1
0
mirror of https://github.com/ncblakely/GiantsTools synced 2024-11-25 07:35:36 +01:00
GiantsTools/Sdk/External/DirectXTK/Src/Shaders/EnvironmentMapEffect.fx

448 lines
12 KiB
HLSL
Raw Normal View History

2021-01-24 00:40:09 +01:00
// Copyright (c) Microsoft Corporation. All rights reserved.
// Licensed under the MIT License.
//
// http://go.microsoft.com/fwlink/?LinkId=248929
// http://create.msdn.com/en-US/education/catalog/sample/stock_effects
Texture2D<float4> Texture : register(t0);
TextureCube<float4> EnvironmentMap : register(t1);
Texture2D<float4> SphereMap : register(t1);
Texture2DArray<float4> DualParabolaMap : register(t1);
sampler Sampler : register(s0);
sampler EnvMapSampler : register(s1);
cbuffer Parameters : register(b0)
{
float3 EnvironmentMapSpecular : packoffset(c0);
float EnvironmentMapAmount : packoffset(c1.x);
float FresnelFactor : packoffset(c1.y);
float4 DiffuseColor : packoffset(c2);
float3 EmissiveColor : packoffset(c3);
float3 LightDirection[3] : packoffset(c4);
float3 LightDiffuseColor[3] : packoffset(c7);
float3 EyePosition : packoffset(c10);
float3 FogColor : packoffset(c11);
float4 FogVector : packoffset(c12);
float4x4 World : packoffset(c13);
float3x3 WorldInverseTranspose : packoffset(c17);
float4x4 WorldViewProj : packoffset(c20);
};
// We don't use these parameters, but Lighting.fxh won't compile without them.
#define SpecularPower 0
#define SpecularColor 0
#define LightSpecularColor float3(0, 0, 0)
#include "Structures.fxh"
#include "Common.fxh"
#include "Lighting.fxh"
#include "Utilities.fxh"
float ComputeFresnelFactor(float3 eyeVector, float3 worldNormal)
{
float viewAngle = dot(eyeVector, worldNormal);
return pow(max(1 - abs(viewAngle), 0), FresnelFactor) * EnvironmentMapAmount;
}
VSOutputTxEnvMap ComputeEnvMapVSOutput(VSInputNmTx vin, float3 normal, uniform bool useFresnel, uniform int numLights)
{
VSOutputTxEnvMap vout;
float4 pos_ws = mul(vin.Position, World);
float3 eyeVector = normalize(EyePosition - pos_ws.xyz);
float3 worldNormal = normalize(mul(normal, WorldInverseTranspose));
ColorPair lightResult = ComputeLights(eyeVector, worldNormal, numLights);
vout.PositionPS = mul(vin.Position, WorldViewProj);
vout.Diffuse = float4(lightResult.Diffuse, DiffuseColor.a);
if (useFresnel)
vout.Specular.rgb = ComputeFresnelFactor(eyeVector, worldNormal);
else
vout.Specular.rgb = EnvironmentMapAmount;
vout.Specular.a = ComputeFogFactor(vin.Position);
vout.TexCoord = vin.TexCoord;
vout.EnvCoord = reflect(-eyeVector, worldNormal);
return vout;
}
// Cubic environment mapping
// Greene, "Environment Mapping and Other Applications of World Projections", IEEE Computer Graphics and Applications. 1986.
float4 ComputeEnvMapPSOutput(PSInputPixelLightingTx pin, uniform bool useFresnel)
{
float4 color = Texture.Sample(Sampler, pin.TexCoord) * pin.Diffuse;
float3 eyeVector = normalize(EyePosition - pin.PositionWS.xyz);
float3 worldNormal = normalize(pin.NormalWS);
ColorPair lightResult = ComputeLights(eyeVector, worldNormal, 3);
color.rgb *= lightResult.Diffuse;
float3 envcoord = reflect(-eyeVector, worldNormal);
float4 envmap = EnvironmentMap.Sample(EnvMapSampler, envcoord) * color.a;
float3 amount;
if (useFresnel)
amount = ComputeFresnelFactor(eyeVector, worldNormal);
else
amount = EnvironmentMapAmount;
color.rgb = lerp(color.rgb, envmap.rgb, amount.rgb);
color.rgb += EnvironmentMapSpecular * envmap.a;
return color;
}
// Spherical environment mapping
// Blinn & Newell, "Texture and Reflection in Computer Generated Images", Communications of the ACM. 1976.
float4 ComputeEnvMapSpherePSOutput(PSInputPixelLightingTx pin, uniform bool useFresnel)
{
float4 color = Texture.Sample(Sampler, pin.TexCoord) * pin.Diffuse;
float3 eyeVector = normalize(EyePosition - pin.PositionWS.xyz);
float3 worldNormal = normalize(pin.NormalWS);
ColorPair lightResult = ComputeLights(eyeVector, worldNormal, 3);
color.rgb *= lightResult.Diffuse;
float3 r = reflect(-eyeVector, worldNormal);
float m = 2.0 * sqrt(r.x*r.x + r.y*r.y + (r.z + 1.0)*(r.z + 1.0));
float2 envcoord = float2(r.x / m + 0.5, r.y / m + 0.5);
float4 envmap = SphereMap.Sample(EnvMapSampler, envcoord) * color.a;
float3 amount;
if (useFresnel)
amount = ComputeFresnelFactor(eyeVector, worldNormal);
else
amount = EnvironmentMapAmount;
color.rgb = lerp(color.rgb, envmap.rgb, amount.rgb);
color.rgb += EnvironmentMapSpecular * envmap.a;
return color;
}
// Dual-parabola environment mapping
// Heidrich & Seidel, "View-independent Environment Maps", Eurographics Workshop on Graphics Hardware, 1998.
float4 ComputeEnvMapDualParabolaPSOutput(PSInputPixelLightingTx pin, uniform bool useFresnel)
{
float4 color = Texture.Sample(Sampler, pin.TexCoord) * pin.Diffuse;
float3 eyeVector = normalize(EyePosition - pin.PositionWS.xyz);
float3 worldNormal = normalize(pin.NormalWS);
ColorPair lightResult = ComputeLights(eyeVector, worldNormal, 3);
color.rgb *= lightResult.Diffuse;
float3 r = reflect(-eyeVector, worldNormal);
float m = 2.0 * (1.0 + abs(r.z));
float3 envcoord = float3(r.x / m + 0.5, r.y / m + 0.5, (r.z > 0) ? 0 : 1);
float4 envmap = DualParabolaMap.Sample(EnvMapSampler, envcoord) * color.a;
float3 amount;
if (useFresnel)
amount = ComputeFresnelFactor(eyeVector, worldNormal);
else
amount = EnvironmentMapAmount;
color.rgb = lerp(color.rgb, envmap.rgb, amount.rgb);
color.rgb += EnvironmentMapSpecular * envmap.a;
return color;
}
// Vertex shader: basic.
VSOutputTxEnvMap VSEnvMap(VSInputNmTx vin)
{
return ComputeEnvMapVSOutput(vin, vin.Normal, false, 3);
}
VSOutputTxEnvMap VSEnvMapBn(VSInputNmTx vin)
{
float3 normal = BiasX2(vin.Normal);
return ComputeEnvMapVSOutput(vin, normal, false, 3);
}
// Vertex shader: fresnel.
VSOutputTxEnvMap VSEnvMapFresnel(VSInputNmTx vin)
{
return ComputeEnvMapVSOutput(vin, vin.Normal, true, 3);
}
VSOutputTxEnvMap VSEnvMapFresnelBn(VSInputNmTx vin)
{
float3 normal = BiasX2(vin.Normal);
return ComputeEnvMapVSOutput(vin, normal, true, 3);
}
// Vertex shader: one light.
VSOutputTxEnvMap VSEnvMapOneLight(VSInputNmTx vin)
{
return ComputeEnvMapVSOutput(vin, vin.Normal, false, 1);
}
VSOutputTxEnvMap VSEnvMapOneLightBn(VSInputNmTx vin)
{
float3 normal = BiasX2(vin.Normal);
return ComputeEnvMapVSOutput(vin, normal, false, 1);
}
// Vertex shader: one light, fresnel.
VSOutputTxEnvMap VSEnvMapOneLightFresnel(VSInputNmTx vin)
{
return ComputeEnvMapVSOutput(vin, vin.Normal, true, 1);
}
VSOutputTxEnvMap VSEnvMapOneLightFresnelBn(VSInputNmTx vin)
{
float3 normal = BiasX2(vin.Normal);
return ComputeEnvMapVSOutput(vin, normal, true, 1);
}
// Vertex shader: pixel lighting.
VSOutputPixelLightingTx VSEnvMapPixelLighting(VSInputNmTx vin)
{
VSOutputPixelLightingTx vout;
CommonVSOutputPixelLighting cout = ComputeCommonVSOutputPixelLighting(vin.Position, vin.Normal);
SetCommonVSOutputParamsPixelLighting;
vout.Diffuse = float4(1, 1, 1, DiffuseColor.a);
vout.TexCoord = vin.TexCoord;
return vout;
}
VSOutputPixelLightingTx VSEnvMapPixelLightingSM4(VSInputNmTx vin)
{
return VSEnvMapPixelLighting(vin);
}
VSOutputPixelLightingTx VSEnvMapPixelLightingBn(VSInputNmTx vin)
{
VSOutputPixelLightingTx vout;
float3 normal = BiasX2(vin.Normal);
CommonVSOutputPixelLighting cout = ComputeCommonVSOutputPixelLighting(vin.Position, normal);
SetCommonVSOutputParamsPixelLighting;
vout.Diffuse = float4(1, 1, 1, DiffuseColor.a);
vout.TexCoord = vin.TexCoord;
return vout;
}
VSOutputPixelLightingTx VSEnvMapPixelLightingBnSM4(VSInputNmTx vin)
{
return VSEnvMapPixelLightingBn(vin);
}
// Pixel shader (cube mapping): basic.
float4 PSEnvMap(PSInputTxEnvMap pin) : SV_Target0
{
float4 color = Texture.Sample(Sampler, pin.TexCoord) * pin.Diffuse;
float4 envmap = EnvironmentMap.Sample(EnvMapSampler, pin.EnvCoord) * color.a;
color.rgb = lerp(color.rgb, envmap.rgb, pin.Specular.rgb);
ApplyFog(color, pin.Specular.w);
return color;
}
// Pixel shader (cube mapping): no fog.
float4 PSEnvMapNoFog(PSInputTxEnvMap pin) : SV_Target0
{
float4 color = Texture.Sample(Sampler, pin.TexCoord) * pin.Diffuse;
float4 envmap = EnvironmentMap.Sample(EnvMapSampler, pin.EnvCoord) * color.a;
color.rgb = lerp(color.rgb, envmap.rgb, pin.Specular.rgb);
return color;
}
// Pixel shader (cube mapping): specular.
float4 PSEnvMapSpecular(PSInputTxEnvMap pin) : SV_Target0
{
float4 color = Texture.Sample(Sampler, pin.TexCoord) * pin.Diffuse;
float4 envmap = EnvironmentMap.Sample(EnvMapSampler, pin.EnvCoord) * color.a;
color.rgb = lerp(color.rgb, envmap.rgb, pin.Specular.rgb);
color.rgb += EnvironmentMapSpecular * envmap.a;
ApplyFog(color, pin.Specular.w);
return color;
}
// Pixel shader (cube mapping): specular, no fog.
float4 PSEnvMapSpecularNoFog(PSInputTxEnvMap pin) : SV_Target0
{
float4 color = Texture.Sample(Sampler, pin.TexCoord) * pin.Diffuse;
float4 envmap = EnvironmentMap.Sample(EnvMapSampler, pin.EnvCoord) * color.a;
color.rgb = lerp(color.rgb, envmap.rgb, pin.Specular.rgb);
color.rgb += EnvironmentMapSpecular * envmap.a;
return color;
}
// Pixel shader (cube mapping): pixel lighting.
float4 PSEnvMapPixelLighting(PSInputPixelLightingTx pin) : SV_Target0
{
float4 color = ComputeEnvMapPSOutput(pin, false);
ApplyFog(color, pin.PositionWS.w);
return color;
}
// Pixel shader (cube mapping): pixel lighting + no fog.
float4 PSEnvMapPixelLightingNoFog(PSInputPixelLightingTx pin) : SV_Target0
{
float4 color = ComputeEnvMapPSOutput(pin, false);
return color;
}
// Pixel shader (cube mapping): pixel lighting + fresnel
float4 PSEnvMapPixelLightingFresnel(PSInputPixelLightingTx pin) : SV_Target0
{
float4 color = ComputeEnvMapPSOutput(pin, true);
ApplyFog(color, pin.PositionWS.w);
return color;
}
// Pixel shader (cube mapping): pixel lighting + fresnel + no fog.
float4 PSEnvMapPixelLightingFresnelNoFog(PSInputPixelLightingTx pin) : SV_Target0
{
float4 color = ComputeEnvMapPSOutput(pin, true);
return color;
}
// Pixel shader (sphere mapping): pixel lighting.
float4 PSEnvMapSpherePixelLighting(PSInputPixelLightingTx pin) : SV_Target0
{
float4 color = ComputeEnvMapSpherePSOutput(pin, false);
ApplyFog(color, pin.PositionWS.w);
return color;
}
// Pixel shader (sphere mapping): pixel lighting + no fog.
float4 PSEnvMapSpherePixelLightingNoFog(PSInputPixelLightingTx pin) : SV_Target0
{
float4 color = ComputeEnvMapSpherePSOutput(pin, false);
return color;
}
// Pixel shader (sphere mapping): pixel lighting + fresnel
float4 PSEnvMapSpherePixelLightingFresnel(PSInputPixelLightingTx pin) : SV_Target0
{
float4 color = ComputeEnvMapSpherePSOutput(pin, true);
ApplyFog(color, pin.PositionWS.w);
return color;
}
// Pixel shader (sphere mapping): pixel lighting + fresnel + no fog.
float4 PSEnvMapSpherePixelLightingFresnelNoFog(PSInputPixelLightingTx pin) : SV_Target0
{
float4 color = ComputeEnvMapSpherePSOutput(pin, true);
return color;
}
// Pixel shader (dual parabola mapping): pixel lighting.
float4 PSEnvMapDualParabolaPixelLighting(PSInputPixelLightingTx pin) : SV_Target0
{
float4 color = ComputeEnvMapDualParabolaPSOutput(pin, false);
ApplyFog(color, pin.PositionWS.w);
return color;
}
// Pixel shader (dual parabola mapping): pixel lighting + no fog.
float4 PSEnvMapDualParabolaPixelLightingNoFog(PSInputPixelLightingTx pin) : SV_Target0
{
float4 color = ComputeEnvMapDualParabolaPSOutput(pin, false);
return color;
}
// Pixel shader (dual parabola mapping): pixel lighting + fresnel
float4 PSEnvMapDualParabolaPixelLightingFresnel(PSInputPixelLightingTx pin) : SV_Target0
{
float4 color = ComputeEnvMapDualParabolaPSOutput(pin, true);
ApplyFog(color, pin.PositionWS.w);
return color;
}
// Pixel shader (dual parabola mapping): pixel lighting + fresnel + no fog.
float4 PSEnvMapDualParabolaPixelLightingFresnelNoFog(PSInputPixelLightingTx pin) : SV_Target0
{
float4 color = ComputeEnvMapDualParabolaPSOutput(pin, true);
return color;
}