vCenter));
|
||
|
Inside = XMVectorAndInt(Inside, XMVectorLessOrEqual(d, vExtents));
|
||
|
|
||
|
d = XMVectorAbs(XMVectorSubtract(V2, vCenter));
|
||
|
Inside = XMVectorAndInt(Inside, XMVectorLessOrEqual(d, vExtents));
|
||
|
|
||
|
return (XMVector3EqualInt(Inside, XMVectorTrueInt())) ? CONTAINS : INTERSECTS;
|
||
|
}
|
||
|
|
||
|
|
||
|
//-----------------------------------------------------------------------------
|
||
|
// Sphere in axis-aligned box test
|
||
|
//-----------------------------------------------------------------------------
|
||
|
_Use_decl_annotations_
|
||
|
inline ContainmentType BoundingBox::Contains(const BoundingSphere& sh) const noexcept
|
||
|
{
|
||
|
XMVECTOR SphereCenter = XMLoadFloat3(&sh.Center);
|
||
|
XMVECTOR SphereRadius = XMVectorReplicatePtr(&sh.Radius);
|
||
|
|
||
|
XMVECTOR BoxCenter = XMLoadFloat3(&Center);
|
||
|
XMVECTOR BoxExtents = XMLoadFloat3(&Extents);
|
||
|
|
||
|
XMVECTOR BoxMin = XMVectorSubtract(BoxCenter, BoxExtents);
|
||
|
XMVECTOR BoxMax = XMVectorAdd(BoxCenter, BoxExtents);
|
||
|
|
||
|
// Find the distance to the nearest point on the box.
|
||
|
// for each i in (x, y, z)
|
||
|
// if (SphereCenter(i) < BoxMin(i)) d2 += (SphereCenter(i) - BoxMin(i)) ^ 2
|
||
|
// else if (SphereCenter(i) > BoxMax(i)) d2 += (SphereCenter(i) - BoxMax(i)) ^ 2
|
||
|
|
||
|
XMVECTOR d = XMVectorZero();
|
||
|
|
||
|
// Compute d for each dimension.
|
||
|
XMVECTOR LessThanMin = XMVectorLess(SphereCenter, BoxMin);
|
||
|
XMVECTOR GreaterThanMax = XMVectorGreater(SphereCenter, BoxMax);
|
||
|
|
||
|
XMVECTOR MinDelta = XMVectorSubtract(SphereCenter, BoxMin);
|
||
|
XMVECTOR MaxDelta = XMVectorSubtract(SphereCenter, BoxMax);
|
||
|
|
||
|
// Choose value for each dimension based on the comparison.
|
||
|
d = XMVectorSelect(d, MinDelta, LessThanMin);
|
||
|
d = XMVectorSelect(d, MaxDelta, GreaterThanMax);
|
||
|
|
||
|
// Use a dot-product to square them and sum them together.
|
||
|
XMVECTOR d2 = XMVector3Dot(d, d);
|
||
|
|
||
|
if (XMVector3Greater(d2, XMVectorMultiply(SphereRadius, SphereRadius)))
|
||
|
return DISJOINT;
|
||
|
|
||
|
XMVECTOR InsideAll = XMVectorLessOrEqual(XMVectorAdd(BoxMin, SphereRadius), SphereCenter);
|
||
|
InsideAll = XMVectorAndInt(InsideAll, XMVectorLessOrEqual(SphereCenter, XMVectorSubtract(BoxMax, SphereRadius)));
|
||
|
InsideAll = XMVectorAndInt(InsideAll, XMVectorGreater(XMVectorSubtract(BoxMax, BoxMin), SphereRadius));
|
||
|
|
||
|
return (XMVector3EqualInt(InsideAll, XMVectorTrueInt())) ? CONTAINS : INTERSECTS;
|
||
|
}
|
||
|
|
||
|
|
||
|
//-----------------------------------------------------------------------------
|
||
|
// Axis-aligned box in axis-aligned box test
|
||
|
//-----------------------------------------------------------------------------
|
||
|
_Use_decl_annotations_
|
||
|
inline ContainmentType BoundingBox::Contains(const BoundingBox& box) const noexcept
|
||
|
{
|
||
|
XMVECTOR CenterA = XMLoadFloat3(&Center);
|
||
|
XMVECTOR ExtentsA = XMLoadFloat3(&Extents);
|
||
|
|
||
|
XMVECTOR CenterB = XMLoadFloat3(&box.Center);
|
||
|
XMVECTOR ExtentsB = XMLoadFloat3(&box.Extents);
|
||
|
|
||
|
XMVECTOR MinA = XMVectorSubtract(CenterA, ExtentsA);
|
||
|
XMVECTOR MaxA = XMVectorAdd(CenterA, ExtentsA);
|
||
|
|
||
|
XMVECTOR MinB = XMVectorSubtract(CenterB, ExtentsB);
|
||
|
XMVECTOR MaxB = XMVectorAdd(CenterB, ExtentsB);
|
||
|
|
||
|
// for each i in (x, y, z) if a_min(i) > b_max(i) or b_min(i) > a_max(i) then return false
|
||
|
XMVECTOR Disjoint = XMVectorOrInt(XMVectorGreater(MinA, MaxB), XMVectorGreater(MinB, MaxA));
|
||
|
|
||
|
if (DirectX::Internal::XMVector3AnyTrue(Disjoint))
|
||
|
return DISJOINT;
|
||
|
|
||
|
// for each i in (x, y, z) if a_min(i) <= b_min(i) and b_max(i) <= a_max(i) then A contains B
|
||
|
XMVECTOR Inside = XMVectorAndInt(XMVectorLessOrEqual(MinA, MinB), XMVectorLessOrEqual(MaxB, MaxA));
|
||
|
|
||
|
return DirectX::Internal::XMVector3AllTrue(Inside) ? CONTAINS : INTERSECTS;
|
||
|
}
|
||
|
|
||
|
|
||
|
//-----------------------------------------------------------------------------
|
||
|
// Oriented box in axis-aligned box test
|
||
|
//-----------------------------------------------------------------------------
|
||
|
_Use_decl_annotations_
|
||
|
inline ContainmentType BoundingBox::Contains(const BoundingOrientedBox& box) const noexcept
|
||
|
{
|
||
|
if (!box.Intersects(*this))
|
||
|
return DISJOINT;
|
||
|
|
||
|
XMVECTOR vCenter = XMLoadFloat3(&Center);
|
||
|
XMVECTOR vExtents = XMLoadFloat3(&Extents);
|
||
|
|
||
|
// Subtract off the AABB center to remove a subtract below
|
||
|
XMVECTOR oCenter = XMVectorSubtract(XMLoadFloat3(&box.Center), vCenter);
|
||
|
|
||
|
XMVECTOR oExtents = XMLoadFloat3(&box.Extents);
|
||
|
XMVECTOR oOrientation = XMLoadFloat4(&box.Orientation);
|
||
|
|
||
|
assert(DirectX::Internal::XMQuaternionIsUnit(oOrientation));
|
||
|
|
||
|
XMVECTOR Inside = XMVectorTrueInt();
|
||
|
|
||
|
for (size_t i = 0; i < BoundingOrientedBox::CORNER_COUNT; ++i)
|
||
|
{
|
||
|
XMVECTOR C = XMVectorAdd(XMVector3Rotate(XMVectorMultiply(oExtents, g_BoxOffset[i]), oOrientation), oCenter);
|
||
|
XMVECTOR d = XMVectorAbs(C);
|
||
|
Inside = XMVectorAndInt(Inside, XMVectorLessOrEqual(d, vExtents));
|
||
|
}
|
||
|
|
||
|
return (XMVector3EqualInt(Inside, XMVectorTrueInt())) ? CONTAINS : INTERSECTS;
|
||
|
}
|
||
|
|
||
|
|
||
|
//-----------------------------------------------------------------------------
|
||
|
// Frustum in axis-aligned box test
|
||
|
//-----------------------------------------------------------------------------
|
||
|
_Use_decl_annotations_
|
||
|
inline ContainmentType BoundingBox::Contains(const BoundingFrustum& fr) const noexcept
|
||
|
{
|
||
|
if (!fr.Intersects(*this))
|
||
|
return DISJOINT;
|
||
|
|
||
|
XMFLOAT3 Corners[BoundingFrustum::CORNER_COUNT];
|
||
|
fr.GetCorners(Corners);
|
||
|
|
||
|
XMVECTOR vCenter = XMLoadFloat3(&Center);
|
||
|
XMVECTOR vExtents = XMLoadFloat3(&Extents);
|
||
|
|
||
|
XMVECTOR Inside = XMVectorTrueInt();
|
||
|
|
||
|
for (size_t i = 0; i < BoundingFrustum::CORNER_COUNT; ++i)
|
||
|
{
|
||
|
XMVECTOR Point = XMLoadFloat3(&Corners[i]);
|
||
|
XMVECTOR d = XMVectorAbs(XMVectorSubtract(Point, vCenter));
|
||
|
Inside = XMVectorAndInt(Inside, XMVectorLessOrEqual(d, vExtents));
|
||
|
}
|
||
|
|
||
|
return (XMVector3EqualInt(Inside, XMVectorTrueInt())) ? CONTAINS : INTERSECTS;
|
||
|
}
|
||
|
|
||
|
|
||
|
//-----------------------------------------------------------------------------
|
||
|
// Sphere vs axis-aligned box test
|
||
|
//-----------------------------------------------------------------------------
|
||
|
_Use_decl_annotations_
|
||
|
inline bool BoundingBox::Intersects(const BoundingSphere& sh) const noexcept
|
||
|
{
|
||
|
XMVECTOR SphereCenter = XMLoadFloat3(&sh.Center);
|
||
|
XMVECTOR SphereRadius = XMVectorReplicatePtr(&sh.Radius);
|
||
|
|
||
|
XMVECTOR BoxCenter = XMLoadFloat3(&Center);
|
||
|
XMVECTOR BoxExtents = XMLoadFloat3(&Extents);
|
||
|
|
||
|
XMVECTOR BoxMin = XMVectorSubtract(BoxCenter, BoxExtents);
|
||
|
XMVECTOR BoxMax = XMVectorAdd(BoxCenter, BoxExtents);
|
||
|
|
||
|
// Find the distance to the nearest point on the box.
|
||
|
// for each i in (x, y, z)
|
||
|
// if (SphereCenter(i) < BoxMin(i)) d2 += (SphereCenter(i) - BoxMin(i)) ^ 2
|
||
|
// else if (SphereCenter(i) > BoxMax(i)) d2 += (SphereCenter(i) - BoxMax(i)) ^ 2
|
||
|
|
||
|
XMVECTOR d = XMVectorZero();
|
||
|
|
||
|
// Compute d for each dimension.
|
||
|
XMVECTOR LessThanMin = XMVectorLess(SphereCenter, BoxMin);
|
||
|
XMVECTOR GreaterThanMax = XMVectorGreater(SphereCenter, BoxMax);
|
||
|
|
||
|
XMVECTOR MinDelta = XMVectorSubtract(SphereCenter, BoxMin);
|
||
|
XMVECTOR MaxDelta = XMVectorSubtract(SphereCenter, BoxMax);
|
||
|
|
||
|
// Choose value for each dimension based on the comparison.
|
||
|
d = XMVectorSelect(d, MinDelta, LessThanMin);
|
||
|
d = XMVectorSelect(d, MaxDelta, GreaterThanMax);
|
||
|
|
||
|
// Use a dot-product to square them and sum them together.
|
||
|
XMVECTOR d2 = XMVector3Dot(d, d);
|
||
|
|
||
|
return XMVector3LessOrEqual(d2, XMVectorMultiply(SphereRadius, SphereRadius));
|
||
|
}
|
||
|
|
||
|
|
||
|
//-----------------------------------------------------------------------------
|
||
|
// Axis-aligned box vs. axis-aligned box test
|
||
|
//-----------------------------------------------------------------------------
|
||
|
_Use_decl_annotations_
|
||
|
inline bool BoundingBox::Intersects(const BoundingBox& box) const noexcept
|
||
|
{
|
||
|
XMVECTOR CenterA = XMLoadFloat3(&Center);
|
||
|
XMVECTOR ExtentsA = XMLoadFloat3(&Extents);
|
||
|
|
||
|
XMVECTOR CenterB = XMLoadFloat3(&box.Center);
|
||
|
XMVECTOR ExtentsB = XMLoadFloat3(&box.Extents);
|
||
|
|
||
|
XMVECTOR MinA = XMVectorSubtract(CenterA, ExtentsA);
|
||
|
XMVECTOR MaxA = XMVectorAdd(CenterA, ExtentsA);
|
||
|
|
||
|
XMVECTOR MinB = XMVectorSubtract(CenterB, ExtentsB);
|
||
|
XMVECTOR MaxB = XMVectorAdd(CenterB, ExtentsB);
|
||
|
|
||
|
// for each i in (x, y, z) if a_min(i) > b_max(i) or b_min(i) > a_max(i) then return false
|
||
|
XMVECTOR Disjoint = XMVectorOrInt(XMVectorGreater(MinA, MaxB), XMVectorGreater(MinB, MaxA));
|
||
|
|
||
|
return !DirectX::Internal::XMVector3AnyTrue(Disjoint);
|
||
|
}
|
||
|
|
||
|
|
||
|
//-----------------------------------------------------------------------------
|
||
|
// Oriented box vs. axis-aligned box test
|
||
|
//-----------------------------------------------------------------------------
|
||
|
_Use_decl_annotations_
|
||
|
inline bool BoundingBox::Intersects(const BoundingOrientedBox& box) const noexcept
|
||
|
{
|
||
|
return box.Intersects(*this);
|
||
|
}
|
||
|
|
||
|
|
||
|
//-----------------------------------------------------------------------------
|
||
|
// Frustum vs. axis-aligned box test
|
||
|
//-----------------------------------------------------------------------------
|
||
|
_Use_decl_annotations_
|
||
|
inline bool BoundingBox::Intersects(const BoundingFrustum& fr) const noexcept
|
||
|
{
|
||
|
return fr.Intersects(*this);
|
||
|
}
|
||
|
|
||
|
|
||
|
//-----------------------------------------------------------------------------
|
||
|
// Triangle vs. axis aligned box test
|
||
|
//-----------------------------------------------------------------------------
|
||
|
_Use_decl_annotations_
|
||
|
inline bool XM_CALLCONV BoundingBox::Intersects(FXMVECTOR V0, FXMVECTOR V1, FXMVECTOR V2) const noexcept
|
||
|
{
|
||
|
XMVECTOR Zero = XMVectorZero();
|
||
|
|
||
|
// Load the box.
|
||
|
XMVECTOR vCenter = XMLoadFloat3(&Center);
|
||
|
XMVECTOR vExtents = XMLoadFloat3(&Extents);
|
||
|
|
||
|
XMVECTOR BoxMin = XMVectorSubtract(vCenter, vExtents);
|
||
|
XMVECTOR BoxMax = XMVectorAdd(vCenter, vExtents);
|
||
|
|
||
|
// Test the axes of the box (in effect test the AAB against the minimal AAB
|
||
|
// around the triangle).
|
||
|
XMVECTOR TriMin = XMVectorMin(XMVectorMin(V0, V1), V2);
|
||
|
XMVECTOR TriMax = XMVectorMax(XMVectorMax(V0, V1), V2);
|
||
|
|
||
|
// for each i in (x, y, z) if a_min(i) > b_max(i) or b_min(i) > a_max(i) then disjoint
|
||
|
XMVECTOR Disjoint = XMVectorOrInt(XMVectorGreater(TriMin, BoxMax), XMVectorGreater(BoxMin, TriMax));
|
||
|
if (DirectX::Internal::XMVector3AnyTrue(Disjoint))
|
||
|
return false;
|
||
|
|
||
|
// Test the plane of the triangle.
|
||
|
XMVECTOR Normal = XMVector3Cross(XMVectorSubtract(V1, V0), XMVectorSubtract(V2, V0));
|
||
|
XMVECTOR Dist = XMVector3Dot(Normal, V0);
|
||
|
|
||
|
// Assert that the triangle is not degenerate.
|
||
|
assert(!XMVector3Equal(Normal, Zero));
|
||
|
|
||
|
// for each i in (x, y, z) if n(i) >= 0 then v_min(i)=b_min(i), v_max(i)=b_max(i)
|
||
|
// else v_min(i)=b_max(i), v_max(i)=b_min(i)
|
||
|
XMVECTOR NormalSelect = XMVectorGreater(Normal, Zero);
|
||
|
XMVECTOR V_Min = XMVectorSelect(BoxMax, BoxMin, NormalSelect);
|
||
|
XMVECTOR V_Max = XMVectorSelect(BoxMin, BoxMax, NormalSelect);
|
||
|
|
||
|
// if n dot v_min + d > 0 || n dot v_max + d < 0 then disjoint
|
||
|
XMVECTOR MinDist = XMVector3Dot(V_Min, Normal);
|
||
|
XMVECTOR MaxDist = XMVector3Dot(V_Max, Normal);
|
||
|
|
||
|
XMVECTOR NoIntersection = XMVectorGreater(MinDist, Dist);
|
||
|
NoIntersection = XMVectorOrInt(NoIntersection, XMVectorLess(MaxDist, Dist));
|
||
|
|
||
|
// Move the box center to zero to simplify the following tests.
|
||
|
XMVECTOR TV0 = XMVectorSubtract(V0, vCenter);
|
||
|
XMVECTOR TV1 = XMVectorSubtract(V1, vCenter);
|
||
|
XMVECTOR TV2 = XMVectorSubtract(V2, vCenter);
|
||
|
|
||
|
// Test the edge/edge axes (3*3).
|
||
|
XMVECTOR e0 = XMVectorSubtract(TV1, TV0);
|
||
|
XMVECTOR e1 = XMVectorSubtract(TV2, TV1);
|
||
|
XMVECTOR e2 = XMVectorSubtract(TV0, TV2);
|
||
|
|
||
|
// Make w zero.
|
||
|
e0 = XMVectorInsert<0, 0, 0, 0, 1>(e0, Zero);
|
||
|
e1 = XMVectorInsert<0, 0, 0, 0, 1>(e1, Zero);
|
||
|
e2 = XMVectorInsert<0, 0, 0, 0, 1>(e2, Zero);
|
||
|
|
||
|
XMVECTOR Axis;
|
||
|
XMVECTOR p0, p1, p2;
|
||
|
XMVECTOR Min, Max;
|
||
|
XMVECTOR Radius;
|
||
|
|
||
|
// Axis == (1,0,0) x e0 = (0, -e0.z, e0.y)
|
||
|
Axis = XMVectorPermute<XM_PERMUTE_0W, XM_PERMUTE_1Z, XM_PERMUTE_0Y, XM_PERMUTE_0X>(e0, XMVectorNegate(e0));
|
||
|
p0 = XMVector3Dot(TV0, Axis);
|
||
|
// p1 = XMVector3Dot( V1, Axis ); // p1 = p0;
|
||
|
p2 = XMVector3Dot(TV2, Axis);
|
||
|
Min = XMVectorMin(p0, p2);
|
||
|
Max = XMVectorMax(p0, p2);
|
||
|
Radius = XMVector3Dot(vExtents, XMVectorAbs(Axis));
|
||
|
NoIntersection = XMVectorOrInt(NoIntersection, XMVectorGreater(Min, Radius));
|
||
|
NoIntersection = XMVectorOrInt(NoIntersection, XMVectorLess(Max, XMVectorNegate(Radius)));
|
||
|
|
||
|
// Axis == (1,0,0) x e1 = (0, -e1.z, e1.y)
|
||
|
Axis = XMVectorPermute<XM_PERMUTE_0W, XM_PERMUTE_1Z, XM_PERMUTE_0Y, XM_PERMUTE_0X>(e1, XMVectorNegate(e1));
|
||
|
p0 = XMVector3Dot(TV0, Axis);
|
||
|
p1 = XMVector3Dot(TV1, Axis);
|
||
|
// p2 = XMVector3Dot( V2, Axis ); // p2 = p1;
|
||
|
Min = XMVectorMin(p0, p1);
|
||
|
Max = XMVectorMax(p0, p1);
|
||
|
Radius = XMVector3Dot(vExtents, XMVectorAbs(Axis));
|
||
|
NoIntersection = XMVectorOrInt(NoIntersection, XMVectorGreater(Min, Radius));
|
||
|
NoIntersection = XMVectorOrInt(NoIntersection, XMVectorLess(Max, XMVectorNegate(Radius)));
|
||
|
|
||
|
// Axis == (1,0,0) x e2 = (0, -e2.z, e2.y)
|
||
|
Axis = XMVectorPermute<XM_PERMUTE_0W, XM_PERMUTE_1Z, XM_PERMUTE_0Y, XM_PERMUTE_0X>(e2, XMVectorNegate(e2));
|
||
|
p0 = XMVector3Dot(TV0, Axis);
|
||
|
p1 = XMVector3Dot(TV1, Axis);
|
||
|
// p2 = XMVector3Dot( V2, Axis ); // p2 = p0;
|
||
|
Min = XMVectorMin(p0, p1);
|
||
|
Max = XMVectorMax(p0, p1);
|
||
|
Radius = XMVector3Dot(vExtents, XMVectorAbs(Axis));
|
||
|
NoIntersection = XMVectorOrInt(NoIntersection, XMVectorGreater(Min, Radius));
|
||
|
NoIntersection = XMVectorOrInt(NoIntersection, XMVectorLess(Max, XMVectorNegate(Radius)));
|
||
|
|
||
|
// Axis == (0,1,0) x e0 = (e0.z, 0, -e0.x)
|
||
|
Axis = XMVectorPermute<XM_PERMUTE_0Z, XM_PERMUTE_0W, XM_PERMUTE_1X, XM_PERMUTE_0Y>(e0, XMVectorNegate(e0));
|
||
|
p0 = XMVector3Dot(TV0, Axis);
|
||
|
// p1 = XMVector3Dot( V1, Axis ); // p1 = p0;
|
||
|
p2 = XMVector3Dot(TV2, Axis);
|
||
|
Min = XMVectorMin(p0, p2);
|
||
|
Max = XMVectorMax(p0, p2);
|
||
|
Radius = XMVector3Dot(vExtents, XMVectorAbs(Axis));
|
||
|
NoIntersection = XMVectorOrInt(NoIntersection, XMVectorGreater(Min, Radius));
|
||
|
NoIntersection = XMVectorOrInt(NoIntersection, XMVectorLess(Max, XMVectorNegate(Radius)));
|
||
|
|
||
|
// Axis == (0,1,0) x e1 = (e1.z, 0, -e1.x)
|
||
|
Axis = XMVectorPermute<XM_PERMUTE_0Z, XM_PERMUTE_0W, XM_PERMUTE_1X, XM_PERMUTE_0Y>(e1, XMVectorNegate(e1));
|
||
|
p0 = XMVector3Dot(TV0, Axis);
|
||
|
p1 = XMVector3Dot(TV1, Axis);
|
||
|
// p2 = XMVector3Dot( V2, Axis ); // p2 = p1;
|
||
|
Min = XMVectorMin(p0, p1);
|
||
|
Max = XMVectorMax(p0, p1);
|
||
|
Radius = XMVector3Dot(vExtents, XMVectorAbs(Axis));
|
||
|
NoIntersection = XMVectorOrInt(NoIntersection, XMVectorGreater(Min, Radius));
|
||
|
NoIntersection = XMVectorOrInt(NoIntersection, XMVectorLess(Max, XMVectorNegate(Radius)));
|
||
|
|
||
|
// Axis == (0,0,1) x e2 = (e2.z, 0, -e2.x)
|
||
|
Axis = XMVectorPermute<XM_PERMUTE_0Z, XM_PERMUTE_0W, XM_PERMUTE_1X, XM_PERMUTE_0Y>(e2, XMVectorNegate(e2));
|
||
|
p0 = XMVector3Dot(TV0, Axis);
|
||
|
p1 = XMVector3Dot(TV1, Axis);
|
||
|
// p2 = XMVector3Dot( V2, Axis ); // p2 = p0;
|
||
|
Min = XMVectorMin(p0, p1);
|
||
|
Max = XMVectorMax(p0, p1);
|
||
|
Radius = XMVector3Dot(vExtents, XMVectorAbs(Axis));
|
||
|
NoIntersection = XMVectorOrInt(NoIntersection, XMVectorGreater(Min, Radius));
|
||
|
NoIntersection = XMVectorOrInt(NoIntersection, XMVectorLess(Max, XMVectorNegate(Radius)));
|
||
|
|
||
|
// Axis == (0,0,1) x e0 = (-e0.y, e0.x, 0)
|
||
|
Axis = XMVectorPermute<XM_PERMUTE_1Y, XM_PERMUTE_0X, XM_PERMUTE_0W, XM_PERMUTE_0Z>(e0, XMVectorNegate(e0));
|
||
|
p0 = XMVector3Dot(TV0, Axis);
|
||
|
// p1 = XMVector3Dot( V1, Axis ); // p1 = p0;
|
||
|
p2 = XMVector3Dot(TV2, Axis);
|
||
|
Min = XMVectorMin(p0, p2);
|
||
|
Max = XMVectorMax(p0, p2);
|
||
|
Radius = XMVector3Dot(vExtents, XMVectorAbs(Axis));
|
||
|
NoIntersection = XMVectorOrInt(NoIntersection, XMVectorGreater(Min, Radius));
|
||
|
NoIntersection = XMVectorOrInt(NoIntersection, XMVectorLess(Max, XMVectorNegate(Radius)));
|
||
|
|
||
|
// Axis == (0,0,1) x e1 = (-e1.y, e1.x, 0)
|
||
|
Axis = XMVectorPermute<XM_PERMUTE_1Y, XM_PERMUTE_0X, XM_PERMUTE_0W, XM_PERMUTE_0Z>(e1, XMVectorNegate(e1));
|
||
|
p0 = XMVector3Dot(TV0, Axis);
|
||
|
p1 = XMVector3Dot(TV1, Axis);
|
||
|
// p2 = XMVector3Dot( V2, Axis ); // p2 = p1;
|
||
|
Min = XMVectorMin(p0, p1);
|
||
|
Max = XMVectorMax(p0, p1);
|
||
|
Radius = XMVector3Dot(vExtents, XMVectorAbs(Axis));
|
||
|
NoIntersection = XMVectorOrInt(NoIntersection, XMVectorGreater(Min, Radius));
|
||
|
NoIntersection = XMVectorOrInt(NoIntersection, XMVectorLess(Max, XMVectorNegate(Radius)));
|
||
|
|
||
|
// Axis == (0,0,1) x e2 = (-e2.y, e2.x, 0)
|
||
|
Axis = XMVectorPermute<XM_PERMUTE_1Y, XM_PERMUTE_0X, XM_PERMUTE_0W, XM_PERMUTE_0Z>(e2, XMVectorNegate(e2));
|
||
|
p0 = XMVector3Dot(TV0, Axis);
|
||
|
p1 = XMVector3Dot(TV1, Axis);
|
||
|
// p2 = XMVector3Dot( V2, Axis ); // p2 = p0;
|
||
|
Min = XMVectorMin(p0, p1);
|
||
|
Max = XMVectorMax(p0, p1);
|
||
|
Radius = XMVector3Dot(vExtents, XMVectorAbs(Axis));
|
||
|
NoIntersection = XMVectorOrInt(NoIntersection, XMVectorGreater(Min, Radius));
|
||
|
NoIntersection = XMVectorOrInt(NoIntersection, XMVectorLess(Max, XMVectorNegate(Radius)));
|
||
|
|
||
|
return XMVector4NotEqualInt(NoIntersection, XMVectorTrueInt());
|
||
|
}
|
||
|
|
||
|
|
||
|
//-----------------------------------------------------------------------------
|
||
|
_Use_decl_annotations_
|
||
|
inline PlaneIntersectionType XM_CALLCONV BoundingBox::Intersects(FXMVECTOR Plane) const noexcept
|
||
|
{
|
||
|
assert(DirectX::Internal::XMPlaneIsUnit(Plane));
|
||
|
|
||
|
// Load the box.
|
||
|
XMVECTOR vCenter = XMLoadFloat3(&Center);
|
||
|
XMVECTOR vExtents = XMLoadFloat3(&Extents);
|
||
|
|
||
|
// Set w of the center to one so we can dot4 with a plane.
|
||
|
vCenter = XMVectorInsert<0, 0, 0, 0, 1>(vCenter, XMVectorSplatOne());
|
||
|
|
||
|
XMVECTOR Outside, Inside;
|
||
|
DirectX::Internal::FastIntersectAxisAlignedBoxPlane(vCenter, vExtents, Plane, Outside, Inside);
|
||
|
|
||
|
// If the box is outside any plane it is outside.
|
||
|
if (XMVector4EqualInt(Outside, XMVectorTrueInt()))
|
||
|
return FRONT;
|
||
|
|
||
|
// If the box is inside all planes it is inside.
|
||
|
if (XMVector4EqualInt(Inside, XMVectorTrueInt()))
|
||
|
return BACK;
|
||
|
|
||
|
// The box is not inside all planes or outside a plane it intersects.
|
||
|
return INTERSECTING;
|
||
|
}
|
||
|
|
||
|
|
||
|
//-----------------------------------------------------------------------------
|
||
|
// Compute the intersection of a ray (Origin, Direction) with an axis aligned
|
||
|
// box using the slabs method.
|
||
|
//-----------------------------------------------------------------------------
|
||
|
_Use_decl_annotations_
|
||
|
inline bool XM_CALLCONV BoundingBox::Intersects(FXMVECTOR Origin, FXMVECTOR Direction, float& Dist) const noexcept
|
||
|
{
|
||
|
assert(DirectX::Internal::XMVector3IsUnit(Direction));
|
||
|
|
||
|
// Load the box.
|
||
|
XMVECTOR vCenter = XMLoadFloat3(&Center);
|
||
|
XMVECTOR vExtents = XMLoadFloat3(&Extents);
|
||
|
|
||
|
// Adjust ray origin to be relative to center of the box.
|
||
|
XMVECTOR TOrigin = XMVectorSubtract(vCenter, Origin);
|
||
|
|
||
|
// Compute the dot product againt each axis of the box.
|
||
|
// Since the axii are (1,0,0), (0,1,0), (0,0,1) no computation is necessary.
|
||
|
XMVECTOR AxisDotOrigin = TOrigin;
|
||
|
XMVECTOR AxisDotDirection = Direction;
|
||
|
|
||
|
// if (fabs(AxisDotDirection) <= Epsilon) the ray is nearly parallel to the slab.
|
||
|
XMVECTOR IsParallel = XMVectorLessOrEqual(XMVectorAbs(AxisDotDirection), g_RayEpsilon);
|
||
|
|
||
|
// Test against all three axii simultaneously.
|
||
|
XMVECTOR InverseAxisDotDirection = XMVectorReciprocal(AxisDotDirection);
|
||
|
XMVECTOR t1 = XMVectorMultiply(XMVectorSubtract(AxisDotOrigin, vExtents), InverseAxisDotDirection);
|
||
|
XMVECTOR t2 = XMVectorMultiply(XMVectorAdd(AxisDotOrigin, vExtents), InverseAxisDotDirection);
|
||
|
|
||
|
// Compute the max of min(t1,t2) and the min of max(t1,t2) ensuring we don't
|
||
|
// use the results from any directions parallel to the slab.
|
||
|
XMVECTOR t_min = XMVectorSelect(XMVectorMin(t1, t2), g_FltMin, IsParallel);
|
||
|
XMVECTOR t_max = XMVectorSelect(XMVectorMax(t1, t2), g_FltMax, IsParallel);
|
||
|
|
||
|
// t_min.x = maximum( t_min.x, t_min.y, t_min.z );
|
||
|
// t_max.x = minimum( t_max.x, t_max.y, t_max.z );
|
||
|
t_min = XMVectorMax(t_min, XMVectorSplatY(t_min)); // x = max(x,y)
|
||
|
t_min = XMVectorMax(t_min, XMVectorSplatZ(t_min)); // x = max(max(x,y),z)
|
||
|
t_max = XMVectorMin(t_max, XMVectorSplatY(t_max)); // x = min(x,y)
|
||
|
t_max = XMVectorMin(t_max, XMVectorSplatZ(t_max)); // x = min(min(x,y),z)
|
||
|
|
||
|
// if ( t_min > t_max ) return false;
|
||
|
XMVECTOR NoIntersection = XMVectorGreater(XMVectorSplatX(t_min), XMVectorSplatX(t_max));
|
||
|
|
||
|
// if ( t_max < 0.0f ) return false;
|
||
|
NoIntersection = XMVectorOrInt(NoIntersection, XMVectorLess(XMVectorSplatX(t_max), XMVectorZero()));
|
||
|
|
||
|
// if (IsParallel && (-Extents > AxisDotOrigin || Extents < AxisDotOrigin)) return false;
|
||
|
XMVECTOR ParallelOverlap = XMVectorInBounds(AxisDotOrigin, vExtents);
|
||
|
NoIntersection = XMVectorOrInt(NoIntersection, XMVectorAndCInt(IsParallel, ParallelOverlap));
|
||
|
|
||
|
if (!DirectX::Internal::XMVector3AnyTrue(NoIntersection))
|
||
|
{
|
||
|
// Store the x-component to *pDist
|
||
|
XMStoreFloat(&Dist, t_min);
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
Dist = 0.f;
|
||
|
return false;
|
||
|
}
|
||
|
|
||
|
|
||
|
//-----------------------------------------------------------------------------
|
||
|
// Test an axis alinged box vs 6 planes (typically forming a frustum).
|
||
|
//-----------------------------------------------------------------------------
|
||
|
_Use_decl_annotations_
|
||
|
inline ContainmentType XM_CALLCONV BoundingBox::ContainedBy(
|
||
|
FXMVECTOR Plane0, FXMVECTOR Plane1, FXMVECTOR Plane2,
|
||
|
GXMVECTOR Plane3,
|
||
|
HXMVECTOR Plane4, HXMVECTOR Plane5) const noexcept
|
||
|
{
|
||
|
// Load the box.
|
||
|
XMVECTOR vCenter = XMLoadFloat3(&Center);
|
||
|
XMVECTOR vExtents = XMLoadFloat3(&Extents);
|
||
|
|
||
|
// Set w of the center to one so we can dot4 with a plane.
|
||
|
vCenter = XMVectorInsert<0, 0, 0, 0, 1>(vCenter, XMVectorSplatOne());
|
||
|
|
||
|
XMVECTOR Outside, Inside;
|
||
|
|
||
|
// Test against each plane.
|
||
|
DirectX::Internal::FastIntersectAxisAlignedBoxPlane(vCenter, vExtents, Plane0, Outside, Inside);
|
||
|
|
||
|
XMVECTOR AnyOutside = Outside;
|
||
|
XMVECTOR AllInside = Inside;
|
||
|
|
||
|
DirectX::Internal::FastIntersectAxisAlignedBoxPlane(vCenter, vExtents, Plane1, Outside, Inside);
|
||
|
AnyOutside = XMVectorOrInt(AnyOutside, Outside);
|
||
|
AllInside = XMVectorAndInt(AllInside, Inside);
|
||
|
|
||
|
DirectX::Internal::FastIntersectAxisAlignedBoxPlane(vCenter, vExtents, Plane2, Outside, Inside);
|
||
|
AnyOutside = XMVectorOrInt(AnyOutside, Outside);
|
||
|
AllInside = XMVectorAndInt(AllInside, Inside);
|
||
|
|
||
|
DirectX::Internal::FastIntersectAxisAlignedBoxPlane(vCenter, vExtents, Plane3, Outside, Inside);
|
||
|
AnyOutside = XMVectorOrInt(AnyOutside, Outside);
|
||
|
AllInside = XMVectorAndInt(AllInside, Inside);
|
||
|
|
||
|
DirectX::Internal::FastIntersectAxisAlignedBoxPlane(vCenter, vExtents, Plane4, Outside, Inside);
|
||
|
AnyOutside = XMVectorOrInt(AnyOutside, Outside);
|
||
|
AllInside = XMVectorAndInt(AllInside, Inside);
|
||
|
|
||
|
DirectX::Internal::FastIntersectAxisAlignedBoxPlane(vCenter, vExtents, Plane5, Outside, Inside);
|
||
|
AnyOutside = XMVectorOrInt(AnyOutside, Outside);
|
||
|
AllInside = XMVectorAndInt(AllInside, Inside);
|
||
|
|
||
|
// If the box is outside any plane it is outside.
|
||
|
if (XMVector4EqualInt(AnyOutside, XMVectorTrueInt()))
|
||
|
return DISJOINT;
|
||
|
|
||
|
// If the box is inside all planes it is inside.
|
||
|
if (XMVector4EqualInt(AllInside, XMVectorTrueInt()))
|
||
|
return CONTAINS;
|
||
|
|
||
|
// The box is not inside all planes or outside a plane, it may intersect.
|
||
|
return INTERSECTS;
|
||
|
}
|
||
|
|
||
|
|
||
|
//-----------------------------------------------------------------------------
|
||
|
// Create axis-aligned box that contains two other bounding boxes
|
||
|
//-----------------------------------------------------------------------------
|
||
|
_Use_decl_annotations_
|
||
|
inline void BoundingBox::CreateMerged(BoundingBox& Out, const BoundingBox& b1, const BoundingBox& b2) noexcept
|
||
|
{
|
||
|
XMVECTOR b1Center = XMLoadFloat3(&b1.Center);
|
||
|
XMVECTOR b1Extents = XMLoadFloat3(&b1.Extents);
|
||
|
|
||
|
XMVECTOR b2Center = XMLoadFloat3(&b2.Center);
|
||
|
XMVECTOR b2Extents = XMLoadFloat3(&b2.Extents);
|
||
|
|
||
|
XMVECTOR Min = XMVectorSubtract(b1Center, b1Extents);
|
||
|
Min = XMVectorMin(Min, XMVectorSubtract(b2Center, b2Extents));
|
||
|
|
||
|
XMVECTOR Max = XMVectorAdd(b1Center, b1Extents);
|
||
|
Max = XMVectorMax(Max, XMVectorAdd(b2Center, b2Extents));
|
||
|
|
||
|
assert(XMVector3LessOrEqual(Min, Max));
|
||
|
|
||
|
XMStoreFloat3(&Out.Center, XMVectorScale(XMVectorAdd(Min, Max), 0.5f));
|
||
|
XMStoreFloat3(&Out.Extents, XMVectorScale(XMVectorSubtract(Max, Min), 0.5f));
|
||
|
}
|
||
|
|
||
|
|
||
|
//-----------------------------------------------------------------------------
|
||
|
// Create axis-aligned box that contains a bounding sphere
|
||
|
//-----------------------------------------------------------------------------
|
||
|
_Use_decl_annotations_
|
||
|
inline void BoundingBox::CreateFromSphere(BoundingBox& Out, const BoundingSphere& sh) noexcept
|
||
|
{
|
||
|
XMVECTOR spCenter = XMLoadFloat3(&sh.Center);
|
||
|
XMVECTOR shRadius = XMVectorReplicatePtr(&sh.Radius);
|
||
|
|
||
|
XMVECTOR Min = XMVectorSubtract(spCenter, shRadius);
|
||
|
XMVECTOR Max = XMVectorAdd(spCenter, shRadius);
|
||
|
|
||
|
assert(XMVector3LessOrEqual(Min, Max));
|
||
|
|
||
|
XMStoreFloat3(&Out.Center, XMVectorScale(XMVectorAdd(Min, Max), 0.5f));
|
||
|
XMStoreFloat3(&Out.Extents, XMVectorScale(XMVectorSubtract(Max, Min), 0.5f));
|
||
|
}
|
||
|
|
||
|
|
||
|
//-----------------------------------------------------------------------------
|
||
|
// Create axis-aligned box from min/max points
|
||
|
//-----------------------------------------------------------------------------
|
||
|
_Use_decl_annotations_
|
||
|
inline void XM_CALLCONV BoundingBox::CreateFromPoints(BoundingBox& Out, FXMVECTOR pt1, FXMVECTOR pt2) noexcept
|
||
|
{
|
||
|
XMVECTOR Min = XMVectorMin(pt1, pt2);
|
||
|
XMVECTOR Max = XMVectorMax(pt1, pt2);
|
||
|
|
||
|
// Store center and extents.
|
||
|
XMStoreFloat3(&Out.Center, XMVectorScale(XMVectorAdd(Min, Max), 0.5f));
|
||
|
XMStoreFloat3(&Out.Extents, XMVectorScale(XMVectorSubtract(Max, Min), 0.5f));
|
||
|
}
|
||
|
|
||
|
|
||
|
//-----------------------------------------------------------------------------
|
||
|
// Find the minimum axis aligned bounding box containing a set of points.
|
||
|
//-----------------------------------------------------------------------------
|
||
|
_Use_decl_annotations_
|
||
|
inline void BoundingBox::CreateFromPoints(BoundingBox& Out, size_t Count, const XMFLOAT3* pPoints, size_t Stride) noexcept
|
||
|
{
|
||
|
assert(Count > 0);
|
||
|
assert(pPoints);
|
||
|
|
||
|
// Find the minimum and maximum x, y, and z
|
||
|
XMVECTOR vMin, vMax;
|
||
|
|
||
|
vMin = vMax = XMLoadFloat3(pPoints);
|
||
|
|
||
|
for (size_t i = 1; i < Count; ++i)
|
||
|
{
|
||
|
XMVECTOR Point = XMLoadFloat3(reinterpret_cast<const XMFLOAT3*>(reinterpret_cast<const uint8_t*>(pPoints) + i * Stride));
|
||
|
|
||
|
vMin = XMVectorMin(vMin, Point);
|
||
|
vMax = XMVectorMax(vMax, Point);
|
||
|
}
|
||
|
|
||
|
// Store center and extents.
|
||
|
XMStoreFloat3(&Out.Center, XMVectorScale(XMVectorAdd(vMin, vMax), 0.5f));
|
||
|
XMStoreFloat3(&Out.Extents, XMVectorScale(XMVectorSubtract(vMax, vMin), 0.5f));
|
||
|
}
|
||
|
|
||
|
|
||
|
/****************************************************************************
|
||
|
*
|
||
|
* BoundingOrientedBox
|
||
|
*
|
||
|
****************************************************************************/
|
||
|
|
||
|
//-----------------------------------------------------------------------------
|
||
|
// Transform an oriented box by an angle preserving transform.
|
||
|
//-----------------------------------------------------------------------------
|
||
|
_Use_decl_annotations_
|
||
|
inline void XM_CALLCONV BoundingOrientedBox::Transform(BoundingOrientedBox& Out, FXMMATRIX M) const noexcept
|
||
|
{
|
||
|
// Load the box.
|
||
|
XMVECTOR vCenter = XMLoadFloat3(&Center);
|
||
|
XMVECTOR vExtents = XMLoadFloat3(&Extents);
|
||
|
XMVECTOR vOrientation = XMLoadFloat4(&Orientation);
|
||
|
|
||
|
assert(DirectX::Internal::XMQuaternionIsUnit(vOrientation));
|
||
|
|
||
|
// Composite the box rotation and the transform rotation.
|
||
|
XMMATRIX nM;
|
||
|
nM.r[0] = XMVector3Normalize(M.r[0]);
|
||
|
nM.r[1] = XMVector3Normalize(M.r[1]);
|
||
|
nM.r[2] = XMVector3Normalize(M.r[2]);
|
||
|
nM.r[3] = g_XMIdentityR3;
|
||
|
XMVECTOR Rotation = XMQuaternionRotationMatrix(nM);
|
||
|
vOrientation = XMQuaternionMultiply(vOrientation, Rotation);
|
||
|
|
||
|
// Transform the center.
|
||
|
vCenter = XMVector3Transform(vCenter, M);
|
||
|
|
||
|
// Scale the box extents.
|
||
|
XMVECTOR dX = XMVector3Length(M.r[0]);
|
||
|
XMVECTOR dY = XMVector3Length(M.r[1]);
|
||
|
XMVECTOR dZ = XMVector3Length(M.r[2]);
|
||
|
|
||
|
XMVECTOR VectorScale = XMVectorSelect(dY, dX, g_XMSelect1000);
|
||
|
VectorScale = XMVectorSelect(dZ, VectorScale, g_XMSelect1100);
|
||
|
vExtents = XMVectorMultiply(vExtents, VectorScale);
|
||
|
|
||
|
// Store the box.
|
||
|
XMStoreFloat3(&Out.Center, vCenter);
|
||
|
XMStoreFloat3(&Out.Extents, vExtents);
|
||
|
XMStoreFloat4(&Out.Orientation, vOrientation);
|
||
|
}
|
||
|
|
||
|
_Use_decl_annotations_
|
||
|
inline void XM_CALLCONV BoundingOrientedBox::Transform(BoundingOrientedBox& Out, float Scale, FXMVECTOR Rotation, FXMVECTOR Translation) const noexcept
|
||
|
{
|
||
|
assert(DirectX::Internal::XMQuaternionIsUnit(Rotation));
|
||
|
|
||
|
// Load the box.
|
||
|
XMVECTOR vCenter = XMLoadFloat3(&Center);
|
||
|
XMVECTOR vExtents = XMLoadFloat3(&Extents);
|
||
|
XMVECTOR vOrientation = XMLoadFloat4(&Orientation);
|
||
|
|
||
|
assert(DirectX::Internal::XMQuaternionIsUnit(vOrientation));
|
||
|
|
||
|
// Composite the box rotation and the transform rotation.
|
||
|
vOrientation = XMQuaternionMultiply(vOrientation, Rotation);
|
||
|
|
||
|
// Transform the center.
|
||
|
XMVECTOR VectorScale = XMVectorReplicate(Scale);
|
||
|
vCenter = XMVectorAdd(XMVector3Rotate(XMVectorMultiply(vCenter, VectorScale), Rotation), Translation);
|
||
|
|
||
|
// Scale the box extents.
|
||
|
vExtents = XMVectorMultiply(vExtents, VectorScale);
|
||
|
|
||
|
// Store the box.
|
||
|
XMStoreFloat3(&Out.Center, vCenter);
|
||
|
XMStoreFloat3(&Out.Extents, vExtents);
|
||
|
XMStoreFloat4(&Out.Orientation, vOrientation);
|
||
|
}
|
||
|
|
||
|
|
||
|
//-----------------------------------------------------------------------------
|
||
|
// Get the corner points of the box
|
||
|
//-----------------------------------------------------------------------------
|
||
|
_Use_decl_annotations_
|
||
|
inline void BoundingOrientedBox::GetCorners(XMFLOAT3* Corners) const noexcept
|
||
|
{
|
||
|
assert(Corners != nullptr);
|
||
|
|
||
|
// Load the box
|
||
|
XMVECTOR vCenter = XMLoadFloat3(&Center);
|
||
|
XMVECTOR vExtents = XMLoadFloat3(&Extents);
|
||
|
XMVECTOR vOrientation = XMLoadFloat4(&Orientation);
|
||
|
|
||
|
assert(DirectX::Internal::XMQuaternionIsUnit(vOrientation));
|
||
|
|
||
|
for (size_t i = 0; i < CORNER_COUNT; ++i)
|
||
|
{
|
||
|
XMVECTOR C = XMVectorAdd(XMVector3Rotate(XMVectorMultiply(vExtents, g_BoxOffset[i]), vOrientation), vCenter);
|
||
|
XMStoreFloat3(&Corners[i], C);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
|
||
|
//-----------------------------------------------------------------------------
|
||
|
// Point in oriented box test.
|
||
|
//-----------------------------------------------------------------------------
|
||
|
_Use_decl_annotations_
|
||
|
inline ContainmentType XM_CALLCONV BoundingOrientedBox::Contains(FXMVECTOR Point) const noexcept
|
||
|
{
|
||
|
XMVECTOR vCenter = XMLoadFloat3(&Center);
|
||
|
XMVECTOR vExtents = XMLoadFloat3(&Extents);
|
||
|
XMVECTOR vOrientation = XMLoadFloat4(&Orientation);
|
||
|
|
||
|
// Transform the point to be local to the box.
|
||
|
XMVECTOR TPoint = XMVector3InverseRotate(XMVectorSubtract(Point, vCenter), vOrientation);
|
||
|
|
||
|
return XMVector3InBounds(TPoint, vExtents) ? CONTAINS : DISJOINT;
|
||
|
}
|
||
|
|
||
|
|
||
|
//-----------------------------------------------------------------------------
|
||
|
// Triangle in oriented bounding box
|
||
|
//-----------------------------------------------------------------------------
|
||
|
_Use_decl_annotations_
|
||
|
inline ContainmentType XM_CALLCONV BoundingOrientedBox::Contains(FXMVECTOR V0, FXMVECTOR V1, FXMVECTOR V2) const noexcept
|
||
|
{
|
||
|
// Load the box center & orientation.
|
||
|
XMVECTOR vCenter = XMLoadFloat3(&Center);
|
||
|
XMVECTOR vOrientation = XMLoadFloat4(&Orientation);
|
||
|
|
||
|
// Transform the triangle vertices into the space of the box.
|
||
|
XMVECTOR TV0 = XMVector3InverseRotate(XMVectorSubtract(V0, vCenter), vOrientation);
|
||
|
XMVECTOR TV1 = XMVector3InverseRotate(XMVectorSubtract(V1, vCenter), vOrientation);
|
||
|
XMVECTOR TV2 = XMVector3InverseRotate(XMVectorSubtract(V2, vCenter), vOrientation);
|
||
|
|
||
|
BoundingBox box;
|
||
|
box.Center = XMFLOAT3(0.0f, 0.0f, 0.0f);
|
||
|
box.Extents = Extents;
|
||
|
|
||
|
// Use the triangle vs axis aligned box intersection routine.
|
||
|
return box.Contains(TV0, TV1, TV2);
|
||
|
}
|
||
|
|
||
|
|
||
|
//-----------------------------------------------------------------------------
|
||
|
// Sphere in oriented bounding box
|
||
|
//-----------------------------------------------------------------------------
|
||
|
_Use_decl_annotations_
|
||
|
inline ContainmentType BoundingOrientedBox::Contains(const BoundingSphere& sh) const noexcept
|
||
|
{
|
||
|
XMVECTOR SphereCenter = XMLoadFloat3(&sh.Center);
|
||
|
XMVECTOR SphereRadius = XMVectorReplicatePtr(&sh.Radius);
|
||
|
|
||
|
XMVECTOR BoxCenter = XMLoadFloat3(&Center);
|
||
|
XMVECTOR BoxExtents = XMLoadFloat3(&Extents);
|
||
|
XMVECTOR BoxOrientation = XMLoadFloat4(&Orientation);
|
||
|
|
||
|
assert(DirectX::Internal::XMQuaternionIsUnit(BoxOrientation));
|
||
|
|
||
|
// Transform the center of the sphere to be local to the box.
|
||
|
// BoxMin = -BoxExtents
|
||
|
// BoxMax = +BoxExtents
|
||
|
SphereCenter = XMVector3InverseRotate(XMVectorSubtract(SphereCenter, BoxCenter), BoxOrientation);
|
||
|
|
||
|
// Find the distance to the nearest point on the box.
|
||
|
// for each i in (x, y, z)
|
||
|
// if (SphereCenter(i) < BoxMin(i)) d2 += (SphereCenter(i) - BoxMin(i)) ^ 2
|
||
|
// else if (SphereCenter(i) > BoxMax(i)) d2 += (SphereCenter(i) - BoxMax(i)) ^ 2
|
||
|
|
||
|
XMVECTOR d = XMVectorZero();
|
||
|
|
||
|
// Compute d for each dimension.
|
||
|
XMVECTOR LessThanMin = XMVectorLess(SphereCenter, XMVectorNegate(BoxExtents));
|
||
|
XMVECTOR GreaterThanMax = XMVectorGreater(SphereCenter, BoxExtents);
|
||
|
|
||
|
XMVECTOR MinDelta = XMVectorAdd(SphereCenter, BoxExtents);
|
||
|
XMVECTOR MaxDelta = XMVectorSubtract(SphereCenter, BoxExtents);
|
||
|
|
||
|
// Choose value for each dimension based on the comparison.
|
||
|
d = XMVectorSelect(d, MinDelta, LessThanMin);
|
||
|
d = XMVectorSelect(d, MaxDelta, GreaterThanMax);
|
||
|
|
||
|
// Use a dot-product to square them and sum them together.
|
||
|
XMVECTOR d2 = XMVector3Dot(d, d);
|
||
|
XMVECTOR SphereRadiusSq = XMVectorMultiply(SphereRadius, SphereRadius);
|
||
|
|
||
|
if (XMVector4Greater(d2, SphereRadiusSq))
|
||
|
return DISJOINT;
|
||
|
|
||
|
// See if we are completely inside the box
|
||
|
XMVECTOR SMin = XMVectorSubtract(SphereCenter, SphereRadius);
|
||
|
XMVECTOR SMax = XMVectorAdd(SphereCenter, SphereRadius);
|
||
|
|
||
|
return (XMVector3InBounds(SMin, BoxExtents) && XMVector3InBounds(SMax, BoxExtents)) ? CONTAINS : INTERSECTS;
|
||
|
}
|
||
|
|
||
|
|
||
|
//-----------------------------------------------------------------------------
|
||
|
// Axis aligned box vs. oriented box. Constructs an oriented box and uses
|
||
|
// the oriented box vs. oriented box test.
|
||
|
//-----------------------------------------------------------------------------
|
||
|
_Use_decl_annotations_
|
||
|
inline ContainmentType BoundingOrientedBox::Contains(const BoundingBox& box) const noexcept
|
||
|
{
|
||
|
// Make the axis aligned box oriented and do an OBB vs OBB test.
|
||
|
BoundingOrientedBox obox(box.Center, box.Extents, XMFLOAT4(0.f, 0.f, 0.f, 1.f));
|
||
|
return Contains(obox);
|
||
|
}
|
||
|
|
||
|
|
||
|
//-----------------------------------------------------------------------------
|
||
|
// Oriented bounding box in oriented bounding box
|
||
|
//-----------------------------------------------------------------------------
|
||
|
_Use_decl_annotations_
|
||
|
inline ContainmentType BoundingOrientedBox::Contains(const BoundingOrientedBox& box) const noexcept
|
||
|
{
|
||
|
if (!Intersects(box))
|
||
|
return DISJOINT;
|
||
|
|
||
|
// Load the boxes
|
||
|
XMVECTOR aCenter = XMLoadFloat3(&Center);
|
||
|
XMVECTOR aExtents = XMLoadFloat3(&Extents);
|
||
|
XMVECTOR aOrientation = XMLoadFloat4(&Orientation);
|
||
|
|
||
|
assert(DirectX::Internal::XMQuaternionIsUnit(aOrientation));
|
||
|
|
||
|
XMVECTOR bCenter = XMLoadFloat3(&box.Center);
|
||
|
XMVECTOR bExtents = XMLoadFloat3(&box.Extents);
|
||
|
XMVECTOR bOrientation = XMLoadFloat4(&box.Orientation);
|
||
|
|
||
|
assert(DirectX::Internal::XMQuaternionIsUnit(bOrientation));
|
||
|
|
||
|
XMVECTOR offset = XMVectorSubtract(bCenter, aCenter);
|
||
|
|
||
|
for (size_t i = 0; i < CORNER_COUNT; ++i)
|
||
|
{
|
||
|
// Cb = rotate( bExtents * corneroffset[i], bOrientation ) + bcenter
|
||
|
// Ca = invrotate( Cb - aCenter, aOrientation )
|
||
|
|
||
|
XMVECTOR C = XMVectorAdd(XMVector3Rotate(XMVectorMultiply(bExtents, g_BoxOffset[i]), bOrientation), offset);
|
||
|
C = XMVector3InverseRotate(C, aOrientation);
|
||
|
|
||
|
if (!XMVector3InBounds(C, aExtents))
|
||
|
return INTERSECTS;
|
||
|
}
|
||
|
|
||
|
return CONTAINS;
|
||
|
}
|
||
|
|
||
|
|
||
|
//-----------------------------------------------------------------------------
|
||
|
// Frustum in oriented bounding box
|
||
|
//-----------------------------------------------------------------------------
|
||
|
_Use_decl_annotations_
|
||
|
inline ContainmentType BoundingOrientedBox::Contains(const BoundingFrustum& fr) const noexcept
|
||
|
{
|
||
|
if (!fr.Intersects(*this))
|
||
|
return DISJOINT;
|
||
|
|
||
|
XMFLOAT3 Corners[BoundingFrustum::CORNER_COUNT];
|
||
|
fr.GetCorners(Corners);
|
||
|
|
||
|
// Load the box
|
||
|
XMVECTOR vCenter = XMLoadFloat3(&Center);
|
||
|
XMVECTOR vExtents = XMLoadFloat3(&Extents);
|
||
|
XMVECTOR vOrientation = XMLoadFloat4(&Orientation);
|
||
|
|
||
|
assert(DirectX::Internal::XMQuaternionIsUnit(vOrientation));
|
||
|
|
||
|
for (size_t i = 0; i < BoundingFrustum::CORNER_COUNT; ++i)
|
||
|
{
|
||
|
XMVECTOR C = XMVector3InverseRotate(XMVectorSubtract(XMLoadFloat3(&Corners[i]), vCenter), vOrientation);
|
||
|
|
||
|
if (!XMVector3InBounds(C, vExtents))
|
||
|
return INTERSECTS;
|
||
|
}
|
||
|
|
||
|
return CONTAINS;
|
||
|
}
|
||
|
|
||
|
|
||
|
//-----------------------------------------------------------------------------
|
||
|
// Sphere vs. oriented box test
|
||
|
//-----------------------------------------------------------------------------
|
||
|
_Use_decl_annotations_
|
||
|
inline bool BoundingOrientedBox::Intersects(const BoundingSphere& sh) const noexcept
|
||
|
{
|
||
|
XMVECTOR SphereCenter = XMLoadFloat3(&sh.Center);
|
||
|
XMVECTOR SphereRadius = XMVectorReplicatePtr(&sh.Radius);
|
||
|
|
||
|
XMVECTOR BoxCenter = XMLoadFloat3(&Center);
|
||
|
XMVECTOR BoxExtents = XMLoadFloat3(&Extents);
|
||
|
XMVECTOR BoxOrientation = XMLoadFloat4(&Orientation);
|
||
|
|
||
|
assert(DirectX::Internal::XMQuaternionIsUnit(BoxOrientation));
|
||
|
|
||
|
// Transform the center of the sphere to be local to the box.
|
||
|
// BoxMin = -BoxExtents
|
||
|
// BoxMax = +BoxExtents
|
||
|
SphereCenter = XMVector3InverseRotate(XMVectorSubtract(SphereCenter, BoxCenter), BoxOrientation);
|
||
|
|
||
|
// Find the distance to the nearest point on the box.
|
||
|
// for each i in (x, y, z)
|
||
|
// if (SphereCenter(i) < BoxMin(i)) d2 += (SphereCenter(i) - BoxMin(i)) ^ 2
|
||
|
// else if (SphereCenter(i) > BoxMax(i)) d2 += (SphereCenter(i) - BoxMax(i)) ^ 2
|
||
|
|
||
|
XMVECTOR d = XMVectorZero();
|
||
|
|
||
|
// Compute d for each dimension.
|
||
|
XMVECTOR LessThanMin = XMVectorLess(SphereCenter, XMVectorNegate(BoxExtents));
|
||
|
XMVECTOR GreaterThanMax = XMVectorGreater(SphereCenter, BoxExtents);
|
||
|
|
||
|
XMVECTOR MinDelta = XMVectorAdd(SphereCenter, BoxExtents);
|
||
|
XMVECTOR MaxDelta = XMVectorSubtract(SphereCenter, BoxExtents);
|
||
|
|
||
|
// Choose value for each dimension based on the comparison.
|
||
|
d = XMVectorSelect(d, MinDelta, LessThanMin);
|
||
|
d = XMVectorSelect(d, MaxDelta, GreaterThanMax);
|
||
|
|
||
|
// Use a dot-product to square them and sum them together.
|
||
|
XMVECTOR d2 = XMVector3Dot(d, d);
|
||
|
|
||
|
return XMVector4LessOrEqual(d2, XMVectorMultiply(SphereRadius, SphereRadius)) ? true : false;
|
||
|
}
|
||
|
|
||
|
|
||
|
//-----------------------------------------------------------------------------
|
||
|
// Axis aligned box vs. oriented box. Constructs an oriented box and uses
|
||
|
// the oriented box vs. oriented box test.
|
||
|
//-----------------------------------------------------------------------------
|
||
|
_Use_decl_annotations_
|
||
|
inline bool BoundingOrientedBox::Intersects(const BoundingBox& box) const noexcept
|
||
|
{
|
||
|
// Make the axis aligned box oriented and do an OBB vs OBB test.
|
||
|
BoundingOrientedBox obox(box.Center, box.Extents, XMFLOAT4(0.f, 0.f, 0.f, 1.f));
|
||
|
return Intersects(obox);
|
||
|
}
|
||
|
|
||
|
|
||
|
//-----------------------------------------------------------------------------
|
||
|
// Fast oriented box / oriented box intersection test using the separating axis
|
||
|
// theorem.
|
||
|
//-----------------------------------------------------------------------------
|
||
|
_Use_decl_annotations_
|
||
|
inline bool BoundingOrientedBox::Intersects(const BoundingOrientedBox& box) const noexcept
|
||
|
{
|
||
|
// Build the 3x3 rotation matrix that defines the orientation of B relative to A.
|
||
|
XMVECTOR A_quat = XMLoadFloat4(&Orientation);
|
||
|
XMVECTOR B_quat = XMLoadFloat4(&box.Orientation);
|
||
|
|
||
|
assert(DirectX::Internal::XMQuaternionIsUnit(A_quat));
|
||
|
assert(DirectX::Internal::XMQuaternionIsUnit(B_quat));
|
||
|
|
||
|
XMVECTOR Q = XMQuaternionMultiply(A_quat, XMQuaternionConjugate(B_quat));
|
||
|
XMMATRIX R = XMMatrixRotationQuaternion(Q);
|
||
|
|
||
|
// Compute the translation of B relative to A.
|
||
|
XMVECTOR A_cent = XMLoadFloat3(&Center);
|
||
|
XMVECTOR B_cent = XMLoadFloat3(&box.Center);
|
||
|
XMVECTOR t = XMVector3InverseRotate(XMVectorSubtract(B_cent, A_cent), A_quat);
|
||
|
|
||
|
//
|
||
|
// h(A) = extents of A.
|
||
|
// h(B) = extents of B.
|
||
|
//
|
||
|
// a(u) = axes of A = (1,0,0), (0,1,0), (0,0,1)
|
||
|
// b(u) = axes of B relative to A = (r00,r10,r20), (r01,r11,r21), (r02,r12,r22)
|
||
|
//
|
||
|
// For each possible separating axis l:
|
||
|
// d(A) = sum (for i = u,v,w) h(A)(i) * abs( a(i) dot l )
|
||
|
// d(B) = sum (for i = u,v,w) h(B)(i) * abs( b(i) dot l )
|
||
|
// if abs( t dot l ) > d(A) + d(B) then disjoint
|
||
|
//
|
||
|
|
||
|
// Load extents of A and B.
|
||
|
XMVECTOR h_A = XMLoadFloat3(&Extents);
|
||
|
XMVECTOR h_B = XMLoadFloat3(&box.Extents);
|
||
|
|
||
|
// Rows. Note R[0,1,2]X.w = 0.
|
||
|
XMVECTOR R0X = R.r[0];
|
||
|
XMVECTOR R1X = R.r[1];
|
||
|
XMVECTOR R2X = R.r[2];
|
||
|
|
||
|
R = XMMatrixTranspose(R);
|
||
|
|
||
|
// Columns. Note RX[0,1,2].w = 0.
|
||
|
XMVECTOR RX0 = R.r[0];
|
||
|
XMVECTOR RX1 = R.r[1];
|
||
|
XMVECTOR RX2 = R.r[2];
|
||
|
|
||
|
// Absolute value of rows.
|
||
|
XMVECTOR AR0X = XMVectorAbs(R0X);
|
||
|
XMVECTOR AR1X = XMVectorAbs(R1X);
|
||
|
XMVECTOR AR2X = XMVectorAbs(R2X);
|
||
|
|
||
|
// Absolute value of columns.
|
||
|
XMVECTOR ARX0 = XMVectorAbs(RX0);
|
||
|
XMVECTOR ARX1 = XMVectorAbs(RX1);
|
||
|
XMVECTOR ARX2 = XMVectorAbs(RX2);
|
||
|
|
||
|
// Test each of the 15 possible seperating axii.
|
||
|
XMVECTOR d, d_A, d_B;
|
||
|
|
||
|
// l = a(u) = (1, 0, 0)
|
||
|
// t dot l = t.x
|
||
|
// d(A) = h(A).x
|
||
|
// d(B) = h(B) dot abs(r00, r01, r02)
|
||
|
d = XMVectorSplatX(t);
|
||
|
d_A = XMVectorSplatX(h_A);
|
||
|
d_B = XMVector3Dot(h_B, AR0X);
|
||
|
XMVECTOR NoIntersection = XMVectorGreater(XMVectorAbs(d), XMVectorAdd(d_A, d_B));
|
||
|
|
||
|
// l = a(v) = (0, 1, 0)
|
||
|
// t dot l = t.y
|
||
|
// d(A) = h(A).y
|
||
|
// d(B) = h(B) dot abs(r10, r11, r12)
|
||
|
d = XMVectorSplatY(t);
|
||
|
d_A = XMVectorSplatY(h_A);
|
||
|
d_B = XMVector3Dot(h_B, AR1X);
|
||
|
NoIntersection = XMVectorOrInt(NoIntersection,
|
||
|
XMVectorGreater(XMVectorAbs(d), XMVectorAdd(d_A, d_B)));
|
||
|
|
||
|
// l = a(w) = (0, 0, 1)
|
||
|
// t dot l = t.z
|
||
|
// d(A) = h(A).z
|
||
|
// d(B) = h(B) dot abs(r20, r21, r22)
|
||
|
d = XMVectorSplatZ(t);
|
||
|
d_A = XMVectorSplatZ(h_A);
|
||
|
d_B = XMVector3Dot(h_B, AR2X);
|
||
|
NoIntersection = XMVectorOrInt(NoIntersection,
|
||
|
XMVectorGreater(XMVectorAbs(d), XMVectorAdd(d_A, d_B)));
|
||
|
|
||
|
// l = b(u) = (r00, r10, r20)
|
||
|
// d(A) = h(A) dot abs(r00, r10, r20)
|
||
|
// d(B) = h(B).x
|
||
|
d = XMVector3Dot(t, RX0);
|
||
|
d_A = XMVector3Dot(h_A, ARX0);
|
||
|
d_B = XMVectorSplatX(h_B);
|
||
|
NoIntersection = XMVectorOrInt(NoIntersection,
|
||
|
XMVectorGreater(XMVectorAbs(d), XMVectorAdd(d_A, d_B)));
|
||
|
|
||
|
// l = b(v) = (r01, r11, r21)
|
||
|
// d(A) = h(A) dot abs(r01, r11, r21)
|
||
|
// d(B) = h(B).y
|
||
|
d = XMVector3Dot(t, RX1);
|
||
|
d_A = XMVector3Dot(h_A, ARX1);
|
||
|
d_B = XMVectorSplatY(h_B);
|
||
|
NoIntersection = XMVectorOrInt(NoIntersection,
|
||
|
XMVectorGreater(XMVectorAbs(d), XMVectorAdd(d_A, d_B)));
|
||
|
|
||
|
// l = b(w) = (r02, r12, r22)
|
||
|
// d(A) = h(A) dot abs(r02, r12, r22)
|
||
|
// d(B) = h(B).z
|
||
|
d = XMVector3Dot(t, RX2);
|
||
|
d_A = XMVector3Dot(h_A, ARX2);
|
||
|
d_B = XMVectorSplatZ(h_B);
|
||
|
NoIntersection = XMVectorOrInt(NoIntersection,
|
||
|
XMVectorGreater(XMVectorAbs(d), XMVectorAdd(d_A, d_B)));
|
||
|
|
||
|
// l = a(u) x b(u) = (0, -r20, r10)
|
||
|
// d(A) = h(A) dot abs(0, r20, r10)
|
||
|
// d(B) = h(B) dot abs(0, r02, r01)
|
||
|
d = XMVector3Dot(t, XMVectorPermute<XM_PERMUTE_0W, XM_PERMUTE_1Z, XM_PERMUTE_0Y, XM_PERMUTE_0X>(RX0, XMVectorNegate(RX0)));
|
||
|
d_A = XMVector3Dot(h_A, XMVectorSwizzle<XM_SWIZZLE_W, XM_SWIZZLE_Z, XM_SWIZZLE_Y, XM_SWIZZLE_X>(ARX0));
|
||
|
d_B = XMVector3Dot(h_B, XMVectorSwizzle<XM_SWIZZLE_W, XM_SWIZZLE_Z, XM_SWIZZLE_Y, XM_SWIZZLE_X>(AR0X));
|
||
|
NoIntersection = XMVectorOrInt(NoIntersection,
|
||
|
XMVectorGreater(XMVectorAbs(d), XMVectorAdd(d_A, d_B)));
|
||
|
|
||
|
// l = a(u) x b(v) = (0, -r21, r11)
|
||
|
// d(A) = h(A) dot abs(0, r21, r11)
|
||
|
// d(B) = h(B) dot abs(r02, 0, r00)
|
||
|
d = XMVector3Dot(t, XMVectorPermute<XM_PERMUTE_0W, XM_PERMUTE_1Z, XM_PERMUTE_0Y, XM_PERMUTE_0X>(RX1, XMVectorNegate(RX1)));
|
||
|
d_A = XMVector3Dot(h_A, XMVectorSwizzle<XM_SWIZZLE_W, XM_SWIZZLE_Z, XM_SWIZZLE_Y, XM_SWIZZLE_X>(ARX1));
|
||
|
d_B = XMVector3Dot(h_B, XMVectorSwizzle<XM_SWIZZLE_Z, XM_SWIZZLE_W, XM_SWIZZLE_X, XM_SWIZZLE_Y>(AR0X));
|
||
|
NoIntersection = XMVectorOrInt(NoIntersection,
|
||
|
XMVectorGreater(XMVectorAbs(d), XMVectorAdd(d_A, d_B)));
|
||
|
|
||
|
// l = a(u) x b(w) = (0, -r22, r12)
|
||
|
// d(A) = h(A) dot abs(0, r22, r12)
|
||
|
// d(B) = h(B) dot abs(r01, r00, 0)
|
||
|
d = XMVector3Dot(t, XMVectorPermute<XM_PERMUTE_0W, XM_PERMUTE_1Z, XM_PERMUTE_0Y, XM_PERMUTE_0X>(RX2, XMVectorNegate(RX2)));
|
||
|
d_A = XMVector3Dot(h_A, XMVectorSwizzle<XM_SWIZZLE_W, XM_SWIZZLE_Z, XM_SWIZZLE_Y, XM_SWIZZLE_X>(ARX2));
|
||
|
d_B = XMVector3Dot(h_B, XMVectorSwizzle<XM_SWIZZLE_Y, XM_SWIZZLE_X, XM_SWIZZLE_W, XM_SWIZZLE_Z>(AR0X));
|
||
|
NoIntersection = XMVectorOrInt(NoIntersection,
|
||
|
XMVectorGreater(XMVectorAbs(d), XMVectorAdd(d_A, d_B)));
|
||
|
|
||
|
// l = a(v) x b(u) = (r20, 0, -r00)
|
||
|
// d(A) = h(A) dot abs(r20, 0, r00)
|
||
|
// d(B) = h(B) dot abs(0, r12, r11)
|
||
|
d = XMVector3Dot(t, XMVectorPermute<XM_PERMUTE_0Z, XM_PERMUTE_0W, XM_PERMUTE_1X, XM_PERMUTE_0Y>(RX0, XMVectorNegate(RX0)));
|
||
|
d_A = XMVector3Dot(h_A, XMVectorSwizzle<XM_SWIZZLE_Z, XM_SWIZZLE_W, XM_SWIZZLE_X, XM_SWIZZLE_Y>(ARX0));
|
||
|
d_B = XMVector3Dot(h_B, XMVectorSwizzle<XM_SWIZZLE_W, XM_SWIZZLE_Z, XM_SWIZZLE_Y, XM_SWIZZLE_X>(AR1X));
|
||
|
NoIntersection = XMVectorOrInt(NoIntersection,
|
||
|
XMVectorGreater(XMVectorAbs(d), XMVectorAdd(d_A, d_B)));
|
||
|
|
||
|
// l = a(v) x b(v) = (r21, 0, -r01)
|
||
|
// d(A) = h(A) dot abs(r21, 0, r01)
|
||
|
// d(B) = h(B) dot abs(r12, 0, r10)
|
||
|
d = XMVector3Dot(t, XMVectorPermute<XM_PERMUTE_0Z, XM_PERMUTE_0W, XM_PERMUTE_1X, XM_PERMUTE_0Y>(RX1, XMVectorNegate(RX1)));
|
||
|
d_A = XMVector3Dot(h_A, XMVectorSwizzle<XM_SWIZZLE_Z, XM_SWIZZLE_W, XM_SWIZZLE_X, XM_SWIZZLE_Y>(ARX1));
|
||
|
d_B = XMVector3Dot(h_B, XMVectorSwizzle<XM_SWIZZLE_Z, XM_SWIZZLE_W, XM_SWIZZLE_X, XM_SWIZZLE_Y>(AR1X));
|
||
|
NoIntersection = XMVectorOrInt(NoIntersection,
|
||
|
XMVectorGreater(XMVectorAbs(d), XMVectorAdd(d_A, d_B)));
|
||
|
|
||
|
// l = a(v) x b(w) = (r22, 0, -r02)
|
||
|
// d(A) = h(A) dot abs(r22, 0, r02)
|
||
|
// d(B) = h(B) dot abs(r11, r10, 0)
|
||
|
d = XMVector3Dot(t, XMVectorPermute<XM_PERMUTE_0Z, XM_PERMUTE_0W, XM_PERMUTE_1X, XM_PERMUTE_0Y>(RX2, XMVectorNegate(RX2)));
|
||
|
d_A = XMVector3Dot(h_A, XMVectorSwizzle<XM_SWIZZLE_Z, XM_SWIZZLE_W, XM_SWIZZLE_X, XM_SWIZZLE_Y>(ARX2));
|
||
|
d_B = XMVector3Dot(h_B, XMVectorSwizzle<XM_SWIZZLE_Y, XM_SWIZZLE_X, XM_SWIZZLE_W, XM_SWIZZLE_Z>(AR1X));
|
||
|
NoIntersection = XMVectorOrInt(NoIntersection,
|
||
|
XMVectorGreater(XMVectorAbs(d), XMVectorAdd(d_A, d_B)));
|
||
|
|
||
|
// l = a(w) x b(u) = (-r10, r00, 0)
|
||
|
// d(A) = h(A) dot abs(r10, r00, 0)
|
||
|
// d(B) = h(B) dot abs(0, r22, r21)
|
||
|
d = XMVector3Dot(t, XMVectorPermute<XM_PERMUTE_1Y, XM_PERMUTE_0X, XM_PERMUTE_0W, XM_PERMUTE_0Z>(RX0, XMVectorNegate(RX0)));
|
||
|
d_A = XMVector3Dot(h_A, XMVectorSwizzle<XM_SWIZZLE_Y, XM_SWIZZLE_X, XM_SWIZZLE_W, XM_SWIZZLE_Z>(ARX0));
|
||
|
d_B = XMVector3Dot(h_B, XMVectorSwizzle<XM_SWIZZLE_W, XM_SWIZZLE_Z, XM_SWIZZLE_Y, XM_SWIZZLE_X>(AR2X));
|
||
|
NoIntersection = XMVectorOrInt(NoIntersection,
|
||
|
XMVectorGreater(XMVectorAbs(d), XMVectorAdd(d_A, d_B)));
|
||
|
|
||
|
// l = a(w) x b(v) = (-r11, r01, 0)
|
||
|
// d(A) = h(A) dot abs(r11, r01, 0)
|
||
|
// d(B) = h(B) dot abs(r22, 0, r20)
|
||
|
d = XMVector3Dot(t, XMVectorPermute<XM_PERMUTE_1Y, XM_PERMUTE_0X, XM_PERMUTE_0W, XM_PERMUTE_0Z>(RX1, XMVectorNegate(RX1)));
|
||
|
d_A = XMVector3Dot(h_A, XMVectorSwizzle<XM_SWIZZLE_Y, XM_SWIZZLE_X, XM_SWIZZLE_W, XM_SWIZZLE_Z>(ARX1));
|
||
|
d_B = XMVector3Dot(h_B, XMVectorSwizzle<XM_SWIZZLE_Z, XM_SWIZZLE_W, XM_SWIZZLE_X, XM_SWIZZLE_Y>(AR2X));
|
||
|
NoIntersection = XMVectorOrInt(NoIntersection,
|
||
|
XMVectorGreater(XMVectorAbs(d), XMVectorAdd(d_A, d_B)));
|
||
|
|
||
|
// l = a(w) x b(w) = (-r12, r02, 0)
|
||
|
// d(A) = h(A) dot abs(r12, r02, 0)
|
||
|
// d(B) = h(B) dot abs(r21, r20, 0)
|
||
|
d = XMVector3Dot(t, XMVectorPermute<XM_PERMUTE_1Y, XM_PERMUTE_0X, XM_PERMUTE_0W, XM_PERMUTE_0Z>(RX2, XMVectorNegate(RX2)));
|
||
|
d_A = XMVector3Dot(h_A, XMVectorSwizzle<XM_SWIZZLE_Y, XM_SWIZZLE_X, XM_SWIZZLE_W, XM_SWIZZLE_Z>(ARX2));
|
||
|
d_B = XMVector3Dot(h_B, XMVectorSwizzle<XM_SWIZZLE_Y, XM_SWIZZLE_X, XM_SWIZZLE_W, XM_SWIZZLE_Z>(AR2X));
|
||
|
NoIntersection = XMVectorOrInt(NoIntersection,
|
||
|
XMVectorGreater(XMVectorAbs(d), XMVectorAdd(d_A, d_B)));
|
||
|
|
||
|
// No seperating axis found, boxes must intersect.
|
||
|
return XMVector4NotEqualInt(NoIntersection, XMVectorTrueInt()) ? true : false;
|
||
|
}
|
||
|
|
||
|
|
||
|
//-----------------------------------------------------------------------------
|
||
|
// Frustum vs. oriented box test
|
||
|
//-----------------------------------------------------------------------------
|
||
|
_Use_decl_annotations_
|
||
|
inline bool BoundingOrientedBox::Intersects(const BoundingFrustum& fr) const noexcept
|
||
|
{
|
||
|
return fr.Intersects(*this);
|
||
|
}
|
||
|
|
||
|
|
||
|
//-----------------------------------------------------------------------------
|
||
|
// Triangle vs. oriented box test.
|
||
|
//-----------------------------------------------------------------------------
|
||
|
_Use_decl_annotations_
|
||
|
inline bool XM_CALLCONV BoundingOrientedBox::Intersects(FXMVECTOR V0, FXMVECTOR V1, FXMVECTOR V2) const noexcept
|
||
|
{
|
||
|
// Load the box center & orientation.
|
||
|
XMVECTOR vCenter = XMLoadFloat3(&Center);
|
||
|
XMVECTOR vOrientation = XMLoadFloat4(&Orientation);
|
||
|
|
||
|
// Transform the triangle vertices into the space of the box.
|
||
|
XMVECTOR TV0 = XMVector3InverseRotate(XMVectorSubtract(V0, vCenter), vOrientation);
|
||
|
XMVECTOR TV1 = XMVector3InverseRotate(XMVectorSubtract(V1, vCenter), vOrientation);
|
||
|
XMVECTOR TV2 = XMVector3InverseRotate(XMVectorSubtract(V2, vCenter), vOrientation);
|
||
|
|
||
|
BoundingBox box;
|
||
|
box.Center = XMFLOAT3(0.0f, 0.0f, 0.0f);
|
||
|
box.Extents = Extents;
|
||
|
|
||
|
// Use the triangle vs axis aligned box intersection routine.
|
||
|
return box.Intersects(TV0, TV1, TV2);
|
||
|
}
|
||
|
|
||
|
|
||
|
//-----------------------------------------------------------------------------
|
||
|
_Use_decl_annotations_
|
||
|
inline PlaneIntersectionType XM_CALLCONV BoundingOrientedBox::Intersects(FXMVECTOR Plane) const noexcept
|
||
|
{
|
||
|
assert(DirectX::Internal::XMPlaneIsUnit(Plane));
|
||
|
|
||
|
// Load the box.
|
||
|
XMVECTOR vCenter = XMLoadFloat3(&Center);
|
||
|
XMVECTOR vExtents = XMLoadFloat3(&Extents);
|
||
|
XMVECTOR BoxOrientation = XMLoadFloat4(&Orientation);
|
||
|
|
||
|
assert(DirectX::Internal::XMQuaternionIsUnit(BoxOrientation));
|
||
|
|
||
|
// Set w of the center to one so we can dot4 with a plane.
|
||
|
vCenter = XMVectorInsert<0, 0, 0, 0, 1>(vCenter, XMVectorSplatOne());
|
||
|
|
||
|
// Build the 3x3 rotation matrix that defines the box axes.
|
||
|
XMMATRIX R = XMMatrixRotationQuaternion(BoxOrientation);
|
||
|
|
||
|
XMVECTOR Outside, Inside;
|
||
|
DirectX::Internal::FastIntersectOrientedBoxPlane(vCenter, vExtents, R.r[0], R.r[1], R.r[2], Plane, Outside, Inside);
|
||
|
|
||
|
// If the box is outside any plane it is outside.
|
||
|
if (XMVector4EqualInt(Outside, XMVectorTrueInt()))
|
||
|
return FRONT;
|
||
|
|
||
|
// If the box is inside all planes it is inside.
|
||
|
if (XMVector4EqualInt(Inside, XMVectorTrueInt()))
|
||
|
return BACK;
|
||
|
|
||
|
// The box is not inside all planes or outside a plane it intersects.
|
||
|
return INTERSECTING;
|
||
|
}
|
||
|
|
||
|
|
||
|
//-----------------------------------------------------------------------------
|
||
|
// Compute the intersection of a ray (Origin, Direction) with an oriented box
|
||
|
// using the slabs method.
|
||
|
//-----------------------------------------------------------------------------
|
||
|
_Use_decl_annotations_
|
||
|
inline bool XM_CALLCONV BoundingOrientedBox::Intersects(FXMVECTOR Origin, FXMVECTOR Direction, float& Dist) const noexcept
|
||
|
{
|
||
|
assert(DirectX::Internal::XMVector3IsUnit(Direction));
|
||
|
|
||
|
static const XMVECTORU32 SelectY = { { { XM_SELECT_0, XM_SELECT_1, XM_SELECT_0, XM_SELECT_0 } } };
|
||
|
static const XMVECTORU32 SelectZ = { { { XM_SELECT_0, XM_SELECT_0, XM_SELECT_1, XM_SELECT_0 } } };
|
||
|
|
||
|
// Load the box.
|
||
|
XMVECTOR vCenter = XMLoadFloat3(&Center);
|
||
|
XMVECTOR vExtents = XMLoadFloat3(&Extents);
|
||
|
XMVECTOR vOrientation = XMLoadFloat4(&Orientation);
|
||
|
|
||
|
assert(DirectX::Internal::XMQuaternionIsUnit(vOrientation));
|
||
|
|
||
|
// Get the boxes normalized side directions.
|
||
|
XMMATRIX R = XMMatrixRotationQuaternion(vOrientation);
|
||
|
|
||
|
// Adjust ray origin to be relative to center of the box.
|
||
|
XMVECTOR TOrigin = XMVectorSubtract(vCenter, Origin);
|
||
|
|
||
|
// Compute the dot product againt each axis of the box.
|
||
|
XMVECTOR AxisDotOrigin = XMVector3Dot(R.r[0], TOrigin);
|
||
|
AxisDotOrigin = XMVectorSelect(AxisDotOrigin, XMVector3Dot(R.r[1], TOrigin), SelectY);
|
||
|
AxisDotOrigin = XMVectorSelect(AxisDotOrigin, XMVector3Dot(R.r[2], TOrigin), SelectZ);
|
||
|
|
||
|
XMVECTOR AxisDotDirection = XMVector3Dot(R.r[0], Direction);
|
||
|
AxisDotDirection = XMVectorSelect(AxisDotDirection, XMVector3Dot(R.r[1], Direction), SelectY);
|
||
|
AxisDotDirection = XMVectorSelect(AxisDotDirection, XMVector3Dot(R.r[2], Direction), SelectZ);
|
||
|
|
||
|
// if (fabs(AxisDotDirection) <= Epsilon) the ray is nearly parallel to the slab.
|
||
|
XMVECTOR IsParallel = XMVectorLessOrEqual(XMVectorAbs(AxisDotDirection), g_RayEpsilon);
|
||
|
|
||
|
// Test against all three axes simultaneously.
|
||
|
XMVECTOR InverseAxisDotDirection = XMVectorReciprocal(AxisDotDirection);
|
||
|
XMVECTOR t1 = XMVectorMultiply(XMVectorSubtract(AxisDotOrigin, vExtents), InverseAxisDotDirection);
|
||
|
XMVECTOR t2 = XMVectorMultiply(XMVectorAdd(AxisDotOrigin, vExtents), InverseAxisDotDirection);
|
||
|
|
||
|
// Compute the max of min(t1,t2) and the min of max(t1,t2) ensuring we don't
|
||
|
// use the results from any directions parallel to the slab.
|
||
|
XMVECTOR t_min = XMVectorSelect(XMVectorMin(t1, t2), g_FltMin, IsParallel);
|
||
|
XMVECTOR t_max = XMVectorSelect(XMVectorMax(t1, t2), g_FltMax, IsParallel);
|
||
|
|
||
|
// t_min.x = maximum( t_min.x, t_min.y, t_min.z );
|
||
|
// t_max.x = minimum( t_max.x, t_max.y, t_max.z );
|
||
|
t_min = XMVectorMax(t_min, XMVectorSplatY(t_min)); // x = max(x,y)
|
||
|
t_min = XMVectorMax(t_min, XMVectorSplatZ(t_min)); // x = max(max(x,y),z)
|
||
|
t_max = XMVectorMin(t_max, XMVectorSplatY(t_max)); // x = min(x,y)
|
||
|
t_max = XMVectorMin(t_max, XMVectorSplatZ(t_max)); // x = min(min(x,y),z)
|
||
|
|
||
|
// if ( t_min > t_max ) return false;
|
||
|
XMVECTOR NoIntersection = XMVectorGreater(XMVectorSplatX(t_min), XMVectorSplatX(t_max));
|
||
|
|
||
|
// if ( t_max < 0.0f ) return false;
|
||
|
NoIntersection = XMVectorOrInt(NoIntersection, XMVectorLess(XMVectorSplatX(t_max), XMVectorZero()));
|
||
|
|
||
|
// if (IsParallel && (-Extents > AxisDotOrigin || Extents < AxisDotOrigin)) return false;
|
||
|
XMVECTOR ParallelOverlap = XMVectorInBounds(AxisDotOrigin, vExtents);
|
||
|
NoIntersection = XMVectorOrInt(NoIntersection, XMVectorAndCInt(IsParallel, ParallelOverlap));
|
||
|
|
||
|
if (!DirectX::Internal::XMVector3AnyTrue(NoIntersection))
|
||
|
{
|
||
|
// Store the x-component to *pDist
|
||
|
XMStoreFloat(&Dist, t_min);
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
Dist = 0.f;
|
||
|
return false;
|
||
|
}
|
||
|
|
||
|
|
||
|
//-----------------------------------------------------------------------------
|
||
|
// Test an oriented box vs 6 planes (typically forming a frustum).
|
||
|
//-----------------------------------------------------------------------------
|
||
|
_Use_decl_annotations_
|
||
|
inline ContainmentType XM_CALLCONV BoundingOrientedBox::ContainedBy(
|
||
|
FXMVECTOR Plane0, FXMVECTOR Plane1, FXMVECTOR Plane2,
|
||
|
GXMVECTOR Plane3,
|
||
|
HXMVECTOR Plane4, HXMVECTOR Plane5) const noexcept
|
||
|
{
|
||
|
// Load the box.
|
||
|
XMVECTOR vCenter = XMLoadFloat3(&Center);
|
||
|
XMVECTOR vExtents = XMLoadFloat3(&Extents);
|
||
|
XMVECTOR BoxOrientation = XMLoadFloat4(&Orientation);
|
||
|
|
||
|
assert(DirectX::Internal::XMQuaternionIsUnit(BoxOrientation));
|
||
|
|
||
|
// Set w of the center to one so we can dot4 with a plane.
|
||
|
vCenter = XMVectorInsert<0, 0, 0, 0, 1>(vCenter, XMVectorSplatOne());
|
||
|
|
||
|
// Build the 3x3 rotation matrix that defines the box axes.
|
||
|
XMMATRIX R = XMMatrixRotationQuaternion(BoxOrientation);
|
||
|
|
||
|
XMVECTOR Outside, Inside;
|
||
|
|
||
|
// Test against each plane.
|
||
|
DirectX::Internal::FastIntersectOrientedBoxPlane(vCenter, vExtents, R.r[0], R.r[1], R.r[2], Plane0, Outside, Inside);
|
||
|
|
||
|
XMVECTOR AnyOutside = Outside;
|
||
|
XMVECTOR AllInside = Inside;
|
||
|
|
||
|
DirectX::Internal::FastIntersectOrientedBoxPlane(vCenter, vExtents, R.r[0], R.r[1], R.r[2], Plane1, Outside, Inside);
|
||
|
AnyOutside = XMVectorOrInt(AnyOutside, Outside);
|
||
|
AllInside = XMVectorAndInt(AllInside, Inside);
|
||
|
|
||
|
DirectX::Internal::FastIntersectOrientedBoxPlane(vCenter, vExtents, R.r[0], R.r[1], R.r[2], Plane2, Outside, Inside);
|
||
|
AnyOutside = XMVectorOrInt(AnyOutside, Outside);
|
||
|
AllInside = XMVectorAndInt(AllInside, Inside);
|
||
|
|
||
|
DirectX::Internal::FastIntersectOrientedBoxPlane(vCenter, vExtents, R.r[0], R.r[1], R.r[2], Plane3, Outside, Inside);
|
||
|
AnyOutside = XMVectorOrInt(AnyOutside, Outside);
|
||
|
AllInside = XMVectorAndInt(AllInside, Inside);
|
||
|
|
||
|
DirectX::Internal::FastIntersectOrientedBoxPlane(vCenter, vExtents, R.r[0], R.r[1], R.r[2], Plane4, Outside, Inside);
|
||
|
AnyOutside = XMVectorOrInt(AnyOutside, Outside);
|
||
|
AllInside = XMVectorAndInt(AllInside, Inside);
|
||
|
|
||
|
DirectX::Internal::FastIntersectOrientedBoxPlane(vCenter, vExtents, R.r[0], R.r[1], R.r[2], Plane5, Outside, Inside);
|
||
|
AnyOutside = XMVectorOrInt(AnyOutside, Outside);
|
||
|
AllInside = XMVectorAndInt(AllInside, Inside);
|
||
|
|
||
|
// If the box is outside any plane it is outside.
|
||
|
if (XMVector4EqualInt(AnyOutside, XMVectorTrueInt()))
|
||
|
return DISJOINT;
|
||
|
|
||
|
// If the box is inside all planes it is inside.
|
||
|
if (XMVector4EqualInt(AllInside, XMVectorTrueInt()))
|
||
|
return CONTAINS;
|
||
|
|
||
|
// The box is not inside all planes or outside a plane, it may intersect.
|
||
|
return INTERSECTS;
|
||
|
}
|
||
|
|
||
|
|
||
|
//-----------------------------------------------------------------------------
|
||
|
// Create oriented bounding box from axis-aligned bounding box
|
||
|
//-----------------------------------------------------------------------------
|
||
|
_Use_decl_annotations_
|
||
|
inline void BoundingOrientedBox::CreateFromBoundingBox(BoundingOrientedBox& Out, const BoundingBox& box) noexcept
|
||
|
{
|
||
|
Out.Center = box.Center;
|
||
|
Out.Extents = box.Extents;
|
||
|
Out.Orientation = XMFLOAT4(0.f, 0.f, 0.f, 1.f);
|
||
|
}
|
||
|
|
||
|
|
||
|
//-----------------------------------------------------------------------------
|
||
|
// Find the approximate minimum oriented bounding box containing a set of
|
||
|
// points. Exact computation of minimum oriented bounding box is possible but
|
||
|
// is slower and requires a more complex algorithm.
|
||
|
// The algorithm works by computing the inertia tensor of the points and then
|
||
|
// using the eigenvectors of the intertia tensor as the axes of the box.
|
||
|
// Computing the intertia tensor of the convex hull of the points will usually
|
||
|
// result in better bounding box but the computation is more complex.
|
||
|
// Exact computation of the minimum oriented bounding box is possible but the
|
||
|
// best know algorithm is O(N^3) and is significanly more complex to implement.
|
||
|
//-----------------------------------------------------------------------------
|
||
|
_Use_decl_annotations_
|
||
|
inline void BoundingOrientedBox::CreateFromPoints(BoundingOrientedBox& Out, size_t Count, const XMFLOAT3* pPoints, size_t Stride) noexcept
|
||
|
{
|
||
|
assert(Count > 0);
|
||
|
assert(pPoints != nullptr);
|
||
|
|
||
|
XMVECTOR CenterOfMass = XMVectorZero();
|
||
|
|
||
|
// Compute the center of mass and inertia tensor of the points.
|
||
|
for (size_t i = 0; i < Count; ++i)
|
||
|
{
|
||
|
XMVECTOR Point = XMLoadFloat3(reinterpret_cast<const XMFLOAT3*>(reinterpret_cast<const uint8_t*>(pPoints) + i * Stride));
|
||
|
|
||
|
CenterOfMass = XMVectorAdd(CenterOfMass, Point);
|
||
|
}
|
||
|
|
||
|
CenterOfMass = XMVectorMultiply(CenterOfMass, XMVectorReciprocal(XMVectorReplicate(float(Count))));
|
||
|
|
||
|
// Compute the inertia tensor of the points around the center of mass.
|
||
|
// Using the center of mass is not strictly necessary, but will hopefully
|
||
|
// improve the stability of finding the eigenvectors.
|
||
|
XMVECTOR XX_YY_ZZ = XMVectorZero();
|
||
|
XMVECTOR XY_XZ_YZ = XMVectorZero();
|
||
|
|
||
|
for (size_t i = 0; i < Count; ++i)
|
||
|
{
|
||
|
XMVECTOR Point = XMVectorSubtract(XMLoadFloat3(reinterpret_cast<const XMFLOAT3*>(reinterpret_cast<const uint8_t*>(pPoints) + i * Stride)), CenterOfMass);
|
||
|
|
||
|
XX_YY_ZZ = XMVectorAdd(XX_YY_ZZ, XMVectorMultiply(Point, Point));
|
||
|
|
||
|
XMVECTOR XXY = XMVectorSwizzle<XM_SWIZZLE_X, XM_SWIZZLE_X, XM_SWIZZLE_Y, XM_SWIZZLE_W>(Point);
|
||
|
XMVECTOR YZZ = XMVectorSwizzle<XM_SWIZZLE_Y, XM_SWIZZLE_Z, XM_SWIZZLE_Z, XM_SWIZZLE_W>(Point);
|
||
|
|
||
|
XY_XZ_YZ = XMVectorAdd(XY_XZ_YZ, XMVectorMultiply(XXY, YZZ));
|
||
|
}
|
||
|
|
||
|
XMVECTOR v1, v2, v3;
|
||
|
|
||
|
// Compute the eigenvectors of the inertia tensor.
|
||
|
DirectX::Internal::CalculateEigenVectorsFromCovarianceMatrix(XMVectorGetX(XX_YY_ZZ), XMVectorGetY(XX_YY_ZZ),
|
||
|
XMVectorGetZ(XX_YY_ZZ),
|
||
|
XMVectorGetX(XY_XZ_YZ), XMVectorGetY(XY_XZ_YZ),
|
||
|
XMVectorGetZ(XY_XZ_YZ),
|
||
|
&v1, &v2, &v3);
|
||
|
|
||
|
// Put them in a matrix.
|
||
|
XMMATRIX R;
|
||
|
|
||
|
R.r[0] = XMVectorSetW(v1, 0.f);
|
||
|
R.r[1] = XMVectorSetW(v2, 0.f);
|
||
|
R.r[2] = XMVectorSetW(v3, 0.f);
|
||
|
R.r[3] = g_XMIdentityR3.v;
|
||
|
|
||
|
// Multiply by -1 to convert the matrix into a right handed coordinate
|
||
|
// system (Det ~= 1) in case the eigenvectors form a left handed
|
||
|
// coordinate system (Det ~= -1) because XMQuaternionRotationMatrix only
|
||
|
// works on right handed matrices.
|
||
|
XMVECTOR Det = XMMatrixDeterminant(R);
|
||
|
|
||
|
if (XMVector4Less(Det, XMVectorZero()))
|
||
|
{
|
||
|
R.r[0] = XMVectorMultiply(R.r[0], g_XMNegativeOne.v);
|
||
|
R.r[1] = XMVectorMultiply(R.r[1], g_XMNegativeOne.v);
|
||
|
R.r[2] = XMVectorMultiply(R.r[2], g_XMNegativeOne.v);
|
||
|
}
|
||
|
|
||
|
// Get the rotation quaternion from the matrix.
|
||
|
XMVECTOR vOrientation = XMQuaternionRotationMatrix(R);
|
||
|
|
||
|
// Make sure it is normal (in case the vectors are slightly non-orthogonal).
|
||
|
vOrientation = XMQuaternionNormalize(vOrientation);
|
||
|
|
||
|
// Rebuild the rotation matrix from the quaternion.
|
||
|
R = XMMatrixRotationQuaternion(vOrientation);
|
||
|
|
||
|
// Build the rotation into the rotated space.
|
||
|
XMMATRIX InverseR = XMMatrixTranspose(R);
|
||
|
|
||
|
// Find the minimum OBB using the eigenvectors as the axes.
|
||
|
XMVECTOR vMin, vMax;
|
||
|
|
||
|
vMin = vMax = XMVector3TransformNormal(XMLoadFloat3(pPoints), InverseR);
|
||
|
|
||
|
for (size_t i = 1; i < Count; ++i)
|
||
|
{
|
||
|
XMVECTOR Point = XMVector3TransformNormal(XMLoadFloat3(reinterpret_cast<const XMFLOAT3*>(reinterpret_cast<const uint8_t*>(pPoints) + i * Stride)),
|
||
|
InverseR);
|
||
|
|
||
|
vMin = XMVectorMin(vMin, Point);
|
||
|
vMax = XMVectorMax(vMax, Point);
|
||
|
}
|
||
|
|
||
|
// Rotate the center into world space.
|
||
|
XMVECTOR vCenter = XMVectorScale(XMVectorAdd(vMin, vMax), 0.5f);
|
||
|
vCenter = XMVector3TransformNormal(vCenter, R);
|
||
|
|
||
|
// Store center, extents, and orientation.
|
||
|
XMStoreFloat3(&Out.Center, vCenter);
|
||
|
XMStoreFloat3(&Out.Extents, XMVectorScale(XMVectorSubtract(vMax, vMin), 0.5f));
|
||
|
XMStoreFloat4(&Out.Orientation, vOrientation);
|
||
|
}
|
||
|
|
||
|
|
||
|
/****************************************************************************
|
||
|
*
|
||
|
* BoundingFrustum
|
||
|
*
|
||
|
****************************************************************************/
|
||
|
|
||
|
_Use_decl_annotations_
|
||
|
inline BoundingFrustum::BoundingFrustum(CXMMATRIX Projection, bool rhcoords) noexcept
|
||
|
{
|
||
|
CreateFromMatrix(*this, Projection, rhcoords);
|
||
|
}
|
||
|
|
||
|
|
||
|
//-----------------------------------------------------------------------------
|
||
|
// Transform a frustum by an angle preserving transform.
|
||
|
//-----------------------------------------------------------------------------
|
||
|
_Use_decl_annotations_
|
||
|
inline void XM_CALLCONV BoundingFrustum::Transform(BoundingFrustum& Out, FXMMATRIX M) const noexcept
|
||
|
{
|
||
|
// Load the frustum.
|
||
|
XMVECTOR vOrigin = XMLoadFloat3(&Origin);
|
||
|
XMVECTOR vOrientation = XMLoadFloat4(&Orientation);
|
||
|
|
||
|
assert(DirectX::Internal::XMQuaternionIsUnit(vOrientation));
|
||
|
|
||
|
// Composite the frustum rotation and the transform rotation
|
||
|
XMMATRIX nM;
|
||
|
nM.r[0] = XMVector3Normalize(M.r[0]);
|
||
|
nM.r[1] = XMVector3Normalize(M.r[1]);
|
||
|
nM.r[2] = XMVector3Normalize(M.r[2]);
|
||
|
nM.r[3] = g_XMIdentityR3;
|
||
|
XMVECTOR Rotation = XMQuaternionRotationMatrix(nM);
|
||
|
vOrientation = XMQuaternionMultiply(vOrientation, Rotation);
|
||
|
|
||
|
// Transform the center.
|
||
|
vOrigin = XMVector3Transform(vOrigin, M);
|
||
|
|
||
|
// Store the frustum.
|
||
|
XMStoreFloat3(&Out.Origin, vOrigin);
|
||
|
XMStoreFloat4(&Out.Orientation, vOrientation);
|
||
|
|
||
|
// Scale the near and far distances (the slopes remain the same).
|
||
|
XMVECTOR dX = XMVector3Dot(M.r[0], M.r[0]);
|
||
|
XMVECTOR dY = XMVector3Dot(M.r[1], M.r[1]);
|
||
|
XMVECTOR dZ = XMVector3Dot(M.r[2], M.r[2]);
|
||
|
|
||
|
XMVECTOR d = XMVectorMax(dX, XMVectorMax(dY, dZ));
|
||
|
float Scale = sqrtf(XMVectorGetX(d));
|
||
|
|
||
|
Out.Near = Near * Scale;
|
||
|
Out.Far = Far * Scale;
|
||
|
|
||
|
// Copy the slopes.
|
||
|
Out.RightSlope = RightSlope;
|
||
|
Out.LeftSlope = LeftSlope;
|
||
|
Out.TopSlope = TopSlope;
|
||
|
Out.BottomSlope = BottomSlope;
|
||
|
}
|
||
|
|
||
|
_Use_decl_annotations_
|
||
|
inline void XM_CALLCONV BoundingFrustum::Transform(BoundingFrustum& Out, float Scale, FXMVECTOR Rotation, FXMVECTOR Translation) const noexcept
|
||
|
{
|
||
|
assert(DirectX::Internal::XMQuaternionIsUnit(Rotation));
|
||
|
|
||
|
// Load the frustum.
|
||
|
XMVECTOR vOrigin = XMLoadFloat3(&Origin);
|
||
|
XMVECTOR vOrientation = XMLoadFloat4(&Orientation);
|
||
|
|
||
|
assert(DirectX::Internal::XMQuaternionIsUnit(vOrientation));
|
||
|
|
||
|
// Composite the frustum rotation and the transform rotation.
|
||
|
vOrientation = XMQuaternionMultiply(vOrientation, Rotation);
|
||
|
|
||
|
// Transform the origin.
|
||
|
vOrigin = XMVectorAdd(XMVector3Rotate(XMVectorScale(vOrigin, Scale), Rotation), Translation);
|
||
|
|
||
|
// Store the frustum.
|
||
|
XMStoreFloat3(&Out.Origin, vOrigin);
|
||
|
XMStoreFloat4(&Out.Orientation, vOrientation);
|
||
|
|
||
|
// Scale the near and far distances (the slopes remain the same).
|
||
|
Out.Near = Near * Scale;
|
||
|
Out.Far = Far * Scale;
|
||
|
|
||
|
// Copy the slopes.
|
||
|
Out.RightSlope = RightSlope;
|
||
|
Out.LeftSlope = LeftSlope;
|
||
|
Out.TopSlope = TopSlope;
|
||
|
Out.BottomSlope = BottomSlope;
|
||
|
}
|
||
|
|
||
|
|
||
|
//-----------------------------------------------------------------------------
|
||
|
// Get the corner points of the frustum
|
||
|
//-----------------------------------------------------------------------------
|
||
|
_Use_decl_annotations_
|
||
|
inline void BoundingFrustum::GetCorners(XMFLOAT3* Corners) const noexcept
|
||
|
{
|
||
|
assert(Corners != nullptr);
|
||
|
|
||
|
// Load origin and orientation of the frustum.
|
||
|
XMVECTOR vOrigin = XMLoadFloat3(&Origin);
|
||
|
XMVECTOR vOrientation = XMLoadFloat4(&Orientation);
|
||
|
|
||
|
assert(DirectX::Internal::XMQuaternionIsUnit(vOrientation));
|
||
|
|
||
|
// Build the corners of the frustum.
|
||
|
XMVECTOR vRightTop = XMVectorSet(RightSlope, TopSlope, 1.0f, 0.0f);
|
||
|
XMVECTOR vRightBottom = XMVectorSet(RightSlope, BottomSlope, 1.0f, 0.0f);
|
||
|
XMVECTOR vLeftTop = XMVectorSet(LeftSlope, TopSlope, 1.0f, 0.0f);
|
||
|
XMVECTOR vLeftBottom = XMVectorSet(LeftSlope, BottomSlope, 1.0f, 0.0f);
|
||
|
XMVECTOR vNear = XMVectorReplicatePtr(&Near);
|
||
|
XMVECTOR vFar = XMVectorReplicatePtr(&Far);
|
||
|
|
||
|
// Returns 8 corners position of bounding frustum.
|
||
|
// Near Far
|
||
|
// 0----1 4----5
|
||
|
// | | | |
|
||
|
// | | | |
|
||
|
// 3----2 7----6
|
||
|
|
||
|
XMVECTOR vCorners[CORNER_COUNT];
|
||
|
vCorners[0] = XMVectorMultiply(vLeftTop, vNear);
|
||
|
vCorners[1] = XMVectorMultiply(vRightTop, vNear);
|
||
|
vCorners[2] = XMVectorMultiply(vRightBottom, vNear);
|
||
|
vCorners[3] = XMVectorMultiply(vLeftBottom, vNear);
|
||
|
vCorners[4] = XMVectorMultiply(vLeftTop, vFar);
|
||
|
vCorners[5] = XMVectorMultiply(vRightTop, vFar);
|
||
|
vCorners[6] = XMVectorMultiply(vRightBottom, vFar);
|
||
|
vCorners[7] = XMVectorMultiply(vLeftBottom, vFar);
|
||
|
|
||
|
for (size_t i = 0; i < CORNER_COUNT; ++i)
|
||
|
{
|
||
|
XMVECTOR C = XMVectorAdd(XMVector3Rotate(vCorners[i], vOrientation), vOrigin);
|
||
|
XMStoreFloat3(&Corners[i], C);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
|
||
|
//-----------------------------------------------------------------------------
|
||
|
// Point in frustum test.
|
||
|
//-----------------------------------------------------------------------------
|
||
|
_Use_decl_annotations_
|
||
|
inline ContainmentType XM_CALLCONV BoundingFrustum::Contains(FXMVECTOR Point) const noexcept
|
||
|
{
|
||
|
// Build frustum planes.
|
||
|
XMVECTOR Planes[6];
|
||
|
Planes[0] = XMVectorSet(0.0f, 0.0f, -1.0f, Near);
|
||
|
Planes[1] = XMVectorSet(0.0f, 0.0f, 1.0f, -Far);
|
||
|
Planes[2] = XMVectorSet(1.0f, 0.0f, -RightSlope, 0.0f);
|
||
|
Planes[3] = XMVectorSet(-1.0f, 0.0f, LeftSlope, 0.0f);
|
||
|
Planes[4] = XMVectorSet(0.0f, 1.0f, -TopSlope, 0.0f);
|
||
|
Planes[5] = XMVectorSet(0.0f, -1.0f, BottomSlope, 0.0f);
|
||
|
|
||
|
// Load origin and orientation.
|
||
|
XMVECTOR vOrigin = XMLoadFloat3(&Origin);
|
||
|
XMVECTOR vOrientation = XMLoadFloat4(&Orientation);
|
||
|
|
||
|
assert(DirectX::Internal::XMQuaternionIsUnit(vOrientation));
|
||
|
|
||
|
// Transform point into local space of frustum.
|
||
|
XMVECTOR TPoint = XMVector3InverseRotate(XMVectorSubtract(Point, vOrigin), vOrientation);
|
||
|
|
||
|
// Set w to one.
|
||
|
TPoint = XMVectorInsert<0, 0, 0, 0, 1>(TPoint, XMVectorSplatOne());
|
||
|
|
||
|
XMVECTOR Zero = XMVectorZero();
|
||
|
XMVECTOR Outside = Zero;
|
||
|
|
||
|
// Test point against each plane of the frustum.
|
||
|
for (size_t i = 0; i < 6; ++i)
|
||
|
{
|
||
|
XMVECTOR Dot = XMVector4Dot(TPoint, Planes[i]);
|
||
|
Outside = XMVectorOrInt(Outside, XMVectorGreater(Dot, Zero));
|
||
|
}
|
||
|
|
||
|
return XMVector4NotEqualInt(Outside, XMVectorTrueInt()) ? CONTAINS : DISJOINT;
|
||
|
}
|
||
|
|
||
|
|
||
|
//-----------------------------------------------------------------------------
|
||
|
// Triangle vs frustum test.
|
||
|
//-----------------------------------------------------------------------------
|
||
|
_Use_decl_annotations_
|
||
|
inline ContainmentType XM_CALLCONV BoundingFrustum::Contains(FXMVECTOR V0, FXMVECTOR V1, FXMVECTOR V2) const noexcept
|
||
|
{
|
||
|
// Load origin and orientation of the frustum.
|
||
|
XMVECTOR vOrigin = XMLoadFloat3(&Origin);
|
||
|
XMVECTOR vOrientation = XMLoadFloat4(&Orientation);
|
||
|
|
||
|
// Create 6 planes (do it inline to encourage use of registers)
|
||
|
XMVECTOR NearPlane = XMVectorSet(0.0f, 0.0f, -1.0f, Near);
|
||
|
NearPlane = DirectX::Internal::XMPlaneTransform(NearPlane, vOrientation, vOrigin);
|
||
|
NearPlane = XMPlaneNormalize(NearPlane);
|
||
|
|
||
|
XMVECTOR FarPlane = XMVectorSet(0.0f, 0.0f, 1.0f, -Far);
|
||
|
FarPlane = DirectX::Internal::XMPlaneTransform(FarPlane, vOrientation, vOrigin);
|
||
|
FarPlane = XMPlaneNormalize(FarPlane);
|
||
|
|
||
|
XMVECTOR RightPlane = XMVectorSet(1.0f, 0.0f, -RightSlope, 0.0f);
|
||
|
RightPlane = DirectX::Internal::XMPlaneTransform(RightPlane, vOrientation, vOrigin);
|
||
|
RightPlane = XMPlaneNormalize(RightPlane);
|
||
|
|
||
|
XMVECTOR LeftPlane = XMVectorSet(-1.0f, 0.0f, LeftSlope, 0.0f);
|
||
|
LeftPlane = DirectX::Internal::XMPlaneTransform(LeftPlane, vOrientation, vOrigin);
|
||
|
LeftPlane = XMPlaneNormalize(LeftPlane);
|
||
|
|
||
|
XMVECTOR TopPlane = XMVectorSet(0.0f, 1.0f, -TopSlope, 0.0f);
|
||
|
TopPlane = DirectX::Internal::XMPlaneTransform(TopPlane, vOrientation, vOrigin);
|
||
|
TopPlane = XMPlaneNormalize(TopPlane);
|
||
|
|
||
|
XMVECTOR BottomPlane = XMVectorSet(0.0f, -1.0f, BottomSlope, 0.0f);
|
||
|
BottomPlane = DirectX::Internal::XMPlaneTransform(BottomPlane, vOrientation, vOrigin);
|
||
|
BottomPlane = XMPlaneNormalize(BottomPlane);
|
||
|
|
||
|
return TriangleTests::ContainedBy(V0, V1, V2, NearPlane, FarPlane, RightPlane, LeftPlane, TopPlane, BottomPlane);
|
||
|
}
|
||
|
|
||
|
|
||
|
//-----------------------------------------------------------------------------
|
||
|
_Use_decl_annotations_
|
||
|
inline ContainmentType BoundingFrustum::Contains(const BoundingSphere& sh) const noexcept
|
||
|
{
|
||
|
// Load origin and orientation of the frustum.
|
||
|
XMVECTOR vOrigin = XMLoadFloat3(&Origin);
|
||
|
XMVECTOR vOrientation = XMLoadFloat4(&Orientation);
|
||
|
|
||
|
// Create 6 planes (do it inline to encourage use of registers)
|
||
|
XMVECTOR NearPlane = XMVectorSet(0.0f, 0.0f, -1.0f, Near);
|
||
|
NearPlane = DirectX::Internal::XMPlaneTransform(NearPlane, vOrientation, vOrigin);
|
||
|
NearPlane = XMPlaneNormalize(NearPlane);
|
||
|
|
||
|
XMVECTOR FarPlane = XMVectorSet(0.0f, 0.0f, 1.0f, -Far);
|
||
|
FarPlane = DirectX::Internal::XMPlaneTransform(FarPlane, vOrientation, vOrigin);
|
||
|
FarPlane = XMPlaneNormalize(FarPlane);
|
||
|
|
||
|
XMVECTOR RightPlane = XMVectorSet(1.0f, 0.0f, -RightSlope, 0.0f);
|
||
|
RightPlane = DirectX::Internal::XMPlaneTransform(RightPlane, vOrientation, vOrigin);
|
||
|
RightPlane = XMPlaneNormalize(RightPlane);
|
||
|
|
||
|
XMVECTOR LeftPlane = XMVectorSet(-1.0f, 0.0f, LeftSlope, 0.0f);
|
||
|
LeftPlane = DirectX::Internal::XMPlaneTransform(LeftPlane, vOrientation, vOrigin);
|
||
|
LeftPlane = XMPlaneNormalize(LeftPlane);
|
||
|
|
||
|
XMVECTOR TopPlane = XMVectorSet(0.0f, 1.0f, -TopSlope, 0.0f);
|
||
|
TopPlane = DirectX::Internal::XMPlaneTransform(TopPlane, vOrientation, vOrigin);
|
||
|
TopPlane = XMPlaneNormalize(TopPlane);
|
||
|
|
||
|
XMVECTOR BottomPlane = XMVectorSet(0.0f, -1.0f, BottomSlope, 0.0f);
|
||
|
BottomPlane = DirectX::Internal::XMPlaneTransform(BottomPlane, vOrientation, vOrigin);
|
||
|
BottomPlane = XMPlaneNormalize(BottomPlane);
|
||
|
|
||
|
return sh.ContainedBy(NearPlane, FarPlane, RightPlane, LeftPlane, TopPlane, BottomPlane);
|
||
|
}
|
||
|
|
||
|
|
||
|
//-----------------------------------------------------------------------------
|
||
|
_Use_decl_annotations_
|
||
|
inline ContainmentType BoundingFrustum::Contains(const BoundingBox& box) const noexcept
|
||
|
{
|
||
|
// Load origin and orientation of the frustum.
|
||
|
XMVECTOR vOrigin = XMLoadFloat3(&Origin);
|
||
|
XMVECTOR vOrientation = XMLoadFloat4(&Orientation);
|
||
|
|
||
|
// Create 6 planes (do it inline to encourage use of registers)
|
||
|
XMVECTOR NearPlane = XMVectorSet(0.0f, 0.0f, -1.0f, Near);
|
||
|
NearPlane = DirectX::Internal::XMPlaneTransform(NearPlane, vOrientation, vOrigin);
|
||
|
NearPlane = XMPlaneNormalize(NearPlane);
|
||
|
|
||
|
XMVECTOR FarPlane = XMVectorSet(0.0f, 0.0f, 1.0f, -Far);
|
||
|
FarPlane = DirectX::Internal::XMPlaneTransform(FarPlane, vOrientation, vOrigin);
|
||
|
FarPlane = XMPlaneNormalize(FarPlane);
|
||
|
|
||
|
XMVECTOR RightPlane = XMVectorSet(1.0f, 0.0f, -RightSlope, 0.0f);
|
||
|
RightPlane = DirectX::Internal::XMPlaneTransform(RightPlane, vOrientation, vOrigin);
|
||
|
RightPlane = XMPlaneNormalize(RightPlane);
|
||
|
|
||
|
XMVECTOR LeftPlane = XMVectorSet(-1.0f, 0.0f, LeftSlope, 0.0f);
|
||
|
LeftPlane = DirectX::Internal::XMPlaneTransform(LeftPlane, vOrientation, vOrigin);
|
||
|
LeftPlane = XMPlaneNormalize(LeftPlane);
|
||
|
|
||
|
XMVECTOR TopPlane = XMVectorSet(0.0f, 1.0f, -TopSlope, 0.0f);
|
||
|
TopPlane = DirectX::Internal::XMPlaneTransform(TopPlane, vOrientation, vOrigin);
|
||
|
TopPlane = XMPlaneNormalize(TopPlane);
|
||
|
|
||
|
XMVECTOR BottomPlane = XMVectorSet(0.0f, -1.0f, BottomSlope, 0.0f);
|
||
|
BottomPlane = DirectX::Internal::XMPlaneTransform(BottomPlane, vOrientation, vOrigin);
|
||
|
BottomPlane = XMPlaneNormalize(BottomPlane);
|
||
|
|
||
|
return box.ContainedBy(NearPlane, FarPlane, RightPlane, LeftPlane, TopPlane, BottomPlane);
|
||
|
}
|
||
|
|
||
|
|
||
|
//-----------------------------------------------------------------------------
|
||
|
_Use_decl_annotations_
|
||
|
inline ContainmentType BoundingFrustum::Contains(const BoundingOrientedBox& box) const noexcept
|
||
|
{
|
||
|
// Load origin and orientation of the frustum.
|
||
|
XMVECTOR vOrigin = XMLoadFloat3(&Origin);
|
||
|
XMVECTOR vOrientation = XMLoadFloat4(&Orientation);
|
||
|
|
||
|
// Create 6 planes (do it inline to encourage use of registers)
|
||
|
XMVECTOR NearPlane = XMVectorSet(0.0f, 0.0f, -1.0f, Near);
|
||
|
NearPlane = DirectX::Internal::XMPlaneTransform(NearPlane, vOrientation, vOrigin);
|
||
|
NearPlane = XMPlaneNormalize(NearPlane);
|
||
|
|
||
|
XMVECTOR FarPlane = XMVectorSet(0.0f, 0.0f, 1.0f, -Far);
|
||
|
FarPlane = DirectX::Internal::XMPlaneTransform(FarPlane, vOrientation, vOrigin);
|
||
|
FarPlane = XMPlaneNormalize(FarPlane);
|
||
|
|
||
|
XMVECTOR RightPlane = XMVectorSet(1.0f, 0.0f, -RightSlope, 0.0f);
|
||
|
RightPlane = DirectX::Internal::XMPlaneTransform(RightPlane, vOrientation, vOrigin);
|
||
|
RightPlane = XMPlaneNormalize(RightPlane);
|
||
|
|
||
|
XMVECTOR LeftPlane = XMVectorSet(-1.0f, 0.0f, LeftSlope, 0.0f);
|
||
|
LeftPlane = DirectX::Internal::XMPlaneTransform(LeftPlane, vOrientation, vOrigin);
|
||
|
LeftPlane = XMPlaneNormalize(LeftPlane);
|
||
|
|
||
|
XMVECTOR TopPlane = XMVectorSet(0.0f, 1.0f, -TopSlope, 0.0f);
|
||
|
TopPlane = DirectX::Internal::XMPlaneTransform(TopPlane, vOrientation, vOrigin);
|
||
|
TopPlane = XMPlaneNormalize(TopPlane);
|
||
|
|
||
|
XMVECTOR BottomPlane = XMVectorSet(0.0f, -1.0f, BottomSlope, 0.0f);
|
||
|
BottomPlane = DirectX::Internal::XMPlaneTransform(BottomPlane, vOrientation, vOrigin);
|
||
|
BottomPlane = XMPlaneNormalize(BottomPlane);
|
||
|
|
||
|
return box.ContainedBy(NearPlane, FarPlane, RightPlane, LeftPlane, TopPlane, BottomPlane);
|
||
|
}
|
||
|
|
||
|
|
||
|
//-----------------------------------------------------------------------------
|
||
|
_Use_decl_annotations_
|
||
|
inline ContainmentType BoundingFrustum::Contains(const BoundingFrustum& fr) const noexcept
|
||
|
{
|
||
|
// Load origin and orientation of the frustum.
|
||
|
XMVECTOR vOrigin = XMLoadFloat3(&Origin);
|
||
|
XMVECTOR vOrientation = XMLoadFloat4(&Orientation);
|
||
|
|
||
|
// Create 6 planes (do it inline to encourage use of registers)
|
||
|
XMVECTOR NearPlane = XMVectorSet(0.0f, 0.0f, -1.0f, Near);
|
||
|
NearPlane = DirectX::Internal::XMPlaneTransform(NearPlane, vOrientation, vOrigin);
|
||
|
NearPlane = XMPlaneNormalize(NearPlane);
|
||
|
|
||
|
XMVECTOR FarPlane = XMVectorSet(0.0f, 0.0f, 1.0f, -Far);
|
||
|
FarPlane = DirectX::Internal::XMPlaneTransform(FarPlane, vOrientation, vOrigin);
|
||
|
FarPlane = XMPlaneNormalize(FarPlane);
|
||
|
|
||
|
XMVECTOR RightPlane = XMVectorSet(1.0f, 0.0f, -RightSlope, 0.0f);
|
||
|
RightPlane = DirectX::Internal::XMPlaneTransform(RightPlane, vOrientation, vOrigin);
|
||
|
RightPlane = XMPlaneNormalize(RightPlane);
|
||
|
|
||
|
XMVECTOR LeftPlane = XMVectorSet(-1.0f, 0.0f, LeftSlope, 0.0f);
|
||
|
LeftPlane = DirectX::Internal::XMPlaneTransform(LeftPlane, vOrientation, vOrigin);
|
||
|
LeftPlane = XMPlaneNormalize(LeftPlane);
|
||
|
|
||
|
XMVECTOR TopPlane = XMVectorSet(0.0f, 1.0f, -TopSlope, 0.0f);
|
||
|
TopPlane = DirectX::Internal::XMPlaneTransform(TopPlane, vOrientation, vOrigin);
|
||
|
TopPlane = XMPlaneNormalize(TopPlane);
|
||
|
|
||
|
XMVECTOR BottomPlane = XMVectorSet(0.0f, -1.0f, BottomSlope, 0.0f);
|
||
|
BottomPlane = DirectX::Internal::XMPlaneTransform(BottomPlane, vOrientation, vOrigin);
|
||
|
BottomPlane = XMPlaneNormalize(BottomPlane);
|
||
|
|
||
|
return fr.ContainedBy(NearPlane, FarPlane, RightPlane, LeftPlane, TopPlane, BottomPlane);
|
||
|
}
|
||
|
|
||
|
|
||
|
//-----------------------------------------------------------------------------
|
||
|
// Exact sphere vs frustum test. The algorithm first checks the sphere against
|
||
|
// the planes of the frustum, then if the plane checks were indeterminate finds
|
||
|
// the nearest feature (plane, line, point) on the frustum to the center of the
|
||
|
// sphere and compares the distance to the nearest feature to the radius of the
|
||
|
// sphere
|
||
|
//-----------------------------------------------------------------------------
|
||
|
_Use_decl_annotations_
|
||
|
inline bool BoundingFrustum::Intersects(const BoundingSphere& sh) const noexcept
|
||
|
{
|
||
|
XMVECTOR Zero = XMVectorZero();
|
||
|
|
||
|
// Build the frustum planes.
|
||
|
XMVECTOR Planes[6];
|
||
|
Planes[0] = XMVectorSet(0.0f, 0.0f, -1.0f, Near);
|
||
|
Planes[1] = XMVectorSet(0.0f, 0.0f, 1.0f, -Far);
|
||
|
Planes[2] = XMVectorSet(1.0f, 0.0f, -RightSlope, 0.0f);
|
||
|
Planes[3] = XMVectorSet(-1.0f, 0.0f, LeftSlope, 0.0f);
|
||
|
Planes[4] = XMVectorSet(0.0f, 1.0f, -TopSlope, 0.0f);
|
||
|
Planes[5] = XMVectorSet(0.0f, -1.0f, BottomSlope, 0.0f);
|
||
|
|
||
|
// Normalize the planes so we can compare to the sphere radius.
|
||
|
Planes[2] = XMVector3Normalize(Planes[2]);
|
||
|
Planes[3] = XMVector3Normalize(Planes[3]);
|
||
|
Planes[4] = XMVector3Normalize(Planes[4]);
|
||
|
Planes[5] = XMVector3Normalize(Planes[5]);
|
||
|
|
||
|
// Load origin and orientation of the frustum.
|
||
|
XMVECTOR vOrigin = XMLoadFloat3(&Origin);
|
||
|
XMVECTOR vOrientation = XMLoadFloat4(&Orientation);
|
||
|
|
||
|
assert(DirectX::Internal::XMQuaternionIsUnit(vOrientation));
|
||
|
|
||
|
// Load the sphere.
|
||
|
XMVECTOR vCenter = XMLoadFloat3(&sh.Center);
|
||
|
XMVECTOR vRadius = XMVectorReplicatePtr(&sh.Radius);
|
||
|
|
||
|
// Transform the center of the sphere into the local space of frustum.
|
||
|
vCenter = XMVector3InverseRotate(XMVectorSubtract(vCenter, vOrigin), vOrientation);
|
||
|
|
||
|
// Set w of the center to one so we can dot4 with the plane.
|
||
|
vCenter = XMVectorInsert<0, 0, 0, 0, 1>(vCenter, XMVectorSplatOne());
|
||
|
|
||
|
// Check against each plane of the frustum.
|
||
|
XMVECTOR Outside = XMVectorFalseInt();
|
||
|
XMVECTOR InsideAll = XMVectorTrueInt();
|
||
|
XMVECTOR CenterInsideAll = XMVectorTrueInt();
|
||
|
|
||
|
XMVECTOR Dist[6];
|
||
|
|
||
|
for (size_t i = 0; i < 6; ++i)
|
||
|
{
|
||
|
Dist[i] = XMVector4Dot(vCenter, Planes[i]);
|
||
|
|
||
|
// Outside the plane?
|
||
|
Outside = XMVectorOrInt(Outside, XMVectorGreater(Dist[i], vRadius));
|
||
|
|
||
|
// Fully inside the plane?
|
||
|
InsideAll = XMVectorAndInt(InsideAll, XMVectorLessOrEqual(Dist[i], XMVectorNegate(vRadius)));
|
||
|
|
||
|
// Check if the center is inside the plane.
|
||
|
CenterInsideAll = XMVectorAndInt(CenterInsideAll, XMVectorLessOrEqual(Dist[i], Zero));
|
||
|
}
|
||
|
|
||
|
// If the sphere is outside any of the planes it is outside.
|
||
|
if (XMVector4EqualInt(Outside, XMVectorTrueInt()))
|
||
|
return false;
|
||
|
|
||
|
// If the sphere is inside all planes it is fully inside.
|
||
|
if (XMVector4EqualInt(InsideAll, XMVectorTrueInt()))
|
||
|
return true;
|
||
|
|
||
|
// If the center of the sphere is inside all planes and the sphere intersects
|
||
|
// one or more planes then it must intersect.
|
||
|
if (XMVector4EqualInt(CenterInsideAll, XMVectorTrueInt()))
|
||
|
return true;
|
||
|
|
||
|
// The sphere may be outside the frustum or intersecting the frustum.
|
||
|
// Find the nearest feature (face, edge, or corner) on the frustum
|
||
|
// to the sphere.
|
||
|
|
||
|
// The faces adjacent to each face are:
|
||
|
static const size_t adjacent_faces[6][4] =
|
||
|
{
|
||
|
{ 2, 3, 4, 5 }, // 0
|
||
|
{ 2, 3, 4, 5 }, // 1
|
||
|
{ 0, 1, 4, 5 }, // 2
|
||
|
{ 0, 1, 4, 5 }, // 3
|
||
|
{ 0, 1, 2, 3 }, // 4
|
||
|
{ 0, 1, 2, 3 }
|
||
|
}; // 5
|
||
|
|
||
|
XMVECTOR Intersects = XMVectorFalseInt();
|
||
|
|
||
|
// Check to see if the nearest feature is one of the planes.
|
||
|
for (size_t i = 0; i < 6; ++i)
|
||
|
{
|
||
|
// Find the nearest point on the plane to the center of the sphere.
|
||
|
XMVECTOR Point = XMVectorNegativeMultiplySubtract(Planes[i], Dist[i], vCenter);
|
||
|
|
||
|
// Set w of the point to one.
|
||
|
Point = XMVectorInsert<0, 0, 0, 0, 1>(Point, XMVectorSplatOne());
|
||
|
|
||
|
// If the point is inside the face (inside the adjacent planes) then
|
||
|
// this plane is the nearest feature.
|
||
|
XMVECTOR InsideFace = XMVectorTrueInt();
|
||
|
|
||
|
for (size_t j = 0; j < 4; j++)
|
||
|
{
|
||
|
size_t plane_index = adjacent_faces[i][j];
|
||
|
|
||
|
InsideFace = XMVectorAndInt(InsideFace,
|
||
|
XMVectorLessOrEqual(XMVector4Dot(Point, Planes[plane_index]), Zero));
|
||
|
}
|
||
|
|
||
|
// Since we have already checked distance from the plane we know that the
|
||
|
// sphere must intersect if this plane is the nearest feature.
|
||
|
Intersects = XMVectorOrInt(Intersects,
|
||
|
XMVectorAndInt(XMVectorGreater(Dist[i], Zero), InsideFace));
|
||
|
}
|
||
|
|
||
|
if (XMVector4EqualInt(Intersects, XMVectorTrueInt()))
|
||
|
return true;
|
||
|
|
||
|
// Build the corners of the frustum.
|
||
|
XMVECTOR vRightTop = XMVectorSet(RightSlope, TopSlope, 1.0f, 0.0f);
|
||
|
XMVECTOR vRightBottom = XMVectorSet(RightSlope, BottomSlope, 1.0f, 0.0f);
|
||
|
XMVECTOR vLeftTop = XMVectorSet(LeftSlope, TopSlope, 1.0f, 0.0f);
|
||
|
XMVECTOR vLeftBottom = XMVectorSet(LeftSlope, BottomSlope, 1.0f, 0.0f);
|
||
|
XMVECTOR vNear = XMVectorReplicatePtr(&Near);
|
||
|
XMVECTOR vFar = XMVectorReplicatePtr(&Far);
|
||
|
|
||
|
XMVECTOR Corners[CORNER_COUNT];
|
||
|
Corners[0] = XMVectorMultiply(vRightTop, vNear);
|
||
|
Corners[1] = XMVectorMultiply(vRightBottom, vNear);
|
||
|
Corners[2] = XMVectorMultiply(vLeftTop, vNear);
|
||
|
Corners[3] = XMVectorMultiply(vLeftBottom, vNear);
|
||
|
Corners[4] = XMVectorMultiply(vRightTop, vFar);
|
||
|
Corners[5] = XMVectorMultiply(vRightBottom, vFar);
|
||
|
Corners[6] = XMVectorMultiply(vLeftTop, vFar);
|
||
|
Corners[7] = XMVectorMultiply(vLeftBottom, vFar);
|
||
|
|
||
|
// The Edges are:
|
||
|
static const size_t edges[12][2] =
|
||
|
{
|
||
|
{ 0, 1 }, { 2, 3 }, { 0, 2 }, { 1, 3 }, // Near plane
|
||
|
{ 4, 5 }, { 6, 7 }, { 4, 6 }, { 5, 7 }, // Far plane
|
||
|
{ 0, 4 }, { 1, 5 }, { 2, 6 }, { 3, 7 },
|
||
|
}; // Near to far
|
||
|
|
||
|
XMVECTOR RadiusSq = XMVectorMultiply(vRadius, vRadius);
|
||
|
|
||
|
// Check to see if the nearest feature is one of the edges (or corners).
|
||
|
for (size_t i = 0; i < 12; ++i)
|
||
|
{
|
||
|
size_t ei0 = edges[i][0];
|
||
|
size_t ei1 = edges[i][1];
|
||
|
|
||
|
// Find the nearest point on the edge to the center of the sphere.
|
||
|
// The corners of the frustum are included as the endpoints of the edges.
|
||
|
XMVECTOR Point = DirectX::Internal::PointOnLineSegmentNearestPoint(Corners[ei0], Corners[ei1], vCenter);
|
||
|
|
||
|
XMVECTOR Delta = XMVectorSubtract(vCenter, Point);
|
||
|
|
||
|
XMVECTOR DistSq = XMVector3Dot(Delta, Delta);
|
||
|
|
||
|
// If the distance to the center of the sphere to the point is less than
|
||
|
// the radius of the sphere then it must intersect.
|
||
|
Intersects = XMVectorOrInt(Intersects, XMVectorLessOrEqual(DistSq, RadiusSq));
|
||
|
}
|
||
|
|
||
|
if (XMVector4EqualInt(Intersects, XMVectorTrueInt()))
|
||
|
return true;
|
||
|
|
||
|
// The sphere must be outside the frustum.
|
||
|
return false;
|
||
|
}
|
||
|
|
||
|
|
||
|
//-----------------------------------------------------------------------------
|
||
|
// Exact axis aligned box vs frustum test. Constructs an oriented box and uses
|
||
|
// the oriented box vs frustum test.
|
||
|
//-----------------------------------------------------------------------------
|
||
|
_Use_decl_annotations_
|
||
|
inline bool BoundingFrustum::Intersects(const BoundingBox& box) const noexcept
|
||
|
{
|
||
|
// Make the axis aligned box oriented and do an OBB vs frustum test.
|
||
|
BoundingOrientedBox obox(box.Center, box.Extents, XMFLOAT4(0.f, 0.f, 0.f, 1.f));
|
||
|
return Intersects(obox);
|
||
|
}
|
||
|
|
||
|
|
||
|
//-----------------------------------------------------------------------------
|
||
|
// Exact oriented box vs frustum test.
|
||
|
//-----------------------------------------------------------------------------
|
||
|
_Use_decl_annotations_
|
||
|
inline bool BoundingFrustum::Intersects(const BoundingOrientedBox& box) const noexcept
|
||
|
{
|
||
|
static const XMVECTORU32 SelectY = { { { XM_SELECT_0, XM_SELECT_1, XM_SELECT_0, XM_SELECT_0 } } };
|
||
|
static const XMVECTORU32 SelectZ = { { { XM_SELECT_0, XM_SELECT_0, XM_SELECT_1, XM_SELECT_0 } } };
|
||
|
|
||
|
XMVECTOR Zero = XMVectorZero();
|
||
|
|
||
|
// Build the frustum planes.
|
||
|
XMVECTOR Planes[6];
|
||
|
Planes[0] = XMVectorSet(0.0f, 0.0f, -1.0f, Near);
|
||
|
Planes[1] = XMVectorSet(0.0f, 0.0f, 1.0f, -Far);
|
||
|
Planes[2] = XMVectorSet(1.0f, 0.0f, -RightSlope, 0.0f);
|
||
|
Planes[3] = XMVectorSet(-1.0f, 0.0f, LeftSlope, 0.0f);
|
||
|
Planes[4] = XMVectorSet(0.0f, 1.0f, -TopSlope, 0.0f);
|
||
|
Planes[5] = XMVectorSet(0.0f, -1.0f, BottomSlope, 0.0f);
|
||
|
|
||
|
// Load origin and orientation of the frustum.
|
||
|
XMVECTOR vOrigin = XMLoadFloat3(&Origin);
|
||
|
XMVECTOR FrustumOrientation = XMLoadFloat4(&Orientation);
|
||
|
|
||
|
assert(DirectX::Internal::XMQuaternionIsUnit(FrustumOrientation));
|
||
|
|
||
|
// Load the box.
|
||
|
XMVECTOR Center = XMLoadFloat3(&box.Center);
|
||
|
XMVECTOR Extents = XMLoadFloat3(&box.Extents);
|
||
|
XMVECTOR BoxOrientation = XMLoadFloat4(&box.Orientation);
|
||
|
|
||
|
assert(DirectX::Internal::XMQuaternionIsUnit(BoxOrientation));
|
||
|
|
||
|
// Transform the oriented box into the space of the frustum in order to
|
||
|
// minimize the number of transforms we have to do.
|
||
|
Center = XMVector3InverseRotate(XMVectorSubtract(Center, vOrigin), FrustumOrientation);
|
||
|
BoxOrientation = XMQuaternionMultiply(BoxOrientation, XMQuaternionConjugate(FrustumOrientation));
|
||
|
|
||
|
// Set w of the center to one so we can dot4 with the plane.
|
||
|
Center = XMVectorInsert<0, 0, 0, 0, 1>(Center, XMVectorSplatOne());
|
||
|
|
||
|
// Build the 3x3 rotation matrix that defines the box axes.
|
||
|
XMMATRIX R = XMMatrixRotationQuaternion(BoxOrientation);
|
||
|
|
||
|
// Check against each plane of the frustum.
|
||
|
XMVECTOR Outside = XMVectorFalseInt();
|
||
|
XMVECTOR InsideAll = XMVectorTrueInt();
|
||
|
XMVECTOR CenterInsideAll = XMVectorTrueInt();
|
||
|
|
||
|
for (size_t i = 0; i < 6; ++i)
|
||
|
{
|
||
|
// Compute the distance to the center of the box.
|
||
|
XMVECTOR Dist = XMVector4Dot(Center, Planes[i]);
|
||
|
|
||
|
// Project the axes of the box onto the normal of the plane. Half the
|
||
|
// length of the projection (sometime called the "radius") is equal to
|
||
|
// h(u) * abs(n dot b(u))) + h(v) * abs(n dot b(v)) + h(w) * abs(n dot b(w))
|
||
|
// where h(i) are extents of the box, n is the plane normal, and b(i) are the
|
||
|
// axes of the box.
|
||
|
XMVECTOR Radius = XMVector3Dot(Planes[i], R.r[0]);
|
||
|
Radius = XMVectorSelect(Radius, XMVector3Dot(Planes[i], R.r[1]), SelectY);
|
||
|
Radius = XMVectorSelect(Radius, XMVector3Dot(Planes[i], R.r[2]), SelectZ);
|
||
|
Radius = XMVector3Dot(Extents, XMVectorAbs(Radius));
|
||
|
|
||
|
// Outside the plane?
|
||
|
Outside = XMVectorOrInt(Outside, XMVectorGreater(Dist, Radius));
|
||
|
|
||
|
// Fully inside the plane?
|
||
|
InsideAll = XMVectorAndInt(InsideAll, XMVectorLessOrEqual(Dist, XMVectorNegate(Radius)));
|
||
|
|
||
|
// Check if the center is inside the plane.
|
||
|
CenterInsideAll = XMVectorAndInt(CenterInsideAll, XMVectorLessOrEqual(Dist, Zero));
|
||
|
}
|
||
|
|
||
|
// If the box is outside any of the planes it is outside.
|
||
|
if (XMVector4EqualInt(Outside, XMVectorTrueInt()))
|
||
|
return false;
|
||
|
|
||
|
// If the box is inside all planes it is fully inside.
|
||
|
if (XMVector4EqualInt(InsideAll, XMVectorTrueInt()))
|
||
|
return true;
|
||
|
|
||
|
// If the center of the box is inside all planes and the box intersects
|
||
|
// one or more planes then it must intersect.
|
||
|
if (XMVector4EqualInt(CenterInsideAll, XMVectorTrueInt()))
|
||
|
return true;
|
||
|
|
||
|
// Build the corners of the frustum.
|
||
|
XMVECTOR vRightTop = XMVectorSet(RightSlope, TopSlope, 1.0f, 0.0f);
|
||
|
XMVECTOR vRightBottom = XMVectorSet(RightSlope, BottomSlope, 1.0f, 0.0f);
|
||
|
XMVECTOR vLeftTop = XMVectorSet(LeftSlope, TopSlope, 1.0f, 0.0f);
|
||
|
XMVECTOR vLeftBottom = XMVectorSet(LeftSlope, BottomSlope, 1.0f, 0.0f);
|
||
|
XMVECTOR vNear = XMVectorReplicatePtr(&Near);
|
||
|
XMVECTOR vFar = XMVectorReplicatePtr(&Far);
|
||
|
|
||
|
XMVECTOR Corners[CORNER_COUNT];
|
||
|
Corners[0] = XMVectorMultiply(vRightTop, vNear);
|
||
|
Corners[1] = XMVectorMultiply(vRightBottom, vNear);
|
||
|
Corners[2] = XMVectorMultiply(vLeftTop, vNear);
|
||
|
Corners[3] = XMVectorMultiply(vLeftBottom, vNear);
|
||
|
Corners[4] = XMVectorMultiply(vRightTop, vFar);
|
||
|
Corners[5] = XMVectorMultiply(vRightBottom, vFar);
|
||
|
Corners[6] = XMVectorMultiply(vLeftTop, vFar);
|
||
|
Corners[7] = XMVectorMultiply(vLeftBottom, vFar);
|
||
|
|
||
|
// Test against box axes (3)
|
||
|
{
|
||
|
// Find the min/max values of the projection of the frustum onto each axis.
|
||
|
XMVECTOR FrustumMin, FrustumMax;
|
||
|
|
||
|
FrustumMin = XMVector3Dot(Corners[0], R.r[0]);
|
||
|
FrustumMin = XMVectorSelect(FrustumMin, XMVector3Dot(Corners[0], R.r[1]), SelectY);
|
||
|
FrustumMin = XMVectorSelect(FrustumMin, XMVector3Dot(Corners[0], R.r[2]), SelectZ);
|
||
|
FrustumMax = FrustumMin;
|
||
|
|
||
|
for (size_t i = 1; i < BoundingOrientedBox::CORNER_COUNT; ++i)
|
||
|
{
|
||
|
XMVECTOR Temp = XMVector3Dot(Corners[i], R.r[0]);
|
||
|
Temp = XMVectorSelect(Temp, XMVector3Dot(Corners[i], R.r[1]), SelectY);
|
||
|
Temp = XMVectorSelect(Temp, XMVector3Dot(Corners[i], R.r[2]), SelectZ);
|
||
|
|
||
|
FrustumMin = XMVectorMin(FrustumMin, Temp);
|
||
|
FrustumMax = XMVectorMax(FrustumMax, Temp);
|
||
|
}
|
||
|
|
||
|
// Project the center of the box onto the axes.
|
||
|
XMVECTOR BoxDist = XMVector3Dot(Center, R.r[0]);
|
||
|
BoxDist = XMVectorSelect(BoxDist, XMVector3Dot(Center, R.r[1]), SelectY);
|
||
|
BoxDist = XMVectorSelect(BoxDist, XMVector3Dot(Center, R.r[2]), SelectZ);
|
||
|
|
||
|
// The projection of the box onto the axis is just its Center and Extents.
|
||
|
// if (min > box_max || max < box_min) reject;
|
||
|
XMVECTOR Result = XMVectorOrInt(XMVectorGreater(FrustumMin, XMVectorAdd(BoxDist, Extents)),
|
||
|
XMVectorLess(FrustumMax, XMVectorSubtract(BoxDist, Extents)));
|
||
|
|
||
|
if (DirectX::Internal::XMVector3AnyTrue(Result))
|
||
|
return false;
|
||
|
}
|
||
|
|
||
|
// Test against edge/edge axes (3*6).
|
||
|
XMVECTOR FrustumEdgeAxis[6];
|
||
|
|
||
|
FrustumEdgeAxis[0] = vRightTop;
|
||
|
FrustumEdgeAxis[1] = vRightBottom;
|
||
|
FrustumEdgeAxis[2] = vLeftTop;
|
||
|
FrustumEdgeAxis[3] = vLeftBottom;
|
||
|
FrustumEdgeAxis[4] = XMVectorSubtract(vRightTop, vLeftTop);
|
||
|
FrustumEdgeAxis[5] = XMVectorSubtract(vLeftBottom, vLeftTop);
|
||
|
|
||
|
for (size_t i = 0; i < 3; ++i)
|
||
|
{
|
||
|
for (size_t j = 0; j < 6; j++)
|
||
|
{
|
||
|
// Compute the axis we are going to test.
|
||
|
XMVECTOR Axis = XMVector3Cross(R.r[i], FrustumEdgeAxis[j]);
|
||
|
|
||
|
// Find the min/max values of the projection of the frustum onto the axis.
|
||
|
XMVECTOR FrustumMin, FrustumMax;
|
||
|
|
||
|
FrustumMin = FrustumMax = XMVector3Dot(Axis, Corners[0]);
|
||
|
|
||
|
for (size_t k = 1; k < CORNER_COUNT; k++)
|
||
|
{
|
||
|
XMVECTOR Temp = XMVector3Dot(Axis, Corners[k]);
|
||
|
FrustumMin = XMVectorMin(FrustumMin, Temp);
|
||
|
FrustumMax = XMVectorMax(FrustumMax, Temp);
|
||
|
}
|
||
|
|
||
|
// Project the center of the box onto the axis.
|
||
|
XMVECTOR Dist = XMVector3Dot(Center, Axis);
|
||
|
|
||
|
// Project the axes of the box onto the axis to find the "radius" of the box.
|
||
|
XMVECTOR Radius = XMVector3Dot(Axis, R.r[0]);
|
||
|
Radius = XMVectorSelect(Radius, XMVector3Dot(Axis, R.r[1]), SelectY);
|
||
|
Radius = XMVectorSelect(Radius, XMVector3Dot(Axis, R.r[2]), SelectZ);
|
||
|
Radius = XMVector3Dot(Extents, XMVectorAbs(Radius));
|
||
|
|
||
|
// if (center > max + radius || center < min - radius) reject;
|
||
|
Outside = XMVectorOrInt(Outside, XMVectorGreater(Dist, XMVectorAdd(FrustumMax, Radius)));
|
||
|
Outside = XMVectorOrInt(Outside, XMVectorLess(Dist, XMVectorSubtract(FrustumMin, Radius)));
|
||
|
}
|
||
|
}
|
||
|
|
||
|
if (XMVector4EqualInt(Outside, XMVectorTrueInt()))
|
||
|
return false;
|
||
|
|
||
|
// If we did not find a separating plane then the box must intersect the frustum.
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
|
||
|
//-----------------------------------------------------------------------------
|
||
|
// Exact frustum vs frustum test.
|
||
|
//-----------------------------------------------------------------------------
|
||
|
_Use_decl_annotations_
|
||
|
inline bool BoundingFrustum::Intersects(const BoundingFrustum& fr) const noexcept
|
||
|
{
|
||
|
// Load origin and orientation of frustum B.
|
||
|
XMVECTOR OriginB = XMLoadFloat3(&Origin);
|
||
|
XMVECTOR OrientationB = XMLoadFloat4(&Orientation);
|
||
|
|
||
|
assert(DirectX::Internal::XMQuaternionIsUnit(OrientationB));
|
||
|
|
||
|
// Build the planes of frustum B.
|
||
|
XMVECTOR AxisB[6];
|
||
|
AxisB[0] = XMVectorSet(0.0f, 0.0f, -1.0f, 0.0f);
|
||
|
AxisB[1] = XMVectorSet(0.0f, 0.0f, 1.0f, 0.0f);
|
||
|
AxisB[2] = XMVectorSet(1.0f, 0.0f, -RightSlope, 0.0f);
|
||
|
AxisB[3] = XMVectorSet(-1.0f, 0.0f, LeftSlope, 0.0f);
|
||
|
AxisB[4] = XMVectorSet(0.0f, 1.0f, -TopSlope, 0.0f);
|
||
|
AxisB[5] = XMVectorSet(0.0f, -1.0f, BottomSlope, 0.0f);
|
||
|
|
||
|
XMVECTOR PlaneDistB[6];
|
||
|
PlaneDistB[0] = XMVectorNegate(XMVectorReplicatePtr(&Near));
|
||
|
PlaneDistB[1] = XMVectorReplicatePtr(&Far);
|
||
|
PlaneDistB[2] = XMVectorZero();
|
||
|
PlaneDistB[3] = XMVectorZero();
|
||
|
PlaneDistB[4] = XMVectorZero();
|
||
|
PlaneDistB[5] = XMVectorZero();
|
||
|
|
||
|
// Load origin and orientation of frustum A.
|
||
|
XMVECTOR OriginA = XMLoadFloat3(&fr.Origin);
|
||
|
XMVECTOR OrientationA = XMLoadFloat4(&fr.Orientation);
|
||
|
|
||
|
assert(DirectX::Internal::XMQuaternionIsUnit(OrientationA));
|
||
|
|
||
|
// Transform frustum A into the space of the frustum B in order to
|
||
|
// minimize the number of transforms we have to do.
|
||
|
OriginA = XMVector3InverseRotate(XMVectorSubtract(OriginA, OriginB), OrientationB);
|
||
|
OrientationA = XMQuaternionMultiply(OrientationA, XMQuaternionConjugate(OrientationB));
|
||
|
|
||
|
// Build the corners of frustum A (in the local space of B).
|
||
|
XMVECTOR RightTopA = XMVectorSet(fr.RightSlope, fr.TopSlope, 1.0f, 0.0f);
|
||
|
XMVECTOR RightBottomA = XMVectorSet(fr.RightSlope, fr.BottomSlope, 1.0f, 0.0f);
|
||
|
XMVECTOR LeftTopA = XMVectorSet(fr.LeftSlope, fr.TopSlope, 1.0f, 0.0f);
|
||
|
XMVECTOR LeftBottomA = XMVectorSet(fr.LeftSlope, fr.BottomSlope, 1.0f, 0.0f);
|
||
|
XMVECTOR NearA = XMVectorReplicatePtr(&fr.Near);
|
||
|
XMVECTOR FarA = XMVectorReplicatePtr(&fr.Far);
|
||
|
|
||
|
RightTopA = XMVector3Rotate(RightTopA, OrientationA);
|
||
|
RightBottomA = XMVector3Rotate(RightBottomA, OrientationA);
|
||
|
LeftTopA = XMVector3Rotate(LeftTopA, OrientationA);
|
||
|
LeftBottomA = XMVector3Rotate(LeftBottomA, OrientationA);
|
||
|
|
||
|
XMVECTOR CornersA[CORNER_COUNT];
|
||
|
CornersA[0] = XMVectorMultiplyAdd(RightTopA, NearA, OriginA);
|
||
|
CornersA[1] = XMVectorMultiplyAdd(RightBottomA, NearA, OriginA);
|
||
|
CornersA[2] = XMVectorMultiplyAdd(LeftTopA, NearA, OriginA);
|
||
|
CornersA[3] = XMVectorMultiplyAdd(LeftBottomA, NearA, OriginA);
|
||
|
CornersA[4] = XMVectorMultiplyAdd(RightTopA, FarA, OriginA);
|
||
|
CornersA[5] = XMVectorMultiplyAdd(RightBottomA, FarA, OriginA);
|
||
|
CornersA[6] = XMVectorMultiplyAdd(LeftTopA, FarA, OriginA);
|
||
|
CornersA[7] = XMVectorMultiplyAdd(LeftBottomA, FarA, OriginA);
|
||
|
|
||
|
// Check frustum A against each plane of frustum B.
|
||
|
XMVECTOR Outside = XMVectorFalseInt();
|
||
|
XMVECTOR InsideAll = XMVectorTrueInt();
|
||
|
|
||
|
for (size_t i = 0; i < 6; ++i)
|
||
|
{
|
||
|
// Find the min/max projection of the frustum onto the plane normal.
|
||
|
XMVECTOR Min, Max;
|
||
|
|
||
|
Min = Max = XMVector3Dot(AxisB[i], CornersA[0]);
|
||
|
|
||
|
for (size_t j = 1; j < CORNER_COUNT; j++)
|
||
|
{
|
||
|
XMVECTOR Temp = XMVector3Dot(AxisB[i], CornersA[j]);
|
||
|
Min = XMVectorMin(Min, Temp);
|
||
|
Max = XMVectorMax(Max, Temp);
|
||
|
}
|
||
|
|
||
|
// Outside the plane?
|
||
|
Outside = XMVectorOrInt(Outside, XMVectorGreater(Min, PlaneDistB[i]));
|
||
|
|
||
|
// Fully inside the plane?
|
||
|
InsideAll = XMVectorAndInt(InsideAll, XMVectorLessOrEqual(Max, PlaneDistB[i]));
|
||
|
}
|
||
|
|
||
|
// If the frustum A is outside any of the planes of frustum B it is outside.
|
||
|
if (XMVector4EqualInt(Outside, XMVectorTrueInt()))
|
||
|
return false;
|
||
|
|
||
|
// If frustum A is inside all planes of frustum B it is fully inside.
|
||
|
if (XMVector4EqualInt(InsideAll, XMVectorTrueInt()))
|
||
|
return true;
|
||
|
|
||
|
// Build the corners of frustum B.
|
||
|
XMVECTOR RightTopB = XMVectorSet(RightSlope, TopSlope, 1.0f, 0.0f);
|
||
|
XMVECTOR RightBottomB = XMVectorSet(RightSlope, BottomSlope, 1.0f, 0.0f);
|
||
|
XMVECTOR LeftTopB = XMVectorSet(LeftSlope, TopSlope, 1.0f, 0.0f);
|
||
|
XMVECTOR LeftBottomB = XMVectorSet(LeftSlope, BottomSlope, 1.0f, 0.0f);
|
||
|
XMVECTOR NearB = XMVectorReplicatePtr(&Near);
|
||
|
XMVECTOR FarB = XMVectorReplicatePtr(&Far);
|
||
|
|
||
|
XMVECTOR CornersB[BoundingFrustum::CORNER_COUNT];
|
||
|
CornersB[0] = XMVectorMultiply(RightTopB, NearB);
|
||
|
CornersB[1] = XMVectorMultiply(RightBottomB, NearB);
|
||
|
CornersB[2] = XMVectorMultiply(LeftTopB, NearB);
|
||
|
CornersB[3] = XMVectorMultiply(LeftBottomB, NearB);
|
||
|
CornersB[4] = XMVectorMultiply(RightTopB, FarB);
|
||
|
CornersB[5] = XMVectorMultiply(RightBottomB, FarB);
|
||
|
CornersB[6] = XMVectorMultiply(LeftTopB, FarB);
|
||
|
CornersB[7] = XMVectorMultiply(LeftBottomB, FarB);
|
||
|
|
||
|
// Build the planes of frustum A (in the local space of B).
|
||
|
XMVECTOR AxisA[6];
|
||
|
XMVECTOR PlaneDistA[6];
|
||
|
|
||
|
AxisA[0] = XMVectorSet(0.0f, 0.0f, -1.0f, 0.0f);
|
||
|
AxisA[1] = XMVectorSet(0.0f, 0.0f, 1.0f, 0.0f);
|
||
|
AxisA[2] = XMVectorSet(1.0f, 0.0f, -fr.RightSlope, 0.0f);
|
||
|
AxisA[3] = XMVectorSet(-1.0f, 0.0f, fr.LeftSlope, 0.0f);
|
||
|
AxisA[4] = XMVectorSet(0.0f, 1.0f, -fr.TopSlope, 0.0f);
|
||
|
AxisA[5] = XMVectorSet(0.0f, -1.0f, fr.BottomSlope, 0.0f);
|
||
|
|
||
|
AxisA[0] = XMVector3Rotate(AxisA[0], OrientationA);
|
||
|
AxisA[1] = XMVectorNegate(AxisA[0]);
|
||
|
AxisA[2] = XMVector3Rotate(AxisA[2], OrientationA);
|
||
|
AxisA[3] = XMVector3Rotate(AxisA[3], OrientationA);
|
||
|
AxisA[4] = XMVector3Rotate(AxisA[4], OrientationA);
|
||
|
AxisA[5] = XMVector3Rotate(AxisA[5], OrientationA);
|
||
|
|
||
|
PlaneDistA[0] = XMVector3Dot(AxisA[0], CornersA[0]); // Re-use corner on near plane.
|
||
|
PlaneDistA[1] = XMVector3Dot(AxisA[1], CornersA[4]); // Re-use corner on far plane.
|
||
|
PlaneDistA[2] = XMVector3Dot(AxisA[2], OriginA);
|
||
|
PlaneDistA[3] = XMVector3Dot(AxisA[3], OriginA);
|
||
|
PlaneDistA[4] = XMVector3Dot(AxisA[4], OriginA);
|
||
|
PlaneDistA[5] = XMVector3Dot(AxisA[5], OriginA);
|
||
|
|
||
|
// Check each axis of frustum A for a seperating plane (5).
|
||
|
for (size_t i = 0; i < 6; ++i)
|
||
|
{
|
||
|
// Find the minimum projection of the frustum onto the plane normal.
|
||
|
XMVECTOR Min;
|
||
|
|
||
|
Min = XMVector3Dot(AxisA[i], CornersB[0]);
|
||
|
|
||
|
for (size_t j = 1; j < CORNER_COUNT; j++)
|
||
|
{
|
||
|
XMVECTOR Temp = XMVector3Dot(AxisA[i], CornersB[j]);
|
||
|
Min = XMVectorMin(Min, Temp);
|
||
|
}
|
||
|
|
||
|
// Outside the plane?
|
||
|
Outside = XMVectorOrInt(Outside, XMVectorGreater(Min, PlaneDistA[i]));
|
||
|
}
|
||
|
|
||
|
// If the frustum B is outside any of the planes of frustum A it is outside.
|
||
|
if (XMVector4EqualInt(Outside, XMVectorTrueInt()))
|
||
|
return false;
|
||
|
|
||
|
// Check edge/edge axes (6 * 6).
|
||
|
XMVECTOR FrustumEdgeAxisA[6];
|
||
|
FrustumEdgeAxisA[0] = RightTopA;
|
||
|
FrustumEdgeAxisA[1] = RightBottomA;
|
||
|
FrustumEdgeAxisA[2] = LeftTopA;
|
||
|
FrustumEdgeAxisA[3] = LeftBottomA;
|
||
|
FrustumEdgeAxisA[4] = XMVectorSubtract(RightTopA, LeftTopA);
|
||
|
FrustumEdgeAxisA[5] = XMVectorSubtract(LeftBottomA, LeftTopA);
|
||
|
|
||
|
XMVECTOR FrustumEdgeAxisB[6];
|
||
|
FrustumEdgeAxisB[0] = RightTopB;
|
||
|
FrustumEdgeAxisB[1] = RightBottomB;
|
||
|
FrustumEdgeAxisB[2] = LeftTopB;
|
||
|
FrustumEdgeAxisB[3] = LeftBottomB;
|
||
|
FrustumEdgeAxisB[4] = XMVectorSubtract(RightTopB, LeftTopB);
|
||
|
FrustumEdgeAxisB[5] = XMVectorSubtract(LeftBottomB, LeftTopB);
|
||
|
|
||
|
for (size_t i = 0; i < 6; ++i)
|
||
|
{
|
||
|
for (size_t j = 0; j < 6; j++)
|
||
|
{
|
||
|
// Compute the axis we are going to test.
|
||
|
XMVECTOR Axis = XMVector3Cross(FrustumEdgeAxisA[i], FrustumEdgeAxisB[j]);
|
||
|
|
||
|
// Find the min/max values of the projection of both frustums onto the axis.
|
||
|
XMVECTOR MinA, MaxA;
|
||
|
XMVECTOR MinB, MaxB;
|
||
|
|
||
|
MinA = MaxA = XMVector3Dot(Axis, CornersA[0]);
|
||
|
MinB = MaxB = XMVector3Dot(Axis, CornersB[0]);
|
||
|
|
||
|
for (size_t k = 1; k < CORNER_COUNT; k++)
|
||
|
{
|
||
|
XMVECTOR TempA = XMVector3Dot(Axis, CornersA[k]);
|
||
|
MinA = XMVectorMin(MinA, TempA);
|
||
|
MaxA = XMVectorMax(MaxA, TempA);
|
||
|
|
||
|
XMVECTOR TempB = XMVector3Dot(Axis, CornersB[k]);
|
||
|
MinB = XMVectorMin(MinB, TempB);
|
||
|
MaxB = XMVectorMax(MaxB, TempB);
|
||
|
}
|
||
|
|
||
|
// if (MinA > MaxB || MinB > MaxA) reject
|
||
|
Outside = XMVectorOrInt(Outside, XMVectorGreater(MinA, MaxB));
|
||
|
Outside = XMVectorOrInt(Outside, XMVectorGreater(MinB, MaxA));
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// If there is a seperating plane, then the frustums do not intersect.
|
||
|
if (XMVector4EqualInt(Outside, XMVectorTrueInt()))
|
||
|
return false;
|
||
|
|
||
|
// If we did not find a separating plane then the frustums intersect.
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
|
||
|
//-----------------------------------------------------------------------------
|
||
|
// Triangle vs frustum test.
|
||
|
//-----------------------------------------------------------------------------
|
||
|
_Use_decl_annotations_
|
||
|
inline bool XM_CALLCONV BoundingFrustum::Intersects(FXMVECTOR V0, FXMVECTOR V1, FXMVECTOR V2) const noexcept
|
||
|
{
|
||
|
// Build the frustum planes (NOTE: D is negated from the usual).
|
||
|
XMVECTOR Planes[6];
|
||
|
Planes[0] = XMVectorSet(0.0f, 0.0f, -1.0f, -Near);
|
||
|
Planes[1] = XMVectorSet(0.0f, 0.0f, 1.0f, Far);
|
||
|
Planes[2] = XMVectorSet(1.0f, 0.0f, -RightSlope, 0.0f);
|
||
|
Planes[3] = XMVectorSet(-1.0f, 0.0f, LeftSlope, 0.0f);
|
||
|
Planes[4] = XMVectorSet(0.0f, 1.0f, -TopSlope, 0.0f);
|
||
|
Planes[5] = XMVectorSet(0.0f, -1.0f, BottomSlope, 0.0f);
|
||
|
|
||
|
// Load origin and orientation of the frustum.
|
||
|
XMVECTOR vOrigin = XMLoadFloat3(&Origin);
|
||
|
XMVECTOR vOrientation = XMLoadFloat4(&Orientation);
|
||
|
|
||
|
assert(DirectX::Internal::XMQuaternionIsUnit(vOrientation));
|
||
|
|
||
|
// Transform triangle into the local space of frustum.
|
||
|
XMVECTOR TV0 = XMVector3InverseRotate(XMVectorSubtract(V0, vOrigin), vOrientation);
|
||
|
XMVECTOR TV1 = XMVector3InverseRotate(XMVectorSubtract(V1, vOrigin), vOrientation);
|
||
|
XMVECTOR TV2 = XMVector3InverseRotate(XMVectorSubtract(V2, vOrigin), vOrientation);
|
||
|
|
||
|
// Test each vertex of the triangle against the frustum planes.
|
||
|
XMVECTOR Outside = XMVectorFalseInt();
|
||
|
XMVECTOR InsideAll = XMVectorTrueInt();
|
||
|
|
||
|
for (size_t i = 0; i < 6; ++i)
|
||
|
{
|
||
|
XMVECTOR Dist0 = XMVector3Dot(TV0, Planes[i]);
|
||
|
XMVECTOR Dist1 = XMVector3Dot(TV1, Planes[i]);
|
||
|
XMVECTOR Dist2 = XMVector3Dot(TV2, Planes[i]);
|
||
|
|
||
|
XMVECTOR MinDist = XMVectorMin(Dist0, Dist1);
|
||
|
MinDist = XMVectorMin(MinDist, Dist2);
|
||
|
XMVECTOR MaxDist = XMVectorMax(Dist0, Dist1);
|
||
|
MaxDist = XMVectorMax(MaxDist, Dist2);
|
||
|
|
||
|
XMVECTOR PlaneDist = XMVectorSplatW(Planes[i]);
|
||
|
|
||
|
// Outside the plane?
|
||
|
Outside = XMVectorOrInt(Outside, XMVectorGreater(MinDist, PlaneDist));
|
||
|
|
||
|
// Fully inside the plane?
|
||
|
InsideAll = XMVectorAndInt(InsideAll, XMVectorLessOrEqual(MaxDist, PlaneDist));
|
||
|
}
|
||
|
|
||
|
// If the triangle is outside any of the planes it is outside.
|
||
|
if (XMVector4EqualInt(Outside, XMVectorTrueInt()))
|
||
|
return false;
|
||
|
|
||
|
// If the triangle is inside all planes it is fully inside.
|
||
|
if (XMVector4EqualInt(InsideAll, XMVectorTrueInt()))
|
||
|
return true;
|
||
|
|
||
|
// Build the corners of the frustum.
|
||
|
XMVECTOR vRightTop = XMVectorSet(RightSlope, TopSlope, 1.0f, 0.0f);
|
||
|
XMVECTOR vRightBottom = XMVectorSet(RightSlope, BottomSlope, 1.0f, 0.0f);
|
||
|
XMVECTOR vLeftTop = XMVectorSet(LeftSlope, TopSlope, 1.0f, 0.0f);
|
||
|
XMVECTOR vLeftBottom = XMVectorSet(LeftSlope, BottomSlope, 1.0f, 0.0f);
|
||
|
XMVECTOR vNear = XMVectorReplicatePtr(&Near);
|
||
|
XMVECTOR vFar = XMVectorReplicatePtr(&Far);
|
||
|
|
||
|
XMVECTOR Corners[CORNER_COUNT];
|
||
|
Corners[0] = XMVectorMultiply(vRightTop, vNear);
|
||
|
Corners[1] = XMVectorMultiply(vRightBottom, vNear);
|
||
|
Corners[2] = XMVectorMultiply(vLeftTop, vNear);
|
||
|
Corners[3] = XMVectorMultiply(vLeftBottom, vNear);
|
||
|
Corners[4] = XMVectorMultiply(vRightTop, vFar);
|
||
|
Corners[5] = XMVectorMultiply(vRightBottom, vFar);
|
||
|
Corners[6] = XMVectorMultiply(vLeftTop, vFar);
|
||
|
Corners[7] = XMVectorMultiply(vLeftBottom, vFar);
|
||
|
|
||
|
// Test the plane of the triangle.
|
||
|
XMVECTOR Normal = XMVector3Cross(XMVectorSubtract(V1, V0), XMVectorSubtract(V2, V0));
|
||
|
XMVECTOR Dist = XMVector3Dot(Normal, V0);
|
||
|
|
||
|
XMVECTOR MinDist, MaxDist;
|
||
|
MinDist = MaxDist = XMVector3Dot(Corners[0], Normal);
|
||
|
for (size_t i = 1; i < CORNER_COUNT; ++i)
|
||
|
{
|
||
|
XMVECTOR Temp = XMVector3Dot(Corners[i], Normal);
|
||
|
MinDist = XMVectorMin(MinDist, Temp);
|
||
|
MaxDist = XMVectorMax(MaxDist, Temp);
|
||
|
}
|
||
|
|
||
|
Outside = XMVectorOrInt(XMVectorGreater(MinDist, Dist), XMVectorLess(MaxDist, Dist));
|
||
|
if (XMVector4EqualInt(Outside, XMVectorTrueInt()))
|
||
|
return false;
|
||
|
|
||
|
// Check the edge/edge axes (3*6).
|
||
|
XMVECTOR TriangleEdgeAxis[3];
|
||
|
TriangleEdgeAxis[0] = XMVectorSubtract(V1, V0);
|
||
|
TriangleEdgeAxis[1] = XMVectorSubtract(V2, V1);
|
||
|
TriangleEdgeAxis[2] = XMVectorSubtract(V0, V2);
|
||
|
|
||
|
XMVECTOR FrustumEdgeAxis[6];
|
||
|
FrustumEdgeAxis[0] = vRightTop;
|
||
|
FrustumEdgeAxis[1] = vRightBottom;
|
||
|
FrustumEdgeAxis[2] = vLeftTop;
|
||
|
FrustumEdgeAxis[3] = vLeftBottom;
|
||
|
FrustumEdgeAxis[4] = XMVectorSubtract(vRightTop, vLeftTop);
|
||
|
FrustumEdgeAxis[5] = XMVectorSubtract(vLeftBottom, vLeftTop);
|
||
|
|
||
|
for (size_t i = 0; i < 3; ++i)
|
||
|
{
|
||
|
for (size_t j = 0; j < 6; j++)
|
||
|
{
|
||
|
// Compute the axis we are going to test.
|
||
|
XMVECTOR Axis = XMVector3Cross(TriangleEdgeAxis[i], FrustumEdgeAxis[j]);
|
||
|
|
||
|
// Find the min/max of the projection of the triangle onto the axis.
|
||
|
XMVECTOR MinA, MaxA;
|
||
|
|
||
|
XMVECTOR Dist0 = XMVector3Dot(V0, Axis);
|
||
|
XMVECTOR Dist1 = XMVector3Dot(V1, Axis);
|
||
|
XMVECTOR Dist2 = XMVector3Dot(V2, Axis);
|
||
|
|
||
|
MinA = XMVectorMin(Dist0, Dist1);
|
||
|
MinA = XMVectorMin(MinA, Dist2);
|
||
|
MaxA = XMVectorMax(Dist0, Dist1);
|
||
|
MaxA = XMVectorMax(MaxA, Dist2);
|
||
|
|
||
|
// Find the min/max of the projection of the frustum onto the axis.
|
||
|
XMVECTOR MinB, MaxB;
|
||
|
|
||
|
MinB = MaxB = XMVector3Dot(Axis, Corners[0]);
|
||
|
|
||
|
for (size_t k = 1; k < CORNER_COUNT; k++)
|
||
|
{
|
||
|
XMVECTOR Temp = XMVector3Dot(Axis, Corners[k]);
|
||
|
MinB = XMVectorMin(MinB, Temp);
|
||
|
MaxB = XMVectorMax(MaxB, Temp);
|
||
|
}
|
||
|
|
||
|
// if (MinA > MaxB || MinB > MaxA) reject;
|
||
|
Outside = XMVectorOrInt(Outside, XMVectorGreater(MinA, MaxB));
|
||
|
Outside = XMVectorOrInt(Outside, XMVectorGreater(MinB, MaxA));
|
||
|
}
|
||
|
}
|
||
|
|
||
|
if (XMVector4EqualInt(Outside, XMVectorTrueInt()))
|
||
|
return false;
|
||
|
|
||
|
// If we did not find a separating plane then the triangle must intersect the frustum.
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
|
||
|
//-----------------------------------------------------------------------------
|
||
|
_Use_decl_annotations_
|
||
|
inline PlaneIntersectionType XM_CALLCONV BoundingFrustum::Intersects(FXMVECTOR Plane) const noexcept
|
||
|
{
|
||
|
assert(DirectX::Internal::XMPlaneIsUnit(Plane));
|
||
|
|
||
|
// Load origin and orientation of the frustum.
|
||
|
XMVECTOR vOrigin = XMLoadFloat3(&Origin);
|
||
|
XMVECTOR vOrientation = XMLoadFloat4(&Orientation);
|
||
|
|
||
|
assert(DirectX::Internal::XMQuaternionIsUnit(vOrientation));
|
||
|
|
||
|
// Set w of the origin to one so we can dot4 with a plane.
|
||
|
vOrigin = XMVectorInsert<0, 0, 0, 0, 1>(vOrigin, XMVectorSplatOne());
|
||
|
|
||
|
// Build the corners of the frustum (in world space).
|
||
|
XMVECTOR RightTop = XMVectorSet(RightSlope, TopSlope, 1.0f, 0.0f);
|
||
|
XMVECTOR RightBottom = XMVectorSet(RightSlope, BottomSlope, 1.0f, 0.0f);
|
||
|
XMVECTOR LeftTop = XMVectorSet(LeftSlope, TopSlope, 1.0f, 0.0f);
|
||
|
XMVECTOR LeftBottom = XMVectorSet(LeftSlope, BottomSlope, 1.0f, 0.0f);
|
||
|
XMVECTOR vNear = XMVectorReplicatePtr(&Near);
|
||
|
XMVECTOR vFar = XMVectorReplicatePtr(&Far);
|
||
|
|
||
|
RightTop = XMVector3Rotate(RightTop, vOrientation);
|
||
|
RightBottom = XMVector3Rotate(RightBottom, vOrientation);
|
||
|
LeftTop = XMVector3Rotate(LeftTop, vOrientation);
|
||
|
LeftBottom = XMVector3Rotate(LeftBottom, vOrientation);
|
||
|
|
||
|
XMVECTOR Corners0 = XMVectorMultiplyAdd(RightTop, vNear, vOrigin);
|
||
|
XMVECTOR Corners1 = XMVectorMultiplyAdd(RightBottom, vNear, vOrigin);
|
||
|
XMVECTOR Corners2 = XMVectorMultiplyAdd(LeftTop, vNear, vOrigin);
|
||
|
XMVECTOR Corners3 = XMVectorMultiplyAdd(LeftBottom, vNear, vOrigin);
|
||
|
XMVECTOR Corners4 = XMVectorMultiplyAdd(RightTop, vFar, vOrigin);
|
||
|
XMVECTOR Corners5 = XMVectorMultiplyAdd(RightBottom, vFar, vOrigin);
|
||
|
XMVECTOR Corners6 = XMVectorMultiplyAdd(LeftTop, vFar, vOrigin);
|
||
|
XMVECTOR Corners7 = XMVectorMultiplyAdd(LeftBottom, vFar, vOrigin);
|
||
|
|
||
|
XMVECTOR Outside, Inside;
|
||
|
DirectX::Internal::FastIntersectFrustumPlane(Corners0, Corners1, Corners2, Corners3,
|
||
|
Corners4, Corners5, Corners6, Corners7,
|
||
|
Plane, Outside, Inside);
|
||
|
|
||
|
// If the frustum is outside any plane it is outside.
|
||
|
if (XMVector4EqualInt(Outside, XMVectorTrueInt()))
|
||
|
return FRONT;
|
||
|
|
||
|
// If the frustum is inside all planes it is inside.
|
||
|
if (XMVector4EqualInt(Inside, XMVectorTrueInt()))
|
||
|
return BACK;
|
||
|
|
||
|
// The frustum is not inside all planes or outside a plane it intersects.
|
||
|
return INTERSECTING;
|
||
|
}
|
||
|
|
||
|
|
||
|
//-----------------------------------------------------------------------------
|
||
|
// Ray vs. frustum test
|
||
|
//-----------------------------------------------------------------------------
|
||
|
_Use_decl_annotations_
|
||
|
inline bool XM_CALLCONV BoundingFrustum::Intersects(FXMVECTOR rayOrigin, FXMVECTOR Direction, float& Dist) const noexcept
|
||
|
{
|
||
|
// If ray starts inside the frustum, return a distance of 0 for the hit
|
||
|
if (Contains(rayOrigin) == CONTAINS)
|
||
|
{
|
||
|
Dist = 0.0f;
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
// Build the frustum planes.
|
||
|
XMVECTOR Planes[6];
|
||
|
Planes[0] = XMVectorSet(0.0f, 0.0f, -1.0f, Near);
|
||
|
Planes[1] = XMVectorSet(0.0f, 0.0f, 1.0f, -Far);
|
||
|
Planes[2] = XMVectorSet(1.0f, 0.0f, -RightSlope, 0.0f);
|
||
|
Planes[3] = XMVectorSet(-1.0f, 0.0f, LeftSlope, 0.0f);
|
||
|
Planes[4] = XMVectorSet(0.0f, 1.0f, -TopSlope, 0.0f);
|
||
|
Planes[5] = XMVectorSet(0.0f, -1.0f, BottomSlope, 0.0f);
|
||
|
|
||
|
// Load origin and orientation of the frustum.
|
||
|
XMVECTOR frOrigin = XMLoadFloat3(&Origin);
|
||
|
XMVECTOR frOrientation = XMLoadFloat4(&Orientation);
|
||
|
|
||
|
// This algorithm based on "Fast Ray-Convex Polyhedron Intersectin," in James Arvo, ed., Graphics Gems II pp. 247-250
|
||
|
float tnear = -FLT_MAX;
|
||
|
float tfar = FLT_MAX;
|
||
|
|
||
|
for (size_t i = 0; i < 6; ++i)
|
||
|
{
|
||
|
XMVECTOR Plane = DirectX::Internal::XMPlaneTransform(Planes[i], frOrientation, frOrigin);
|
||
|
Plane = XMPlaneNormalize(Plane);
|
||
|
|
||
|
XMVECTOR AxisDotOrigin = XMPlaneDotCoord(Plane, rayOrigin);
|
||
|
XMVECTOR AxisDotDirection = XMVector3Dot(Plane, Direction);
|
||
|
|
||
|
if (XMVector3LessOrEqual(XMVectorAbs(AxisDotDirection), g_RayEpsilon))
|
||
|
{
|
||
|
// Ray is parallel to plane - check if ray origin is inside plane's
|
||
|
if (XMVector3Greater(AxisDotOrigin, g_XMZero))
|
||
|
{
|
||
|
// Ray origin is outside half-space.
|
||
|
Dist = 0.f;
|
||
|
return false;
|
||
|
}
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
// Ray not parallel - get distance to plane.
|
||
|
float vd = XMVectorGetX(AxisDotDirection);
|
||
|
float vn = XMVectorGetX(AxisDotOrigin);
|
||
|
float t = -vn / vd;
|
||
|
if (vd < 0.0f)
|
||
|
{
|
||
|
// Front face - T is a near point.
|
||
|
if (t > tfar)
|
||
|
{
|
||
|
Dist = 0.f;
|
||
|
return false;
|
||
|
}
|
||
|
if (t > tnear)
|
||
|
{
|
||
|
// Hit near face.
|
||
|
tnear = t;
|
||
|
}
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
// back face - T is far point.
|
||
|
if (t < tnear)
|
||
|
{
|
||
|
Dist = 0.f;
|
||
|
return false;
|
||
|
}
|
||
|
if (t < tfar)
|
||
|
{
|
||
|
// Hit far face.
|
||
|
tfar = t;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// Survived all tests.
|
||
|
// Note: if ray originates on polyhedron, may want to change 0.0f to some
|
||
|
// epsilon to avoid intersecting the originating face.
|
||
|
float distance = (tnear >= 0.0f) ? tnear : tfar;
|
||
|
if (distance >= 0.0f)
|
||
|
{
|
||
|
Dist = distance;
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
Dist = 0.f;
|
||
|
return false;
|
||
|
}
|
||
|
|
||
|
|
||
|
//-----------------------------------------------------------------------------
|
||
|
// Test a frustum vs 6 planes (typically forming another frustum).
|
||
|
//-----------------------------------------------------------------------------
|
||
|
_Use_decl_annotations_
|
||
|
inline ContainmentType XM_CALLCONV BoundingFrustum::ContainedBy(
|
||
|
FXMVECTOR Plane0, FXMVECTOR Plane1, FXMVECTOR Plane2,
|
||
|
GXMVECTOR Plane3,
|
||
|
HXMVECTOR Plane4, HXMVECTOR Plane5) const noexcept
|
||
|
{
|
||
|
// Load origin and orientation of the frustum.
|
||
|
XMVECTOR vOrigin = XMLoadFloat3(&Origin);
|
||
|
XMVECTOR vOrientation = XMLoadFloat4(&Orientation);
|
||
|
|
||
|
assert(DirectX::Internal::XMQuaternionIsUnit(vOrientation));
|
||
|
|
||
|
// Set w of the origin to one so we can dot4 with a plane.
|
||
|
vOrigin = XMVectorInsert<0, 0, 0, 0, 1>(vOrigin, XMVectorSplatOne());
|
||
|
|
||
|
// Build the corners of the frustum (in world space).
|
||
|
XMVECTOR RightTop = XMVectorSet(RightSlope, TopSlope, 1.0f, 0.0f);
|
||
|
XMVECTOR RightBottom = XMVectorSet(RightSlope, BottomSlope, 1.0f, 0.0f);
|
||
|
XMVECTOR LeftTop = XMVectorSet(LeftSlope, TopSlope, 1.0f, 0.0f);
|
||
|
XMVECTOR LeftBottom = XMVectorSet(LeftSlope, BottomSlope, 1.0f, 0.0f);
|
||
|
XMVECTOR vNear = XMVectorReplicatePtr(&Near);
|
||
|
XMVECTOR vFar = XMVectorReplicatePtr(&Far);
|
||
|
|
||
|
RightTop = XMVector3Rotate(RightTop, vOrientation);
|
||
|
RightBottom = XMVector3Rotate(RightBottom, vOrientation);
|
||
|
LeftTop = XMVector3Rotate(LeftTop, vOrientation);
|
||
|
LeftBottom = XMVector3Rotate(LeftBottom, vOrientation);
|
||
|
|
||
|
XMVECTOR Corners0 = XMVectorMultiplyAdd(RightTop, vNear, vOrigin);
|
||
|
XMVECTOR Corners1 = XMVectorMultiplyAdd(RightBottom, vNear, vOrigin);
|
||
|
XMVECTOR Corners2 = XMVectorMultiplyAdd(LeftTop, vNear, vOrigin);
|
||
|
XMVECTOR Corners3 = XMVectorMultiplyAdd(LeftBottom, vNear, vOrigin);
|
||
|
XMVECTOR Corners4 = XMVectorMultiplyAdd(RightTop, vFar, vOrigin);
|
||
|
XMVECTOR Corners5 = XMVectorMultiplyAdd(RightBottom, vFar, vOrigin);
|
||
|
XMVECTOR Corners6 = XMVectorMultiplyAdd(LeftTop, vFar, vOrigin);
|
||
|
XMVECTOR Corners7 = XMVectorMultiplyAdd(LeftBottom, vFar, vOrigin);
|
||
|
|
||
|
XMVECTOR Outside, Inside;
|
||
|
|
||
|
// Test against each plane.
|
||
|
DirectX::Internal::FastIntersectFrustumPlane(Corners0, Corners1, Corners2, Corners3,
|
||
|
Corners4, Corners5, Corners6, Corners7,
|
||
|
Plane0, Outside, Inside);
|
||
|
|
||
|
XMVECTOR AnyOutside = Outside;
|
||
|
XMVECTOR AllInside = Inside;
|
||
|
|
||
|
DirectX::Internal::FastIntersectFrustumPlane(Corners0, Corners1, Corners2, Corners3,
|
||
|
Corners4, Corners5, Corners6, Corners7,
|
||
|
Plane1, Outside, Inside);
|
||
|
|
||
|
AnyOutside = XMVectorOrInt(AnyOutside, Outside);
|
||
|
AllInside = XMVectorAndInt(AllInside, Inside);
|
||
|
|
||
|
DirectX::Internal::FastIntersectFrustumPlane(Corners0, Corners1, Corners2, Corners3,
|
||
|
Corners4, Corners5, Corners6, Corners7,
|
||
|
Plane2, Outside, Inside);
|
||
|
|
||
|
AnyOutside = XMVectorOrInt(AnyOutside, Outside);
|
||
|
AllInside = XMVectorAndInt(AllInside, Inside);
|
||
|
|
||
|
DirectX::Internal::FastIntersectFrustumPlane(Corners0, Corners1, Corners2, Corners3,
|
||
|
Corners4, Corners5, Corners6, Corners7,
|
||
|
Plane3, Outside, Inside);
|
||
|
|
||
|
AnyOutside = XMVectorOrInt(AnyOutside, Outside);
|
||
|
AllInside = XMVectorAndInt(AllInside, Inside);
|
||
|
|
||
|
DirectX::Internal::FastIntersectFrustumPlane(Corners0, Corners1, Corners2, Corners3,
|
||
|
Corners4, Corners5, Corners6, Corners7,
|
||
|
Plane4, Outside, Inside);
|
||
|
|
||
|
AnyOutside = XMVectorOrInt(AnyOutside, Outside);
|
||
|
AllInside = XMVectorAndInt(AllInside, Inside);
|
||
|
|
||
|
DirectX::Internal::FastIntersectFrustumPlane(Corners0, Corners1, Corners2, Corners3,
|
||
|
Corners4, Corners5, Corners6, Corners7,
|
||
|
Plane5, Outside, Inside);
|
||
|
|
||
|
AnyOutside = XMVectorOrInt(AnyOutside, Outside);
|
||
|
AllInside = XMVectorAndInt(AllInside, Inside);
|
||
|
|
||
|
// If the frustum is outside any plane it is outside.
|
||
|
if (XMVector4EqualInt(AnyOutside, XMVectorTrueInt()))
|
||
|
return DISJOINT;
|
||
|
|
||
|
// If the frustum is inside all planes it is inside.
|
||
|
if (XMVector4EqualInt(AllInside, XMVectorTrueInt()))
|
||
|
return CONTAINS;
|
||
|
|
||
|
// The frustum is not inside all planes or outside a plane, it may intersect.
|
||
|
return INTERSECTS;
|
||
|
}
|
||
|
|
||
|
|
||
|
//-----------------------------------------------------------------------------
|
||
|
// Build the 6 frustum planes from a frustum.
|
||
|
//
|
||
|
// The intended use for these routines is for fast culling to a view frustum.
|
||
|
// When the volume being tested against a view frustum is small relative to the
|
||
|
// view frustum it is usually either inside all six planes of the frustum
|
||
|
// (CONTAINS) or outside one of the planes of the frustum (DISJOINT). If neither
|
||
|
// of these cases is true then it may or may not be intersecting the frustum
|
||
|
// (INTERSECTS)
|
||
|
//-----------------------------------------------------------------------------
|
||
|
_Use_decl_annotations_
|
||
|
inline void BoundingFrustum::GetPlanes(XMVECTOR* NearPlane, XMVECTOR* FarPlane, XMVECTOR* RightPlane,
|
||
|
XMVECTOR* LeftPlane, XMVECTOR* TopPlane, XMVECTOR* BottomPlane) const noexcept
|
||
|
{
|
||
|
// Load origin and orientation of the frustum.
|
||
|
XMVECTOR vOrigin = XMLoadFloat3(&Origin);
|
||
|
XMVECTOR vOrientation = XMLoadFloat4(&Orientation);
|
||
|
|
||
|
if (NearPlane)
|
||
|
{
|
||
|
XMVECTOR vNearPlane = XMVectorSet(0.0f, 0.0f, -1.0f, Near);
|
||
|
vNearPlane = DirectX::Internal::XMPlaneTransform(vNearPlane, vOrientation, vOrigin);
|
||
|
*NearPlane = XMPlaneNormalize(vNearPlane);
|
||
|
}
|
||
|
|
||
|
if (FarPlane)
|
||
|
{
|
||
|
XMVECTOR vFarPlane = XMVectorSet(0.0f, 0.0f, 1.0f, -Far);
|
||
|
vFarPlane = DirectX::Internal::XMPlaneTransform(vFarPlane, vOrientation, vOrigin);
|
||
|
*FarPlane = XMPlaneNormalize(vFarPlane);
|
||
|
}
|
||
|
|
||
|
if (RightPlane)
|
||
|
{
|
||
|
XMVECTOR vRightPlane = XMVectorSet(1.0f, 0.0f, -RightSlope, 0.0f);
|
||
|
vRightPlane = DirectX::Internal::XMPlaneTransform(vRightPlane, vOrientation, vOrigin);
|
||
|
*RightPlane = XMPlaneNormalize(vRightPlane);
|
||
|
}
|
||
|
|
||
|
if (LeftPlane)
|
||
|
{
|
||
|
XMVECTOR vLeftPlane = XMVectorSet(-1.0f, 0.0f, LeftSlope, 0.0f);
|
||
|
vLeftPlane = DirectX::Internal::XMPlaneTransform(vLeftPlane, vOrientation, vOrigin);
|
||
|
*LeftPlane = XMPlaneNormalize(vLeftPlane);
|
||
|
}
|
||
|
|
||
|
if (TopPlane)
|
||
|
{
|
||
|
XMVECTOR vTopPlane = XMVectorSet(0.0f, 1.0f, -TopSlope, 0.0f);
|
||
|
vTopPlane = DirectX::Internal::XMPlaneTransform(vTopPlane, vOrientation, vOrigin);
|
||
|
*TopPlane = XMPlaneNormalize(vTopPlane);
|
||
|
}
|
||
|
|
||
|
if (BottomPlane)
|
||
|
{
|
||
|
XMVECTOR vBottomPlane = XMVectorSet(0.0f, -1.0f, BottomSlope, 0.0f);
|
||
|
vBottomPlane = DirectX::Internal::XMPlaneTransform(vBottomPlane, vOrientation, vOrigin);
|
||
|
*BottomPlane = XMPlaneNormalize(vBottomPlane);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
|
||
|
//-----------------------------------------------------------------------------
|
||
|
// Build a frustum from a persepective projection matrix. The matrix may only
|
||
|
// contain a projection; any rotation, translation or scale will cause the
|
||
|
// constructed frustum to be incorrect.
|
||
|
//-----------------------------------------------------------------------------
|
||
|
_Use_decl_annotations_
|
||
|
inline void XM_CALLCONV BoundingFrustum::CreateFromMatrix(BoundingFrustum& Out, FXMMATRIX Projection, bool rhcoords) noexcept
|
||
|
{
|
||
|
// Corners of the projection frustum in homogenous space.
|
||
|
static XMVECTORF32 HomogenousPoints[6] =
|
||
|
{
|
||
|
{ { { 1.0f, 0.0f, 1.0f, 1.0f } } }, // right (at far plane)
|
||
|
{ { { -1.0f, 0.0f, 1.0f, 1.0f } } }, // left
|
||
|
{ { { 0.0f, 1.0f, 1.0f, 1.0f } } }, // top
|
||
|
{ { { 0.0f, -1.0f, 1.0f, 1.0f } } }, // bottom
|
||
|
|
||
|
{ { { 0.0f, 0.0f, 0.0f, 1.0f } } }, // near
|
||
|
{ { { 0.0f, 0.0f, 1.0f, 1.0f } } } // far
|
||
|
};
|
||
|
|
||
|
XMVECTOR Determinant;
|
||
|
XMMATRIX matInverse = XMMatrixInverse(&Determinant, Projection);
|
||
|
|
||
|
// Compute the frustum corners in world space.
|
||
|
XMVECTOR Points[6];
|
||
|
|
||
|
for (size_t i = 0; i < 6; ++i)
|
||
|
{
|
||
|
// Transform point.
|
||
|
Points[i] = XMVector4Transform(HomogenousPoints[i], matInverse);
|
||
|
}
|
||
|
|
||
|
Out.Origin = XMFLOAT3(0.0f, 0.0f, 0.0f);
|
||
|
Out.Orientation = XMFLOAT4(0.0f, 0.0f, 0.0f, 1.0f);
|
||
|
|
||
|
// Compute the slopes.
|
||
|
Points[0] = XMVectorMultiply(Points[0], XMVectorReciprocal(XMVectorSplatZ(Points[0])));
|
||
|
Points[1] = XMVectorMultiply(Points[1], XMVectorReciprocal(XMVectorSplatZ(Points[1])));
|
||
|
Points[2] = XMVectorMultiply(Points[2], XMVectorReciprocal(XMVectorSplatZ(Points[2])));
|
||
|
Points[3] = XMVectorMultiply(Points[3], XMVectorReciprocal(XMVectorSplatZ(Points[3])));
|
||
|
|
||
|
Out.RightSlope = XMVectorGetX(Points[0]);
|
||
|
Out.LeftSlope = XMVectorGetX(Points[1]);
|
||
|
Out.TopSlope = XMVectorGetY(Points[2]);
|
||
|
Out.BottomSlope = XMVectorGetY(Points[3]);
|
||
|
|
||
|
// Compute near and far.
|
||
|
Points[4] = XMVectorMultiply(Points[4], XMVectorReciprocal(XMVectorSplatW(Points[4])));
|
||
|
Points[5] = XMVectorMultiply(Points[5], XMVectorReciprocal(XMVectorSplatW(Points[5])));
|
||
|
|
||
|
if (rhcoords)
|
||
|
{
|
||
|
Out.Near = XMVectorGetZ(Points[5]);
|
||
|
Out.Far = XMVectorGetZ(Points[4]);
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
Out.Near = XMVectorGetZ(Points[4]);
|
||
|
Out.Far = XMVectorGetZ(Points[5]);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
|
||
|
/****************************************************************************
|
||
|
*
|
||
|
* TriangleTests
|
||
|
*
|
||
|
****************************************************************************/
|
||
|
|
||
|
namespace TriangleTests
|
||
|
{
|
||
|
|
||
|
//-----------------------------------------------------------------------------
|
||
|
// Compute the intersection of a ray (Origin, Direction) with a triangle
|
||
|
// (V0, V1, V2). Return true if there is an intersection and also set *pDist
|
||
|
// to the distance along the ray to the intersection.
|
||
|
//
|
||
|
// The algorithm is based on Moller, Tomas and Trumbore, "Fast, Minimum Storage
|
||
|
// Ray-Triangle Intersection", Journal of Graphics Tools, vol. 2, no. 1,
|
||
|
// pp 21-28, 1997.
|
||
|
//-----------------------------------------------------------------------------
|
||
|
_Use_decl_annotations_
|
||
|
inline bool XM_CALLCONV Intersects(
|
||
|
FXMVECTOR Origin, FXMVECTOR Direction, FXMVECTOR V0,
|
||
|
GXMVECTOR V1,
|
||
|
HXMVECTOR V2, float& Dist) noexcept
|
||
|
{
|
||
|
assert(DirectX::Internal::XMVector3IsUnit(Direction));
|
||
|
|
||
|
XMVECTOR Zero = XMVectorZero();
|
||
|
|
||
|
XMVECTOR e1 = XMVectorSubtract(V1, V0);
|
||
|
XMVECTOR e2 = XMVectorSubtract(V2, V0);
|
||
|
|
||
|
// p = Direction ^ e2;
|
||
|
XMVECTOR p = XMVector3Cross(Direction, e2);
|
||
|
|
||
|
// det = e1 * p;
|
||
|
XMVECTOR det = XMVector3Dot(e1, p);
|
||
|
|
||
|
XMVECTOR u, v, t;
|
||
|
|
||
|
if (XMVector3GreaterOrEqual(det, g_RayEpsilon))
|
||
|
{
|
||
|
// Determinate is positive (front side of the triangle).
|
||
|
XMVECTOR s = XMVectorSubtract(Origin, V0);
|
||
|
|
||
|
// u = s * p;
|
||
|
u = XMVector3Dot(s, p);
|
||
|
|
||
|
XMVECTOR NoIntersection = XMVectorLess(u, Zero);
|
||
|
NoIntersection = XMVectorOrInt(NoIntersection, XMVectorGreater(u, det));
|
||
|
|
||
|
// q = s ^ e1;
|
||
|
XMVECTOR q = XMVector3Cross(s, e1);
|
||
|
|
||
|
// v = Direction * q;
|
||
|
v = XMVector3Dot(Direction, q);
|
||
|
|
||
|
NoIntersection = XMVectorOrInt(NoIntersection, XMVectorLess(v, Zero));
|
||
|
NoIntersection = XMVectorOrInt(NoIntersection, XMVectorGreater(XMVectorAdd(u, v), det));
|
||
|
|
||
|
// t = e2 * q;
|
||
|
t = XMVector3Dot(e2, q);
|
||
|
|
||
|
NoIntersection = XMVectorOrInt(NoIntersection, XMVectorLess(t, Zero));
|
||
|
|
||
|
if (XMVector4EqualInt(NoIntersection, XMVectorTrueInt()))
|
||
|
{
|
||
|
Dist = 0.f;
|
||
|
return false;
|
||
|
}
|
||
|
}
|
||
|
else if (XMVector3LessOrEqual(det, g_RayNegEpsilon))
|
||
|
{
|
||
|
// Determinate is negative (back side of the triangle).
|
||
|
XMVECTOR s = XMVectorSubtract(Origin, V0);
|
||
|
|
||
|
// u = s * p;
|
||
|
u = XMVector3Dot(s, p);
|
||
|
|
||
|
XMVECTOR NoIntersection = XMVectorGreater(u, Zero);
|
||
|
NoIntersection = XMVectorOrInt(NoIntersection, XMVectorLess(u, det));
|
||
|
|
||
|
// q = s ^ e1;
|
||
|
XMVECTOR q = XMVector3Cross(s, e1);
|
||
|
|
||
|
// v = Direction * q;
|
||
|
v = XMVector3Dot(Direction, q);
|
||
|
|
||
|
NoIntersection = XMVectorOrInt(NoIntersection, XMVectorGreater(v, Zero));
|
||
|
NoIntersection = XMVectorOrInt(NoIntersection, XMVectorLess(XMVectorAdd(u, v), det));
|
||
|
|
||
|
// t = e2 * q;
|
||
|
t = XMVector3Dot(e2, q);
|
||
|
|
||
|
NoIntersection = XMVectorOrInt(NoIntersection, XMVectorGreater(t, Zero));
|
||
|
|
||
|
if (XMVector4EqualInt(NoIntersection, XMVectorTrueInt()))
|
||
|
{
|
||
|
Dist = 0.f;
|
||
|
return false;
|
||
|
}
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
// Parallel ray.
|
||
|
Dist = 0.f;
|
||
|
return false;
|
||
|
}
|
||
|
|
||
|
t = XMVectorDivide(t, det);
|
||
|
|
||
|
// (u / det) and (v / dev) are the barycentric cooridinates of the intersection.
|
||
|
|
||
|
// Store the x-component to *pDist
|
||
|
XMStoreFloat(&Dist, t);
|
||
|
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
|
||
|
//-----------------------------------------------------------------------------
|
||
|
// Test if two triangles intersect.
|
||
|
//
|
||
|
// The final test of algorithm is based on Shen, Heng, and Tang, "A Fast
|
||
|
// Triangle-Triangle Overlap Test Using Signed Distances", Journal of Graphics
|
||
|
// Tools, vol. 8, no. 1, pp 17-23, 2003 and Guigue and Devillers, "Fast and
|
||
|
// Robust Triangle-Triangle Overlap Test Using Orientation Predicates", Journal
|
||
|
// of Graphics Tools, vol. 8, no. 1, pp 25-32, 2003.
|
||
|
//
|
||
|
// The final test could be considered an edge-edge separating plane test with
|
||
|
// the 9 possible cases narrowed down to the only two pairs of edges that can
|
||
|
// actaully result in a seperation.
|
||
|
//-----------------------------------------------------------------------------
|
||
|
_Use_decl_annotations_
|
||
|
inline bool XM_CALLCONV Intersects(FXMVECTOR A0, FXMVECTOR A1, FXMVECTOR A2, GXMVECTOR B0, HXMVECTOR B1, HXMVECTOR B2) noexcept
|
||
|
{
|
||
|
static const XMVECTORU32 SelectY = { { { XM_SELECT_0, XM_SELECT_1, XM_SELECT_0, XM_SELECT_0 } } };
|
||
|
static const XMVECTORU32 SelectZ = { { { XM_SELECT_0, XM_SELECT_0, XM_SELECT_1, XM_SELECT_0 } } };
|
||
|
static const XMVECTORU32 Select0111 = { { { XM_SELECT_0, XM_SELECT_1, XM_SELECT_1, XM_SELECT_1 } } };
|
||
|
static const XMVECTORU32 Select1011 = { { { XM_SELECT_1, XM_SELECT_0, XM_SELECT_1, XM_SELECT_1 } } };
|
||
|
static const XMVECTORU32 Select1101 = { { { XM_SELECT_1, XM_SELECT_1, XM_SELECT_0, XM_SELECT_1 } } };
|
||
|
|
||
|
XMVECTOR Zero = XMVectorZero();
|
||
|
|
||
|
// Compute the normal of triangle A.
|
||
|
XMVECTOR N1 = XMVector3Cross(XMVectorSubtract(A1, A0), XMVectorSubtract(A2, A0));
|
||
|
|
||
|
// Assert that the triangle is not degenerate.
|
||
|
assert(!XMVector3Equal(N1, Zero));
|
||
|
|
||
|
// Test points of B against the plane of A.
|
||
|
XMVECTOR BDist = XMVector3Dot(N1, XMVectorSubtract(B0, A0));
|
||
|
BDist = XMVectorSelect(BDist, XMVector3Dot(N1, XMVectorSubtract(B1, A0)), SelectY);
|
||
|
BDist = XMVectorSelect(BDist, XMVector3Dot(N1, XMVectorSubtract(B2, A0)), SelectZ);
|
||
|
|
||
|
// Ensure robustness with co-planar triangles by zeroing small distances.
|
||
|
uint32_t BDistIsZeroCR;
|
||
|
XMVECTOR BDistIsZero = XMVectorGreaterR(&BDistIsZeroCR, g_RayEpsilon, XMVectorAbs(BDist));
|
||
|
BDist = XMVectorSelect(BDist, Zero, BDistIsZero);
|
||
|
|
||
|
uint32_t BDistIsLessCR;
|
||
|
XMVECTOR BDistIsLess = XMVectorGreaterR(&BDistIsLessCR, Zero, BDist);
|
||
|
|
||
|
uint32_t BDistIsGreaterCR;
|
||
|
XMVECTOR BDistIsGreater = XMVectorGreaterR(&BDistIsGreaterCR, BDist, Zero);
|
||
|
|
||
|
// If all the points are on the same side we don't intersect.
|
||
|
if (XMComparisonAllTrue(BDistIsLessCR) || XMComparisonAllTrue(BDistIsGreaterCR))
|
||
|
return false;
|
||
|
|
||
|
// Compute the normal of triangle B.
|
||
|
XMVECTOR N2 = XMVector3Cross(XMVectorSubtract(B1, B0), XMVectorSubtract(B2, B0));
|
||
|
|
||
|
// Assert that the triangle is not degenerate.
|
||
|
assert(!XMVector3Equal(N2, Zero));
|
||
|
|
||
|
// Test points of A against the plane of B.
|
||
|
XMVECTOR ADist = XMVector3Dot(N2, XMVectorSubtract(A0, B0));
|
||
|
ADist = XMVectorSelect(ADist, XMVector3Dot(N2, XMVectorSubtract(A1, B0)), SelectY);
|
||
|
ADist = XMVectorSelect(ADist, XMVector3Dot(N2, XMVectorSubtract(A2, B0)), SelectZ);
|
||
|
|
||
|
// Ensure robustness with co-planar triangles by zeroing small distances.
|
||
|
uint32_t ADistIsZeroCR;
|
||
|
XMVECTOR ADistIsZero = XMVectorGreaterR(&ADistIsZeroCR, g_RayEpsilon, XMVectorAbs(BDist));
|
||
|
ADist = XMVectorSelect(ADist, Zero, ADistIsZero);
|
||
|
|
||
|
uint32_t ADistIsLessCR;
|
||
|
XMVECTOR ADistIsLess = XMVectorGreaterR(&ADistIsLessCR, Zero, ADist);
|
||
|
|
||
|
uint32_t ADistIsGreaterCR;
|
||
|
XMVECTOR ADistIsGreater = XMVectorGreaterR(&ADistIsGreaterCR, ADist, Zero);
|
||
|
|
||
|
// If all the points are on the same side we don't intersect.
|
||
|
if (XMComparisonAllTrue(ADistIsLessCR) || XMComparisonAllTrue(ADistIsGreaterCR))
|
||
|
return false;
|
||
|
|
||
|
// Special case for co-planar triangles.
|
||
|
if (XMComparisonAllTrue(ADistIsZeroCR) || XMComparisonAllTrue(BDistIsZeroCR))
|
||
|
{
|
||
|
XMVECTOR Axis, Dist, MinDist;
|
||
|
|
||
|
// Compute an axis perpindicular to the edge (points out).
|
||
|
Axis = XMVector3Cross(N1, XMVectorSubtract(A1, A0));
|
||
|
Dist = XMVector3Dot(Axis, A0);
|
||
|
|
||
|
// Test points of B against the axis.
|
||
|
MinDist = XMVector3Dot(B0, Axis);
|
||
|
MinDist = XMVectorMin(MinDist, XMVector3Dot(B1, Axis));
|
||
|
MinDist = XMVectorMin(MinDist, XMVector3Dot(B2, Axis));
|
||
|
if (XMVector4GreaterOrEqual(MinDist, Dist))
|
||
|
return false;
|
||
|
|
||
|
// Edge (A1, A2)
|
||
|
Axis = XMVector3Cross(N1, XMVectorSubtract(A2, A1));
|
||
|
Dist = XMVector3Dot(Axis, A1);
|
||
|
|
||
|
MinDist = XMVector3Dot(B0, Axis);
|
||
|
MinDist = XMVectorMin(MinDist, XMVector3Dot(B1, Axis));
|
||
|
MinDist = XMVectorMin(MinDist, XMVector3Dot(B2, Axis));
|
||
|
if (XMVector4GreaterOrEqual(MinDist, Dist))
|
||
|
return false;
|
||
|
|
||
|
// Edge (A2, A0)
|
||
|
Axis = XMVector3Cross(N1, XMVectorSubtract(A0, A2));
|
||
|
Dist = XMVector3Dot(Axis, A2);
|
||
|
|
||
|
MinDist = XMVector3Dot(B0, Axis);
|
||
|
MinDist = XMVectorMin(MinDist, XMVector3Dot(B1, Axis));
|
||
|
MinDist = XMVectorMin(MinDist, XMVector3Dot(B2, Axis));
|
||
|
if (XMVector4GreaterOrEqual(MinDist, Dist))
|
||
|
return false;
|
||
|
|
||
|
// Edge (B0, B1)
|
||
|
Axis = XMVector3Cross(N2, XMVectorSubtract(B1, B0));
|
||
|
Dist = XMVector3Dot(Axis, B0);
|
||
|
|
||
|
MinDist = XMVector3Dot(A0, Axis);
|
||
|
MinDist = XMVectorMin(MinDist, XMVector3Dot(A1, Axis));
|
||
|
MinDist = XMVectorMin(MinDist, XMVector3Dot(A2, Axis));
|
||
|
if (XMVector4GreaterOrEqual(MinDist, Dist))
|
||
|
return false;
|
||
|
|
||
|
// Edge (B1, B2)
|
||
|
Axis = XMVector3Cross(N2, XMVectorSubtract(B2, B1));
|
||
|
Dist = XMVector3Dot(Axis, B1);
|
||
|
|
||
|
MinDist = XMVector3Dot(A0, Axis);
|
||
|
MinDist = XMVectorMin(MinDist, XMVector3Dot(A1, Axis));
|
||
|
MinDist = XMVectorMin(MinDist, XMVector3Dot(A2, Axis));
|
||
|
if (XMVector4GreaterOrEqual(MinDist, Dist))
|
||
|
return false;
|
||
|
|
||
|
// Edge (B2,B0)
|
||
|
Axis = XMVector3Cross(N2, XMVectorSubtract(B0, B2));
|
||
|
Dist = XMVector3Dot(Axis, B2);
|
||
|
|
||
|
MinDist = XMVector3Dot(A0, Axis);
|
||
|
MinDist = XMVectorMin(MinDist, XMVector3Dot(A1, Axis));
|
||
|
MinDist = XMVectorMin(MinDist, XMVector3Dot(A2, Axis));
|
||
|
if (XMVector4GreaterOrEqual(MinDist, Dist))
|
||
|
return false;
|
||
|
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
//
|
||
|
// Find the single vertex of A and B (ie the vertex on the opposite side
|
||
|
// of the plane from the other two) and reorder the edges so we can compute
|
||
|
// the signed edge/edge distances.
|
||
|
//
|
||
|
// if ( (V0 >= 0 && V1 < 0 && V2 < 0) ||
|
||
|
// (V0 > 0 && V1 <= 0 && V2 <= 0) ||
|
||
|
// (V0 <= 0 && V1 > 0 && V2 > 0) ||
|
||
|
// (V0 < 0 && V1 >= 0 && V2 >= 0) ) then V0 is singular;
|
||
|
//
|
||
|
// If our singular vertex is not on the positive side of the plane we reverse
|
||
|
// the triangle winding so that the overlap comparisons will compare the
|
||
|
// correct edges with the correct signs.
|
||
|
//
|
||
|
XMVECTOR ADistIsLessEqual = XMVectorOrInt(ADistIsLess, ADistIsZero);
|
||
|
XMVECTOR ADistIsGreaterEqual = XMVectorOrInt(ADistIsGreater, ADistIsZero);
|
||
|
|
||
|
XMVECTOR AA0, AA1, AA2;
|
||
|
bool bPositiveA;
|
||
|
|
||
|
if (DirectX::Internal::XMVector3AllTrue(XMVectorSelect(ADistIsGreaterEqual, ADistIsLess, Select0111)) ||
|
||
|
DirectX::Internal::XMVector3AllTrue(XMVectorSelect(ADistIsGreater, ADistIsLessEqual, Select0111)))
|
||
|
{
|
||
|
// A0 is singular, crossing from positive to negative.
|
||
|
AA0 = A0; AA1 = A1; AA2 = A2;
|
||
|
bPositiveA = true;
|
||
|
}
|
||
|
else if (DirectX::Internal::XMVector3AllTrue(XMVectorSelect(ADistIsLessEqual, ADistIsGreater, Select0111)) ||
|
||
|
DirectX::Internal::XMVector3AllTrue(XMVectorSelect(ADistIsLess, ADistIsGreaterEqual, Select0111)))
|
||
|
{
|
||
|
// A0 is singular, crossing from negative to positive.
|
||
|
AA0 = A0; AA1 = A2; AA2 = A1;
|
||
|
bPositiveA = false;
|
||
|
}
|
||
|
else if (DirectX::Internal::XMVector3AllTrue(XMVectorSelect(ADistIsGreaterEqual, ADistIsLess, Select1011)) ||
|
||
|
DirectX::Internal::XMVector3AllTrue(XMVectorSelect(ADistIsGreater, ADistIsLessEqual, Select1011)))
|
||
|
{
|
||
|
// A1 is singular, crossing from positive to negative.
|
||
|
AA0 = A1; AA1 = A2; AA2 = A0;
|
||
|
bPositiveA = true;
|
||
|
}
|
||
|
else if (DirectX::Internal::XMVector3AllTrue(XMVectorSelect(ADistIsLessEqual, ADistIsGreater, Select1011)) ||
|
||
|
DirectX::Internal::XMVector3AllTrue(XMVectorSelect(ADistIsLess, ADistIsGreaterEqual, Select1011)))
|
||
|
{
|
||
|
// A1 is singular, crossing from negative to positive.
|
||
|
AA0 = A1; AA1 = A0; AA2 = A2;
|
||
|
bPositiveA = false;
|
||
|
}
|
||
|
else if (DirectX::Internal::XMVector3AllTrue(XMVectorSelect(ADistIsGreaterEqual, ADistIsLess, Select1101)) ||
|
||
|
DirectX::Internal::XMVector3AllTrue(XMVectorSelect(ADistIsGreater, ADistIsLessEqual, Select1101)))
|
||
|
{
|
||
|
// A2 is singular, crossing from positive to negative.
|
||
|
AA0 = A2; AA1 = A0; AA2 = A1;
|
||
|
bPositiveA = true;
|
||
|
}
|
||
|
else if (DirectX::Internal::XMVector3AllTrue(XMVectorSelect(ADistIsLessEqual, ADistIsGreater, Select1101)) ||
|
||
|
DirectX::Internal::XMVector3AllTrue(XMVectorSelect(ADistIsLess, ADistIsGreaterEqual, Select1101)))
|
||
|
{
|
||
|
// A2 is singular, crossing from negative to positive.
|
||
|
AA0 = A2; AA1 = A1; AA2 = A0;
|
||
|
bPositiveA = false;
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
assert(false);
|
||
|
return false;
|
||
|
}
|
||
|
|
||
|
XMVECTOR BDistIsLessEqual = XMVectorOrInt(BDistIsLess, BDistIsZero);
|
||
|
XMVECTOR BDistIsGreaterEqual = XMVectorOrInt(BDistIsGreater, BDistIsZero);
|
||
|
|
||
|
XMVECTOR BB0, BB1, BB2;
|
||
|
bool bPositiveB;
|
||
|
|
||
|
if (DirectX::Internal::XMVector3AllTrue(XMVectorSelect(BDistIsGreaterEqual, BDistIsLess, Select0111)) ||
|
||
|
DirectX::Internal::XMVector3AllTrue(XMVectorSelect(BDistIsGreater, BDistIsLessEqual, Select0111)))
|
||
|
{
|
||
|
// B0 is singular, crossing from positive to negative.
|
||
|
BB0 = B0; BB1 = B1; BB2 = B2;
|
||
|
bPositiveB = true;
|
||
|
}
|
||
|
else if (DirectX::Internal::XMVector3AllTrue(XMVectorSelect(BDistIsLessEqual, BDistIsGreater, Select0111)) ||
|
||
|
DirectX::Internal::XMVector3AllTrue(XMVectorSelect(BDistIsLess, BDistIsGreaterEqual, Select0111)))
|
||
|
{
|
||
|
// B0 is singular, crossing from negative to positive.
|
||
|
BB0 = B0; BB1 = B2; BB2 = B1;
|
||
|
bPositiveB = false;
|
||
|
}
|
||
|
else if (DirectX::Internal::XMVector3AllTrue(XMVectorSelect(BDistIsGreaterEqual, BDistIsLess, Select1011)) ||
|
||
|
DirectX::Internal::XMVector3AllTrue(XMVectorSelect(BDistIsGreater, BDistIsLessEqual, Select1011)))
|
||
|
{
|
||
|
// B1 is singular, crossing from positive to negative.
|
||
|
BB0 = B1; BB1 = B2; BB2 = B0;
|
||
|
bPositiveB = true;
|
||
|
}
|
||
|
else if (DirectX::Internal::XMVector3AllTrue(XMVectorSelect(BDistIsLessEqual, BDistIsGreater, Select1011)) ||
|
||
|
DirectX::Internal::XMVector3AllTrue(XMVectorSelect(BDistIsLess, BDistIsGreaterEqual, Select1011)))
|
||
|
{
|
||
|
// B1 is singular, crossing from negative to positive.
|
||
|
BB0 = B1; BB1 = B0; BB2 = B2;
|
||
|
bPositiveB = false;
|
||
|
}
|
||
|
else if (DirectX::Internal::XMVector3AllTrue(XMVectorSelect(BDistIsGreaterEqual, BDistIsLess, Select1101)) ||
|
||
|
DirectX::Internal::XMVector3AllTrue(XMVectorSelect(BDistIsGreater, BDistIsLessEqual, Select1101)))
|
||
|
{
|
||
|
// B2 is singular, crossing from positive to negative.
|
||
|
BB0 = B2; BB1 = B0; BB2 = B1;
|
||
|
bPositiveB = true;
|
||
|
}
|
||
|
else if (DirectX::Internal::XMVector3AllTrue(XMVectorSelect(BDistIsLessEqual, BDistIsGreater, Select1101)) ||
|
||
|
DirectX::Internal::XMVector3AllTrue(XMVectorSelect(BDistIsLess, BDistIsGreaterEqual, Select1101)))
|
||
|
{
|
||
|
// B2 is singular, crossing from negative to positive.
|
||
|
BB0 = B2; BB1 = B1; BB2 = B0;
|
||
|
bPositiveB = false;
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
assert(false);
|
||
|
return false;
|
||
|
}
|
||
|
|
||
|
XMVECTOR Delta0, Delta1;
|
||
|
|
||
|
// Reverse the direction of the test depending on whether the singular vertices are
|
||
|
// the same sign or different signs.
|
||
|
if (bPositiveA ^ bPositiveB)
|
||
|
{
|
||
|
Delta0 = XMVectorSubtract(BB0, AA0);
|
||
|
Delta1 = XMVectorSubtract(AA0, BB0);
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
Delta0 = XMVectorSubtract(AA0, BB0);
|
||
|
Delta1 = XMVectorSubtract(BB0, AA0);
|
||
|
}
|
||
|
|
||
|
// Check if the triangles overlap on the line of intersection between the
|
||
|
// planes of the two triangles by finding the signed line distances.
|
||
|
XMVECTOR Dist0 = XMVector3Dot(Delta0, XMVector3Cross(XMVectorSubtract(BB2, BB0), XMVectorSubtract(AA2, AA0)));
|
||
|
if (XMVector4Greater(Dist0, Zero))
|
||
|
return false;
|
||
|
|
||
|
XMVECTOR Dist1 = XMVector3Dot(Delta1, XMVector3Cross(XMVectorSubtract(BB1, BB0), XMVectorSubtract(AA1, AA0)));
|
||
|
if (XMVector4Greater(Dist1, Zero))
|
||
|
return false;
|
||
|
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
|
||
|
//-----------------------------------------------------------------------------
|
||
|
// Ray-triangle test
|
||
|
//-----------------------------------------------------------------------------
|
||
|
_Use_decl_annotations_
|
||
|
inline PlaneIntersectionType XM_CALLCONV Intersects(FXMVECTOR V0, FXMVECTOR V1, FXMVECTOR V2, GXMVECTOR Plane) noexcept
|
||
|
{
|
||
|
XMVECTOR One = XMVectorSplatOne();
|
||
|
|
||
|
assert(DirectX::Internal::XMPlaneIsUnit(Plane));
|
||
|
|
||
|
// Set w of the points to one so we can dot4 with a plane.
|
||
|
XMVECTOR TV0 = XMVectorInsert<0, 0, 0, 0, 1>(V0, One);
|
||
|
XMVECTOR TV1 = XMVectorInsert<0, 0, 0, 0, 1>(V1, One);
|
||
|
XMVECTOR TV2 = XMVectorInsert<0, 0, 0, 0, 1>(V2, One);
|
||
|
|
||
|
XMVECTOR Outside, Inside;
|
||
|
DirectX::Internal::FastIntersectTrianglePlane(TV0, TV1, TV2, Plane, Outside, Inside);
|
||
|
|
||
|
// If the triangle is outside any plane it is outside.
|
||
|
if (XMVector4EqualInt(Outside, XMVectorTrueInt()))
|
||
|
return FRONT;
|
||
|
|
||
|
// If the triangle is inside all planes it is inside.
|
||
|
if (XMVector4EqualInt(Inside, XMVectorTrueInt()))
|
||
|
return BACK;
|
||
|
|
||
|
// The triangle is not inside all planes or outside a plane it intersects.
|
||
|
return INTERSECTING;
|
||
|
}
|
||
|
|
||
|
|
||
|
//-----------------------------------------------------------------------------
|
||
|
// Test a triangle vs 6 planes (typically forming a frustum).
|
||
|
//-----------------------------------------------------------------------------
|
||
|
_Use_decl_annotations_
|
||
|
inline ContainmentType XM_CALLCONV ContainedBy(
|
||
|
FXMVECTOR V0, FXMVECTOR V1, FXMVECTOR V2,
|
||
|
GXMVECTOR Plane0,
|
||
|
HXMVECTOR Plane1, HXMVECTOR Plane2,
|
||
|
CXMVECTOR Plane3, CXMVECTOR Plane4, CXMVECTOR Plane5) noexcept
|
||
|
{
|
||
|
XMVECTOR One = XMVectorSplatOne();
|
||
|
|
||
|
// Set w of the points to one so we can dot4 with a plane.
|
||
|
XMVECTOR TV0 = XMVectorInsert<0, 0, 0, 0, 1>(V0, One);
|
||
|
XMVECTOR TV1 = XMVectorInsert<0, 0, 0, 0, 1>(V1, One);
|
||
|
XMVECTOR TV2 = XMVectorInsert<0, 0, 0, 0, 1>(V2, One);
|
||
|
|
||
|
XMVECTOR Outside, Inside;
|
||
|
|
||
|
// Test against each plane.
|
||
|
DirectX::Internal::FastIntersectTrianglePlane(TV0, TV1, TV2, Plane0, Outside, Inside);
|
||
|
|
||
|
XMVECTOR AnyOutside = Outside;
|
||
|
XMVECTOR AllInside = Inside;
|
||
|
|
||
|
DirectX::Internal::FastIntersectTrianglePlane(TV0, TV1, TV2, Plane1, Outside, Inside);
|
||
|
AnyOutside = XMVectorOrInt(AnyOutside, Outside);
|
||
|
AllInside = XMVectorAndInt(AllInside, Inside);
|
||
|
|
||
|
DirectX::Internal::FastIntersectTrianglePlane(TV0, TV1, TV2, Plane2, Outside, Inside);
|
||
|
AnyOutside = XMVectorOrInt(AnyOutside, Outside);
|
||
|
AllInside = XMVectorAndInt(AllInside, Inside);
|
||
|
|
||
|
DirectX::Internal::FastIntersectTrianglePlane(TV0, TV1, TV2, Plane3, Outside, Inside);
|
||
|
AnyOutside = XMVectorOrInt(AnyOutside, Outside);
|
||
|
AllInside = XMVectorAndInt(AllInside, Inside);
|
||
|
|
||
|
DirectX::Internal::FastIntersectTrianglePlane(TV0, TV1, TV2, Plane4, Outside, Inside);
|
||
|
AnyOutside = XMVectorOrInt(AnyOutside, Outside);
|
||
|
AllInside = XMVectorAndInt(AllInside, Inside);
|
||
|
|
||
|
DirectX::Internal::FastIntersectTrianglePlane(TV0, TV1, TV2, Plane5, Outside, Inside);
|
||
|
AnyOutside = XMVectorOrInt(AnyOutside, Outside);
|
||
|
AllInside = XMVectorAndInt(AllInside, Inside);
|
||
|
|
||
|
// If the triangle is outside any plane it is outside.
|
||
|
if (XMVector4EqualInt(AnyOutside, XMVectorTrueInt()))
|
||
|
return DISJOINT;
|
||
|
|
||
|
// If the triangle is inside all planes it is inside.
|
||
|
if (XMVector4EqualInt(AllInside, XMVectorTrueInt()))
|
||
|
return CONTAINS;
|
||
|
|
||
|
// The triangle is not inside all planes or outside a plane, it may intersect.
|
||
|
return INTERSECTS;
|
||
|
}
|
||
|
|
||
|
} // namespace TriangleTests
|
||
|
|