1
0
mirror of https://github.com/ncblakely/GiantsTools synced 2024-11-25 07:35:36 +01:00
GiantsTools/Sdk/External/DirectXTK/Src/Bezier.h

197 lines
8.0 KiB
C
Raw Normal View History

2021-01-24 00:40:09 +01:00
//--------------------------------------------------------------------------------------
// File: Bezier.h
//
// Copyright (c) Microsoft Corporation. All rights reserved.
// Licensed under the MIT License.
//
// http://go.microsoft.com/fwlink/?LinkId=248929
// http://go.microsoft.com/fwlink/?LinkID=615561
//--------------------------------------------------------------------------------------
#pragma once
#include <array>
#include <algorithm>
#include <DirectXMath.h>
namespace Bezier
{
// Performs a cubic bezier interpolation between four control points,
// returning the value at the specified time (t ranges 0 to 1).
template<typename T>
inline T CubicInterpolate(T const& p1, T const& p2, T const& p3, T const& p4, float t) noexcept
{
return p1 * (1 - t) * (1 - t) * (1 - t) +
p2 * 3 * t * (1 - t) * (1 - t) +
p3 * 3 * t * t * (1 - t) +
p4 * t * t * t;
}
template<>
inline DirectX::XMVECTOR CubicInterpolate(DirectX::XMVECTOR const& p1, DirectX::XMVECTOR const& p2, DirectX::XMVECTOR const& p3, DirectX::XMVECTOR const& p4, float t) noexcept
{
using namespace DirectX;
XMVECTOR T0 = XMVectorReplicate((1 - t) * (1 - t) * (1 - t));
XMVECTOR T1 = XMVectorReplicate(3 * t * (1 - t) * (1 - t));
XMVECTOR T2 = XMVectorReplicate(3 * t * t * (1 - t));
XMVECTOR T3 = XMVectorReplicate(t * t * t);
XMVECTOR Result = XMVectorMultiply(p1, T0);
Result = XMVectorMultiplyAdd(p2, T1, Result);
Result = XMVectorMultiplyAdd(p3, T2, Result);
Result = XMVectorMultiplyAdd(p4, T3, Result);
return Result;
}
// Computes the tangent of a cubic bezier curve at the specified time.
template<typename T>
inline T CubicTangent(T const& p1, T const& p2, T const& p3, T const& p4, float t) noexcept
{
using DirectX::operator*;
using DirectX::operator+;
return p1 * (-1 + 2 * t - t * t) +
p2 * (1 - 4 * t + 3 * t * t) +
p3 * (2 * t - 3 * t * t) +
p4 * (t * t);
}
template<>
inline DirectX::XMVECTOR CubicTangent(DirectX::XMVECTOR const& p1, DirectX::XMVECTOR const& p2, DirectX::XMVECTOR const& p3, DirectX::XMVECTOR const& p4, float t) noexcept
{
using namespace DirectX;
XMVECTOR T0 = XMVectorReplicate(-1 + 2 * t - t * t);
XMVECTOR T1 = XMVectorReplicate(1 - 4 * t + 3 * t * t);
XMVECTOR T2 = XMVectorReplicate(2 * t - 3 * t * t);
XMVECTOR T3 = XMVectorReplicate(t * t);
XMVECTOR Result = XMVectorMultiply(p1, T0);
Result = XMVectorMultiplyAdd(p2, T1, Result);
Result = XMVectorMultiplyAdd(p3, T2, Result);
Result = XMVectorMultiplyAdd(p4, T3, Result);
return Result;
}
// Creates vertices for a patch that is tessellated at the specified level.
// Calls the specified outputVertex function for each generated vertex,
// passing the position, normal, and texture coordinate as parameters.
template<typename TOutputFunc>
void CreatePatchVertices(_In_reads_(16) DirectX::XMVECTOR patch[16], size_t tessellation, bool isMirrored, TOutputFunc outputVertex)
{
using namespace DirectX;
for (size_t i = 0; i <= tessellation; i++)
{
float u = float(i) / float(tessellation);
for (size_t j = 0; j <= tessellation; j++)
{
float v = float(j) / float(tessellation);
// Perform four horizontal bezier interpolations
// between the control points of this patch.
XMVECTOR p1 = CubicInterpolate(patch[0], patch[1], patch[2], patch[3], u);
XMVECTOR p2 = CubicInterpolate(patch[4], patch[5], patch[6], patch[7], u);
XMVECTOR p3 = CubicInterpolate(patch[8], patch[9], patch[10], patch[11], u);
XMVECTOR p4 = CubicInterpolate(patch[12], patch[13], patch[14], patch[15], u);
// Perform a vertical interpolation between the results of the
// previous horizontal interpolations, to compute the position.
XMVECTOR position = CubicInterpolate(p1, p2, p3, p4, v);
// Perform another four bezier interpolations between the control
// points, but this time vertically rather than horizontally.
XMVECTOR q1 = CubicInterpolate(patch[0], patch[4], patch[8], patch[12], v);
XMVECTOR q2 = CubicInterpolate(patch[1], patch[5], patch[9], patch[13], v);
XMVECTOR q3 = CubicInterpolate(patch[2], patch[6], patch[10], patch[14], v);
XMVECTOR q4 = CubicInterpolate(patch[3], patch[7], patch[11], patch[15], v);
// Compute vertical and horizontal tangent vectors.
XMVECTOR tangent1 = CubicTangent(p1, p2, p3, p4, v);
XMVECTOR tangent2 = CubicTangent(q1, q2, q3, q4, u);
// Cross the two tangent vectors to compute the normal.
XMVECTOR normal = XMVector3Cross(tangent1, tangent2);
if (!XMVector3NearEqual(normal, XMVectorZero(), g_XMEpsilon))
{
normal = XMVector3Normalize(normal);
// If this patch is mirrored, we must invert the normal.
if (isMirrored)
{
normal = XMVectorNegate(normal);
}
}
else
{
// In a tidy and well constructed bezier patch, the preceding
// normal computation will always work. But the classic teapot
// model is not tidy or well constructed! At the top and bottom
// of the teapot, it contains degenerate geometry where a patch
// has several control points in the same place, which causes
// the tangent computation to fail and produce a zero normal.
// We 'fix' these cases by just hard-coding a normal that points
// either straight up or straight down, depending on whether we
// are on the top or bottom of the teapot. This is not a robust
// solution for all possible degenerate bezier patches, but hey,
// it's good enough to make the teapot work correctly!
normal = XMVectorSelect(g_XMIdentityR1, g_XMNegIdentityR1, XMVectorLess(position, XMVectorZero()));
}
// Compute the texture coordinate.
float mirroredU = isMirrored ? 1 - u : u;
XMVECTOR textureCoordinate = XMVectorSet(mirroredU, v, 0, 0);
// Output this vertex.
outputVertex(position, normal, textureCoordinate);
}
}
}
// Creates indices for a patch that is tessellated at the specified level.
// Calls the specified outputIndex function for each generated index value.
template<typename TOutputFunc>
void CreatePatchIndices(size_t tessellation, bool isMirrored, TOutputFunc outputIndex)
{
size_t stride = tessellation + 1;
for (size_t i = 0; i < tessellation; i++)
{
for (size_t j = 0; j < tessellation; j++)
{
// Make a list of six index values (two triangles).
std::array<size_t, 6> indices =
{
i * stride + j,
(i + 1) * stride + j,
(i + 1) * stride + j + 1,
i * stride + j,
(i + 1) * stride + j + 1,
i * stride + j + 1,
};
// If this patch is mirrored, reverse indices to fix the winding order.
if (isMirrored)
{
std::reverse(indices.begin(), indices.end());
}
// Output these index values.
std::for_each(indices.begin(), indices.end(), outputIndex);
}
}
}
}